Molecular Neurobiology

, Volume 55, Issue 3, pp 2056–2069 | Cite as

Aquaporin-4 as a New Target against Methamphetamine-Induced Brain Alterations: Focus on the Neurogliovascular Unit and Motivational Behavior

  • Ricardo Alexandre Leitão
  • José Sereno
  • João Miguel Castelhano
  • Sónia Isabel Gonçalves
  • Vanessa Coelho-Santos
  • Carlos Fontes-Ribeiro
  • Miguel Castelo-Branco
  • Ana Paula SilvaEmail author


Methamphetamine (METH) abuse/misuse is a worldwide problem, and despite extensive characterization of its neurotoxicity over the last years, many questions remain unanswered. Recently, it was shown that METH compromises the blood-brain barrier (BBB) and causes a disturbance in the water homeostasis leading to brain edema. Importantly, water transport at BBB is regulated by water channels, aquaporins (AQPs), with AQP4 being expressed in astrocytic end-feet surrounding brain endothelium. Thus, the main goal of this work was to unravel the role of AQP4 under conditions of METH consumption. Our results show that METH (4× 10 mg/kg, 2 h apart, i.p.) interferes with AQP4 protein levels causing brain edema and BBB breakdown in both mice striatum and hippocampus, which culminated in locomotor and motivational impairment. Furthermore, these effects were prevented by pharmacological blockade of AQP4 with a specific inhibitor (TGN-020). Moreover, siRNA knockdown of this water channel protected astrocytes from METH-induced swelling and morphologic alterations. Herein, we unraveled AQP4 as a new therapeutic target to prevent the negative impact of METH.


Aquaporin-4 Astrocytes Brain edema Blood-brain barrier Methamphetamine Motivational behavior 



Apparent diffusion coefficient




Blood-brain barrier


Glial fibrillary acidic protein




Magnetic resonance imaging


Small-interfering ribonucleic acid





This work was supported by Project PTDC/SAU-FCF/098685/2008 from Foundation for Science and Technology (FCT Portugal) co-financed by COMPETE and FEDER funds, Pest-C/SAU/UI3282/2013-2014, CNC.IBILI PEst-UID/NEU/04539/2013 and FEDER-COMPETE (FCOMP-01-0124-FEDER-028417 and POCI-01-0145-FEDER-007440). Also, Ph.D. fellowships SFRH/BD/84408/2012 and SFRH/BD/85556/2012 from FCT Portugal co-financed by QREN and POPH/FSE.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12035_2017_439_Fig8_ESM.gif (6 kb)
Fig. S1

METH and AQP4 knockdown does not cause astrocyte cell death. Cells were treated during 24 h with METH (250 μM) and/or TGN (25 μM), non-specific siRNA (Neg siRNA, 20 nM), AQP4 targeting siRNA (siRNA, 20 nM). Results are expressed as mean + S.E.M., n = 4. (GIF 5 kb)

12035_2017_439_MOESM1_ESM.tif (112 kb)
High Resolution Image (TIFF 111 kb)
12035_2017_439_Fig9_ESM.gif (10 kb)
Fig. S2

Pharmacological inhibition and knockdown of AQP4 cause a downregulation of its protein levels. Primary cultures of mouse cortical astrocytes were exposed to TGN (25 μM for 24 h) or AQP4 targeting siRNA (20 nM for 4 days, siRNA). After the appropriate treatments, we observed a significant decrease in AQP4 (a) protein levels, by western blot analysis, and (b) immunoreactivity. Results are expressed as mean + S.E.M., n = 4 for western blot, and n = 15 for immunocytochemistry. *P < 0.05, **P < 0.01, ***P < 0.001 significantly different when compared to the control (CTR) using one-way ANOVA followed by Dunnet’s Multiple comparison test (GIF 9 kb)

12035_2017_439_MOESM2_ESM.tif (213 kb)
High Resolution Image (TIFF 213 kb)
12035_2017_439_Fig10_ESM.gif (10 kb)
Fig. S3

METH does not interfere with GFAP protein levels. No significant alterations were observed regarding the GFAP protein levels at 24 h after the different treatments, as follows: 25 μM TGN, 20 nM AQP4 targeting siRNA (siRNA), 250 μM METH. Results are expressed as mean + S.E.M., n = 4. (GIF 9 kb)

