Skip to main content

Advertisement

Log in

Elevated Fractalkine (CX3CL1) Levels in the Trigeminal Ganglion Mechanically Sensitize Temporalis Muscle Nociceptors

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

It has been proposed that after nerve injury or tissue inflammation, fractalkine (CX3CL1) released from dorsal root ganglion neurons acts on satellite glial cells (SGCs) through CX3C receptor 1 (CX3CR1) to induce neuroplastic changes. The existence and importance of fractalkine/CX3CR1 signaling in the trigeminal ganglia has not yet been clarified. This study investigated (1) whether trigeminal ganglion neurons that innervate temporalis muscle and their associated SGCs contain fractalkine and/or express CX3CR1, (2) if intraganglionic injection of fractalkine increases the mechanical sensitivity of temporalis muscle afferent fibers, (3) whether complete Freund’s adjuvant (CFA)-induced inflammation of the temporalis muscle alters the expression of fractalkine or its receptor in the trigeminal ganglion, and (4) if intraganglionic administration of CX3CR1 antibodies alters afferent mechanical sensitivity. Immunohistochemistry and in vivo electrophysiological recordings in male and female rats were used to address these questions. It was found that ∼50 % of temporalis ganglion neurons and ∼25 % of their associated SGCs express CX3CR1, while only neurons expressed fractalkine. Temporalis muscle inflammation increased the expression of fractalkine, but only in male rats. Intraganglionic injection of fractalkine (25 g/ml; 3 μl) induced prolonged afferent mechanical sensitization. Intraganglionic injection of CX3CR1 antibody increased afferent mechanical threshold, but this effect was greater in controls than in rats with CFA-induced muscle inflammation. These findings raise the possibility that basal fractalkine signalling within the trigeminal ganglion plays an important role in mechanical sensitivity of masticatory muscle sensory afferent fibers and that inhibition of CX3CR1 signaling within the trigeminal ganglia may induce analgesia through a peripheral mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nomenclature IWSoC (2003) Chemokine/chemokine receptor nomenclature. Cytokine 21(1):48–9

    Article  Google Scholar 

  2. Abbadie C, Bhangoo S, De Koninck Y, Malcangio M, Melik-Parsadaniantz S, White FA (2009) Chemokines and pain mechanisms. Brain Res Rev 60(1):125–34. doi:10.1016/j.brainresrev.2008.12.002

    Article  CAS  PubMed  Google Scholar 

  3. Guillot X, Semerano L, Decker P, Falgarone G, Boissier MC (2012) Pain and immunity. Joint Bone Spine 79(3):228–36. doi:10.1016/j.jbspin.2011.10.008

    Article  PubMed  Google Scholar 

  4. Stievano L, Piovan E, Amadori A (2004) C and CX3C chemokines: cell sources and physiopathological implications. Crit Rev Immunol 24(3):205–28

    Article  CAS  PubMed  Google Scholar 

  5. White GE, Greaves DR (2009) Fractalkine: one chemokine, many functions. Blood 113(4):767–8. doi:10.1182/blood-2008-11-189860

    Article  CAS  PubMed  Google Scholar 

  6. Clark AK, Malcangio M (2014) Fractalkine/CX3CR1 signaling during neuropathic pain. Front Cell Neurosci 8:121. doi:10.3389/fncel.2014.00121

    Article  PubMed  PubMed Central  Google Scholar 

  7. Milligan ED, Sloane EM, Watkins LR (2008) Glia in pathological pain: a role for fractalkine. J Neuroimmunol 198(1-2):113–20. doi:10.1016/j.jneuroim.2008.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Souza GR, Talbot J, Lotufo CM, Cunha FQ, Cunha TM, Ferreira SH (2013) Fractalkine mediates inflammatory pain through activation of satellite glial cells. Proc Natl Acad Sci U S A 110(27):11193–8. doi:10.1073/pnas.1307445110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Verge GM, Milligan ED, Maier SF, Watkins LR, Naeve GS, Foster AC (2004) Fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) distribution in spinal cord and dorsal root ganglia under basal and neuropathic pain conditions. Eur J Neurosci 20(5):1150–60. doi:10.1111/j.1460-9568.2004.03593.x

    Article  PubMed  Google Scholar 

  10. Zhu W, Acosta C, MacNeil B, Cortes C, Intrater H, Gong Y, Namaka M (2013) Elevated expression of fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) in the dorsal root ganglia and spinal cord in experimental autoimmune encephalomyelitis: implications in multiple sclerosis-induced neuropathic pain. Biomed Res Int 2013:480702. doi:10.1155/2013/480702