12035_2017_439_MOESM3_ESM.tif (224 kb)
High Resolution Image (TIFF 224 kb)
12035_2017_439_Fig11_ESM.gif (9 kb)
Fig. S4

AQP4 inhibition or knockdown does not cause astrocytic morphological alterations. After the appropriate treatments [TGN (25 μM for 24 h) or AQP4 targeting siRNA (20 nM for 4 days, siRNA)] we did not observe any alterations in astrocytes processes (a) total number or in (b) total length. Results are expressed as mean + S.E.M., n = 15. (GIF 8 kb)

12035_2017_439_MOESM4_ESM.tif (185 kb)
High Resolution Image (TIFF 185 kb)
12035_2017_439_Fig12_ESM.gif (16 kb)
Fig. S5

Both AQP4 inhibition and silencing decrease cell volume. AQP4 inhibition, by using TGN (25 μM for 24h) or AQP4 knockdown siRNA (20 nM for 4 days, siRNA) silencing methodology, caused a significant reduction in astrocyte cell volume. On the other hand, the Neg siRNA (20 nM non-specific siRNA) did not interfere with the cell size. Results are expressed as mean + S.E.M., n=10. *P<0.05, ***P<0.001 significantly different when compared to the control using one-way ANOVA followed by Dunnet’s Multiple comparison test. (GIF 15.9)

12035_2017_439_MOESM5_ESM.tif (155 kb)
High Resolution Image (TIFF 154 kb)
12035_2017_439_Fig13_ESM.gif (6 kb)
Fig. S6

Both TGN and VitC are able to prevent the increase of reactive oxygen species triggered by oxygen peroxide. Primary cultures of astrocytes were treated with 500 μM oxygen peroxide (H2O2) for 4 h alone or together with TGN (25 μM) or vitamin C (200 μM; VitC). Here we show that TGN palys a similar role than the well-known antioxidant VitC. Results are expressed as mean % of control + S.E.M., n = 10. **P < 0.01, ***P < 0.001, significantly different when compared to the control (CTR); ### P < 0.001 significantly different when compared to METH using one-way ANOVA followed by Bonferroni’s Multiple comparison test. (GIF 5 kb)

12035_2017_439_MOESM6_ESM.tif (367 kb)
High Resolution Image (TIFF 367 kb)