    PubMed  PubMed Central  Google Scholar 

  11. Cairns BE, Laursen JC, Dong XD, Gazerani P (2014) Intraganglionic injection of a nitric oxide donator induces afferent mechanical sensitization that is attenuated by palmitoylethanolamide. Cephalalgia 34(9):686–94. doi:10.1177/0333102414521510

    Article  PubMed  Google Scholar 

  12. Dong XD, Mann MK, Kumar U, Svensson P, Arendt-Nielsen L, Hu JW, Sessle BJ, Cairns BE (2007) Sex-related differences in NMDA-evoked rat masseter muscle afferent discharge result from estrogen-mediated modulation of peripheral NMDA receptor activity. Neuroscience 146(2):822–32. doi:10.1016/j.neuroscience.2007.01.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hakim AW, Dong XD, Svensson P, Kumar U, Cairns BE (2009) TNFalpha mechanically sensitizes masseter muscle afferent fibers of male rats. J Neurophysiol 102(3):1551–9. doi:10.1152/jn.00326.2009

    Article  CAS  PubMed  Google Scholar 

  14. Sung D, Dong X, Ernberg M, Kumar U, Cairns BE (2008) Serotonin (5-HT) excites rat masticatory muscle afferent fibers through activation of peripheral 5-HT3 receptors. Pain 134(1-2):41–50. doi:10.1016/j.pain.2007.03.034

    Article  CAS  PubMed  Google Scholar 

  15. Svensson P, Wang MW, Dong XD, Kumar U, Cairns BE (2010) Human nerve growth factor sensitizes masseter muscle nociceptors in female rats. Pain 148(3):473–80. doi:10.1016/j.pain.2009.12.009

    Article  CAS  PubMed  Google Scholar 

  16. Wang MW, Kumar U, Dong XD, Cairns BE (2012) Expression of NMDA and oestrogen receptors by trigeminal ganglion neurons that innervate the rat temporalis muscle. Chin J Dent Res 15(2):89–97

    CAS  PubMed  Google Scholar 

  17. Wong H, Kang I, Dong XD, Christidis N, Ernberg M, Svensson P, Cairns BE (2014) NGF-induced mechanical sensitization of the masseter muscle is mediated through peripheral NMDA receptors. Neuroscience 269:232–44. doi:10.1016/j.neuroscience.2014.03.054

    Article  CAS  PubMed  Google Scholar 

  18. Cairns BE, Gambarota G, Svensson P, Arendt-Nielsen L, Berde CB (2002) Glutamate-induced sensitization of rat masseter muscle fibers. Neuroscience 109(2):389–99

    Article  CAS  PubMed  Google Scholar 

  19. Cairns BE, Hu JW, Arendt-Nielsen L, Sessle BJ, Svensson P (2001) Sex-related differences in human pain and rat afferent discharge evoked by injection of glutamate into the masseter muscle. J Neurophysiol 86(2):782–91

    CAS  PubMed  Google Scholar 

  20. Dong XD, Mann MK, Sessle BJ, Arendt-Nielsen L, Svensson P, Cairns BE (2006) Sensitivity of rat temporalis muscle afferent fibers to peripheral N-methyl-D-aspartate receptor activation. Neuroscience 141(2):939–45. doi:10.1016/j.neuroscience.2006.04.024

    Article  CAS  PubMed  Google Scholar 

  21. Andersen S, Petersen MW, Svendsen AS, Gazerani P (2015) Pressure pain thresholds assessed over temporalis, masseter, and frontalis muscles in healthy individuals, patients with tension-type headache, and those with migraine—a systematic review. Pain 156(8):1409–23. doi:10.1097/j.pain.0000000000000219

    Article  PubMed  Google Scholar 

  22. Cairns BE (2010) Pathophysiology of TMD pain—basic mechanisms and their implications for pharmacotherapy. J Oral Rehabil 37(6):391–410. doi:10.1111/j.1365-2842.2010.02074.x

    Article  CAS  PubMed  Google Scholar 

  23. Huang ZZ, Li D, Liu CC, Cui Y, Zhu HQ, Zhang WW, Li YY, Xin WJ (2014) CX3CL1-mediated macrophage activation contributed to paclitaxel-induced DRG neuronal apoptosis and painful peripheral neuropathy. Brain Behav Immun 40:155–65. doi:10.1016/j.bbi.2014.03.014