  1. 1.
    United Nations Office on Drugs and Crime (UNODC), (2015) World Drug Report 2015. United Nations publication, Sales No. E.15.XIGoogle Scholar
  2. 2.
    Silva AP, Martins T, Baptista S, Gonçalves J, Agasse F, Malva JO (2010) Brain injury associated with widely abused amphetamines: neuroinflammation, neurogenesis and blood-brain barrier. Curr Drug Abuse Rev 3:239–254CrossRefPubMedGoogle Scholar
  3. 3.
    Toborek M, Seelbach MJ, Rashid CS, András IE, Chen L, Park M, Esser KA (2013) Voluntary exercise protects against methamphetamine-induced oxidative stress in brain microvasculature and disruption of the blood-brain barrier. Mol Neurodegener 8:22CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Sharma HS, Kiyatkin EA (2009) Rapid morphological brain abnormalities during acute methamphetamine intoxication in the rat: an experimental study using light and electron microscopy. J Chem Neuroanat 37:18–32CrossRefPubMedGoogle Scholar
  5. 5.
    Loftis JM, Janowsky A (2014) Neuroimmune basis of methamphetamine toxicity. Int Rev Neurobiol 118:165–197CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Matsumoto RR, Seminerio MJ, Turner RC, Robson MJ, Nguyen L, Miller DB, O'Callaghan JP (2014) Methamphetamine-induced toxicity: an updated review on issues related to hyperthermia. Pharmacol Ther 144:28–40CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Coelho-Santos V, Leitão RA, Cardoso FL, Palmela I, Rito M, Barbosa M, Brito MA, Fontes-Ribeiro CA et al (2015) The TNF-α/NF-κB signaling pathway has a key role in methamphetamine-induced blood-brain barrier dysfunction. J Cereb Blood Flow Metab 35:1260–1271CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Martins T, Baptista S, Gonçalves J, Leal E, Milhazes N, Borges F, Ribeiro CF, Quintela O et al (2011) Methamphetamine transiently increases the blood-brain barrier permeability in the hippocampus: role of tight junction proteins and matrix metalloproteinase-9. Brain Res 1411:28–40CrossRefPubMedGoogle Scholar
  9. 9.
    Ramirez SH, Potula R, Fan S, Eidem T, Papugani A, Reichenbach N, Dykstra H, Weksler BB et al (2009) Methamphetamine disrupts blood-brain barrier function by induction of oxidative stress in brain endothelial cells. J Cereb Blood Flow Metab 29:1933–1945CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Gonçalves J, Baptista S, Silva AP (2014) Psychostimulants and brain dysfunction: a review of the relevant neurotoxic effects. Neuropharmacology 87C:135–149CrossRefGoogle Scholar
  11. 11.
    Beránková K, Habrdová V, Balíková M, Strejc P (2005) Methamphetamine in hair and interpretation of forensic findings in a fatal case. Forensic Sci Int 153:93–97CrossRefPubMedGoogle Scholar
  12. 12.
    Tait MJ, Saadoun S, Bell A, Papadopoulos MC (2008) Water movements in the brain: role of aquaporins. Trends Neurosci 31:37–43CrossRefPubMedGoogle Scholar
  13. 13.
    Igarashi H, Huber VJ, Tsujita M, Nakada T (2011) Pretreatment with a novel aquaporin 4 inhibitor, TGN-020, significantly reduces ischemic cerebral edema. Neurol Sci 32:113–116CrossRefPubMedGoogle Scholar
  14. 14.
    Furman CS, Gorelick-Feldman DA, Davidson KGV, Yasumura T, Neely JD, Agre P, Rash JE (2003) Aquaporin-4 square array assembly: opposing actions of M1 and M23 isoforms. Proc Natl Acad Sci U S A 100:13609–13614CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Chen SJ, Yang JF, Kong FP, Ren JL, Hao K, Li M, Yuan Y, Chen XC et al (2014) Overactivation of corticotropin-releasing factor receptor type 1 and aquaporin-4 by hypoxia induces cerebral edema. Proc Natl Acad Sci U S A 111:13199–13204CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wang Q, Ishikawa T, Michiue T, Zhu BL, Guan DW, Maeda H (2014) Molecular pathology of brain matrix metalloproteases, claudin5, and aquaporins in forensic autopsy cases with special regard to methamphetamine intoxication. Int J Legal Med 128:469–474CrossRefPubMedGoogle Scholar
  17. 17.
    Fukuda AM, Adami A, Pop V, Bellone JA, Coats JS, Hartman RE, Ashwal S, Obenaus A et al (2013) Posttraumatic reduction of edema with aquaporin-4 RNA interference improves acute and chronic functional recovery. J Cereb Blood Flow Metab 33:1621–1632CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Rapp JH, Pan XM, Neumann M, Hong M, Hollenbeck K, Liu J (2008) Microemboli composed of cholesterol crystals disrupt the blood-brain barrier and reduce cognition. Stroke 39:2354–2361CrossRefPubMedGoogle Scholar
  19. 19.
    Tomkins O, Friedman O, Ivens S, Reiffurth C, Major S, Dreier JP, Heinemann U, Friedman A (2007) Blood–brain barrier disruption results in delayed functional and structural alterations in the rat neocortex. Neurobiol Dis 25:367–377CrossRefPubMedGoogle Scholar
  20. 20.
    Najjar S, Pearlman DM, Devinsky O, Najjar A, Zagzag D (2013) Neurovascular unit dysfunction with blood-brain barrier hyperpermeability contributes to major depressive disorder: a review of clinical and experimental evidence. J Neuroinflamm 10:142Google Scholar
  21. 21.
    Simon SL, Domier C, Carnell J, Brethen P, Rawson R, Ling W (2000) Cognitive impairment in individuals currently using methamphetamine. Am J Addict 9:222–231CrossRefPubMedGoogle Scholar
  22. 22.
    Gonçalves J, Baptista S, Olesen MV, Fontes-Ribeiro C, Malva JO, Woldbye DP, Silva AP (2012) Methamphetamine-induced changes in the mice hippocampal neuropeptide Y system: implications for memory impairment. J Neurochem 123:1041–1053CrossRefPubMedGoogle Scholar
  23. 23.
    Silva CD, Neves AF, Dias AI, Freitas HJ, Mendes SM, Pita I, Viana SD, de Oliveira PA et al (2014) A single neurotoxic dose of methamphetamine induces a long-lasting depressive-like behaviour in mice. Neurotox Res 25:395–304CrossRefGoogle Scholar
  24. 24.
    Wachter B, Schürger S, Schmid A, Gröger A, Sadler R, Speidel A, Rolinger J, Pichler BJ et al (2012) 6-Hydroxydopamine leads to T2 hyperintensity, decreased claudin-3 immunoreactivity and altered aquaporin 4 expression in the striatum. Behav Brain Res 232:148–158CrossRefPubMedGoogle Scholar
  25. 25.
    Zhong Z, Wang B, Dai M, Sun Y, Sun Q, Yang G, Bian L (2013) Carvacrol alleviates cerebral edema by modulating AQP4 expression after intracerebral hemorrhage in mice. Neurosci Lett 555:24–29CrossRefPubMedGoogle Scholar
  26. 26.
    Haj-Yasein NN, Vindedal GF, Eilert-Olsen M, Gundersen GA, Skare Ø, Laake P, Klungland A, Thorén AE et al (2011) Glial-conditional deletion of aquaporin-4 (Aqp4) reduces blood-brain water uptake and confers barrier function on perivascular astrocyte endfeet. Proc Natl Acad Sci U S A 108:17815–17820CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Bammer R (2003) Basic principles of diffusion-weighted imaging. Eur J Radiol 45:169–184CrossRefPubMedGoogle Scholar
  28. 28.
    Gonçalves J, Baptista S, Martins T, Milhazes N, Borges F, Ribeiro CF, Malva JO, Silva AP (2010) Methamphetamine-induced neuroinflammation and neuronal dysfunction in the mice hippocampus: preventive effect of indomethacin. Eur J Neurosci 31:315–326CrossRefPubMedGoogle Scholar
  29. 29.
    Joca L, Zuloaga DG, Raber J, Siegel JA (2014) Long-term effects of early adolescent methamphetamine exposure on depression-like behavior and the hypothalamic vasopressin system in mice. Dev Neurosci 36:108–118CrossRefPubMedGoogle Scholar
  30. 30.
    Huang WJ, Lee HJ, Chen HL, Fan PC, Ku YL, Chiou LC (2015) Hispidulin, a constituent of Clerodendrum inerme that remitted motor tics, alleviated methamphetamine-induced hyperlocomotion without motor impairment in mice. J Ethnopharmacol 166:18–22CrossRefPubMedGoogle Scholar
  31. 31.
    Boulle F, Massart R, Stragier E, Paizanis E, Zaidan L, Marday S, Gabriel C, Mocaer E (2014) Hippocampal and behavioral dysfunctions in a mouse model of environmental stress: normalization by agomelatine. Transl Psychiatry 4:e485CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Badaut J, Ashwal S, Adami A, Tone B, Recker R, Spagnoli D, Ternon B, Obenaus A (2011) Brain water mobility decreases after astrocytic aquaporin-4 inhibition using RNA interference. J Cereb Blood Flow Metab 31:819–831CrossRefPubMedGoogle Scholar
  33. 33.
    Fernandes S, Salta S, Bravo J, Silva AP, Summavielle T (2016) Acetyl-L-carnitine prevents methamphetamine-induced structural damage on endothelial cells via ILK-related MMP-9 activity. Mol Neurobiol 53:408–422CrossRefPubMedGoogle Scholar
  34. 34.
    Di Benedetto B, Malik VA, Begum S, Jablonowski L, Gómez-Gonzáles GB, Neumann ID, Rupprecht R (2016) Fluoxetine requires the endfeet protein aquaporin-4 to enhance plasticity of astrocyte processes. Front Cell Neurosci 10:8CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hawkins BT, Gu YH, Izawa Y, Zoppo GJ (2013) Disruption of dystroglycan-laminin interactions modulates water uptake by astrocytes. Brain Res 1503:89–96CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Assentoft M, Kaptan S, Fenton RA, Hua SZ, de Groot BL, MacAulay N (2013) Phosphorylation of rat aquaporin-4 at Ser(111) is not required for channel gating. Glia 61:1101–1112CrossRefPubMedGoogle Scholar
  37. 37.
    Smith AJ, Jin BJ, Ratelade J, Verkman AS (2014) Aggregation state determines the localization and function of M1- and M23-aquaporin-4 in astrocytes. J Cell Biol 204:559–573CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Howe CL, Kaptzan T, Magaña SM, Ayers-Ringler JR, LaFrance-Corey RG, Lucchinetti CF (2014) Neuromyelitis optica IgG stimulates an immunological response in rat astrocyte cultures. Glia 62:692–708CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Abdul Muneer PM, Alikunju S, Szlachetka AM, Haorah J (2011) Methamphetamine inhibits the glucose uptake by human neurons and astrocytes: stabilization by acetyl-L-carnitine. PLoS One 6:e19258CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Rivière GJ, Gentry WB, Owens SM (2000) Disposition of methamphetamine and its metabolite amphetamine in brain and other tissues in rats after intravenous administration. J Pharmacol Exp Ther 292:1042–1047PubMedGoogle Scholar
  41. 41.
    Melega WP, Cho AK, Harvey D, Laćan G (2007) Methamphetamine blood concentrations in human abusers: application to pharmacokinetic modeling. Synapse 61:216–220CrossRefPubMedGoogle Scholar
  42. 42.
    Leitão RA, Coelho-Santos V, Silva AP (2016) Methamphetamine and the blood-brain barrier. In: Preedy VR (ed) Neuropathology of drug addictions and substance misuse volume 2: part I stimulants, 1st edn. Academic Press-Elsevier, London, pp. 155–168CrossRefGoogle Scholar
  43. 43.
    Naderi V, Khaksari M, Abbasi R, Maghool F (2015) Estrogen provides neuroprotection against brain edema and blood brain barrier disruption through both estrogen receptors α and β following traumatic brain injury. Iran J Basic Med Sci 18:138–144PubMedPubMedCentralGoogle Scholar
  44. 44.
    Krasnova IN, Cadet JL (2009) Methamphetamine toxicity and messengers of death. Brain Res Rev 60:379–407CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Barzó P, Marmarou A, Fatouros P, Hayasaki K, Corwin F (1997) Contribution of vasogenic and cellular edema to traumatic brain swelling measured by diffusion-weighted imaging. J Neurosurg 87:900–907CrossRefPubMedGoogle Scholar
  46. 46.
    Marmarou A, Signoretti S, Fatouros PP, Portella G, Aygok GA, Bullock MR (2006) Predominance of cellular edema in traumatic brain swelling in patients with severe head injuries. J Neurosurg 104:720–730CrossRefPubMedGoogle Scholar
  47. 47.
    Nakajima A, Yamada K, Nagai T, Uchiyama T, Miyamoto Y, Mamiya T, He J, Nitta A et al (2004) Role of tumor necrosis factor-alpha in methamphetamine-induced drug dependence and neurotoxicity. J Neurosci 24:2212–2225CrossRefPubMedGoogle Scholar
  48. 48.
    Urrutia A, Rubio-Araiz A, Gutierrez-Lopez MD, ElAli A, Hermann DM, O'Shea E, Colado MI (2013) A study on the effect of JNK inhibitor, SP600125, on the disruption of blood-brain barrier induced by methamphetamine. Neurobiol Dis 50:49–58CrossRefPubMedGoogle Scholar
  49. 49.
    Grace CE, Schaefer TL, Herring NR, Graham DL, Skelton MR, Gudelsky GA, Williams MT, Vorhees CV (2010) Effect of a neurotoxic dose regimen of (+)-methamphetamine on behavior, plasma corticosterone, and brain monoamines in adult C57BL/6 mice. Neurotoxicol Teratol 32:346–355CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    MacQueen G, Frodl T (2011) The hippocampus in major depression: evidence for the convergence of the bench and bedside in psychiatric research? Mol Psychiatry 16:252–264CrossRefPubMedGoogle Scholar
  51. 51.
    He Z, Wang X, Wu Y, Jia J, Hu Y, Yang X, Li J, Fan M et al (2014) Treadmill pre-training ameliorates brain edema in ischemic stroke via down-regulation of aquaporin-4: an MRI study in rats. PLoS One 9:e84602CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Tang Y, Wu P, Su J, Xiang J, Cai D, Dong Q (2010) Effects of aquaporin-4 on edema formation following intracerebral hemorrhage. Exp Neurol 223:485–495CrossRefPubMedGoogle Scholar
  53. 53.
    Rao KV, Jayakumar AR, Reddy PV, Tong X, Curtis KM, Norenberg MD (2010) Aquaporin-4 in manganese-treated cultured astrocytes. Glia 58:1490–1499PubMedGoogle Scholar
  54. 54.
    Wang YF, Parpura V (2016) Central role of maladapted astrocytic plasticity in ischemic brain edema formation. Front Cell Neurosci 10:129PubMedPubMedCentralGoogle Scholar
  55. 55.
    Yang Q, Wang EY, Huang XJ, Qu WS, Zhang L, Xu JZ, Wang W, Tian DS (2011) Blocking epidermal growth factor receptor attenuates reactive astrogliosis through inhibiting cell cycle progression and protects against ischemic brain injury in rats. J Neurochem 119:644–653CrossRefPubMedGoogle Scholar
  56. 56.
    Tourdias T, Dragonu I, Fushimi Y, Deloire MS, Boiziau C, Brochet B, Moonen C, Petry KG et al (2009) Aquaporin 4 correlates with apparent diffusion coefficient and hydrocephalus severity in the rat brain: a combined MRI-histological study. NeuroImage 47:659–666CrossRefPubMedGoogle Scholar
  57. 57.
    Eide PK, Eidsvaag VA, Nagelhus EA, Hansson HA (2016) Cortical astrogliosis and increased perivascular aquaporin-4 in idiopathic intracranial hypertension. Brain Res 1644:161–175CrossRefPubMedGoogle Scholar
  58. 58.
    Burnett ME, Johnston HM, Green KN (2015) Structural characterization of the aquaporin inhibitor 2-nicotinamido-1,3,4-thiadiazole. Acta Cryst C71:1074–1079Google Scholar
  59. 59.
    Jayakumar AR, Panickar KS, Murthy CR, Norenberg MD (2006) Oxidative stress and mitogen-activated protein kinase phosphorylation mediate ammonia-induced cell swelling and glutamate uptake inhibition in cultured astrocytes. J Neurosci 26:4774–4784CrossRefPubMedGoogle Scholar
  60. 60.
    Hsu Y, Tran M, Linninger AA (2015) Dynamic regulation of aquaporin-4 water channels in neurological disorders. Croat Med J 56:401–421CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Wang BF, Cui ZW, Zhong ZH, Sun YH, Sun QF, Yang GY, Bian LG (2015) Curcumin attenuates brain edema in mice with intracerebral hemorrhage through inhibition of AQP4 and AQP9 expression. Acta Pharmacol Sin 36:939–948CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Ito H, Yamamoto N, Arima H, Hirate H, Morishima T, Umenishi F, Tada T, Asai K et al (2006) Interleukin-1beta induces the expression of aquaporin-4 through a nuclear factor-kappaB pathway in rat astrocytes. J Neurochem 99:107–118CrossRefPubMedGoogle Scholar
  63. 63.
    Northrop NA, Yamamoto BK (2015) Methamphetamine effects on blood-brain barrier structure and function. Front Neurosci 9:69CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Pillai DR, Dittmar MS, Baldaranov D, Heidemann RM, Henning EC, Schuierer G, Bogdahn U, Schlachetzki F (2009) Cerebral ischemia-reperfusion injury in rats-a 3 T MRI study on biphasic blood-brain barrier opening and the dynamics of edema formation. J Cereb Blood Flow Metab 29:1846–1855CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Martins T, Burgoyne T, Kenny BA, Hudson N, Futter CE, Ambrósio AF, Silva AP, Greenwood J et al (2013) Methamphetamine-induced nitric oxide promotes vesicular transport in blood-brain barrier endothelial cells. Neuropharmacology 65:74–82CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Zou J, Vetreno RP, Crews FT (2012) ATP-P2X7 receptor signaling controls basal and TNFα-stimulated glial cell proliferation. Glia 60:661–673. doi: 10.1002/glia.22302 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Ho ML, Rojas R, Eisenber RL (2012) Cerebral edema. Am J Roentgenol 199:w258–w273CrossRefGoogle Scholar
  68. 68.
    Koch S, Rabinstein A, Falcone S, Forteza A (2001) Diffusion-weighted imaging shows cytotoxic and vasogenic edema in eclampsia. Am J Neuroradiol 22:1068–1070PubMedGoogle Scholar
  69. 69.
    Lazovic J, Basu A, Lin HW, Rothstein RP, Krady JK, Smith MB, Levison SW (2005) Neuroinflammation and both cytotoxic and vasogenic edema are reduced in interleukin-1 type 1 receptor-deficient mice conferring neuroprotection. Stroke 36:2226–2231CrossRefPubMedGoogle Scholar
  70. 70.
    Dalle Lucca JJ, Chavko M, Dubick MA, Adeeb S, Falabella MJ, Slack JL, McCarron R, Li Y (2012) Blast-induced moderate neurotrauma (BINT) elicits early complement activation and tumor necrosis factor α (TNFα) release in a rat brain. J Neurol Sci 318:146–154CrossRefPubMedGoogle Scholar
  71. 71.
    Yao Y, Chen Z, Norris EH, Strickland S (2014) Astrocytic laminin regulates pericyte differentiation and maintains blood brain barrier integrity. Nat Commun 5:3413PubMedPubMedCentralGoogle Scholar
  72. 72.
    Copin JC, Bengualid DJ, Silva RF, Kargiotis O, Schaller K, Gasche Y (2011) Recombinant tissue plasminogen activator induces blood–brain barrier breakdown by a matrix metalloproteinase-9-independent pathway after transient focal cerebral ischemia in mouse. Eur J Neurosci 34:1085–1092CrossRefPubMedGoogle Scholar
  73. 73.
    Hirrlinger PG, Pannicke T, Winkler U, Claudepierre T, Varshney S, Schulze C, Reichenbach A, Brunken WJ et al (2011) Genetic deletion of laminin isoforms β2 and γ3 induces a reduction in Kir4.1 and aquaporin-4 expression and function in the retina. PLoS One 6:e16106CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Menezes MJ, McClenahan FK, Leiton CV, Aranmolate A, Shan X, Colognato H (2014) The extracellular matrix protein laminin α2 regulates the maturation and function of the blood–brain barrier. J Neurosci 34:15260–15280CrossRefPubMedGoogle Scholar
  75. 75.
    Diaz-Ruiz O, Zhang Y, Shan L, Malik N, Hoffman AF, Ladenheim B, Cadet JL, Lupica CR et al (2012) Attenuated response to methamphetamine sensitization and deficits in motor learning and memory after selective deletion of β-catenin in dopamine neurons. Learn Mem 19:341–350CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Boger HA, Middaugh LD, Patrick KS, Ramamoorthy S, Denehy ED, Zhu H, Pacchioni AM, Granholm AC et al (2007) Long-term consequences of methamphetamine exposure in young adults are exacerbated in glial cell line-derived neurotrophic factor heterozygous mice. J Neurosci 27:8816–8825CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Crawley JN (2007) What’s wrong with my mouse: behavioral phenotyping of transgenic and knockout mice, 2nd edn. John Wiley & Sons, Inc., Hoboken, NJCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Ricardo Alexandre Leitão
    • 1
    • 2
  • José Sereno
    • 2
    • 3
  • João Miguel Castelhano
    • 2
    • 3
  • Sónia Isabel Gonçalves
    • 2
    • 3
  • Vanessa Coelho-Santos
    • 1
    • 2
  • Carlos Fontes-Ribeiro
    • 1
    • 2
  • Miguel Castelo-Branco
    • 2
    • 3
  • Ana Paula Silva
    • 1
    • 2
    Email author
  1. 1.Institute of Pharmacology and Experimental Therapeutics, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  2. 2.CNC.IBILIUniversity of CoimbraCoimbraPortugal
  3. 3.Institute for Nuclear Sciences Applied to Health (ICNAS)University of CoimbraCoimbraPortugal

Personalised recommendations