    Article  CAS  PubMed  Google Scholar 

  24. Oh SB, Tran PB, Gillard SE, Hurley RW, Hammond DL, Miller RJ (2001) Chemokines and glycoprotein120 produce pain hypersensitivity by directly exciting primary nociceptive neurons. J Neurosci 21(14):5027–35

    CAS  PubMed  Google Scholar 

  25. Oh SB, Endoh T, Simen AA, Ren D, Miller RJ (2002) Regulation of calcium currents by chemokines and their receptors. J Neuroimmunol 123(1-2):66–75

    Article  CAS  PubMed  Google Scholar 

  26. Laursen JC, Cairns BE, Dong XD, Kumar U, Somvanshi RK, Arendt-Nielsen L, Gazerani P (2014) Glutamate dysregulation in the trigeminal ganglion: a novel mechanism for peripheral sensitization of the craniofacial region. Neuroscience 256:23–35. doi:10.1016/j.neuroscience.2013.10.009

    Article  CAS  PubMed  Google Scholar 

  27. Puil E, Spigelman I (1988) Electrophysiological responses of trigeminal root ganglion neurons in vitro. Neuroscience 24(2):635–46

    Article  CAS  PubMed  Google Scholar 

  28. Lauro C, Catalano M, Trettel F, Limatola C (2015) Fractalkine in the nervous system: neuroprotective or neurotoxic molecule? Ann N Y Acad Sci 1351(1):141–8. doi:10.1111/nyas.12805

    Article  CAS  PubMed  Google Scholar 

  29. Sheridan GK, Murphy KJ (2013) Neuron-glia crosstalk in health and disease: fractalkine and CX3CR1 take centre stage. Open Biol 3(12):130181. doi:10.1098/rsob.130181

    Article  PubMed  PubMed Central  Google Scholar 

  30. Deiva K, Geeraerts T, Salim H, Leclerc P, Hery C, Hugel B, Freyssinet JM, Tardieu M (2004) Fractalkine reduces N-methyl-d-aspartate-induced calcium flux and apoptosis in human neurons through extracellular signal-regulated kinase activation. Eur J Neurosci 20(12):3222–32. doi:10.1111/j.1460-9568.2004.03800.x

    Article  PubMed  Google Scholar 

  31. Neeb L, Hellen P, Boehnke C, Hoffmann J, Schuh-Hofer S, Dirnagl U, Reuter U (2011) IL-1beta stimulates COX-2 dependent PGE(2) synthesis and CGRP release in rat trigeminal ganglia cells. PLoS One 6(3):e17360. doi:10.1371/journal.pone.0017360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Takeda M, Tanimoto T, Kadoi J, Nasu M, Takahashi M, Kitagawa J, Matsumoto S (2007) Enhanced excitability of nociceptive trigeminal ganglion neurons by satellite glial cytokine following peripheral inflammation. Pain 129(1-2):155–66. doi:10.1016/j.pain.2006.10.007

    Article  CAS  PubMed  Google Scholar 

  33. Hakim AW, Dong X, Cairns BE (2011) TNFalpha mechanically sensitizes masseter muscle nociceptors by increasing prostaglandin E2 levels. J Neurophysiol 105(1):154–61. doi:10.1152/jn.00730.2010

    Article  CAS  PubMed  Google Scholar 

  34. Hu JH, Yang JP, Liu L, Li CF, Wang LN, Ji FH, Cheng H (2012) Involvement of CX3CR1 in bone cancer pain through the activation of microglia p38 MAPK pathway in the spinal cord. Brain Res 1465:1–9. doi:10.1016/j.brainres.2012.05.020

    Article  CAS  PubMed  Google Scholar 

  35. Johnston IN, Milligan ED, Wieseler-Frank J, Frank MG, Zapata V, Campisi J, Langer S, Martin D et al (2004) A role for proinflammatory cytokines and fractalkine in analgesia, tolerance, and subsequent pain facilitation induced by chronic intrathecal morphine. J Neurosci 24(33):7353–65. doi:10.1523/jneurosci.1850-04.2004

    Article  CAS  PubMed  Google Scholar 

  36. Kiyomoto M, Shinoda M, Okada-Ogawa A, Noma N, Shibuta K, Tsuboi Y, Sessle BJ, Imamura Y et al (2013) Fractalkine signaling in microglia contributes to ectopic orofacial pain following trapezius muscle inflammation. J Neurosci 33(18):7667–80. doi:10.1523/jneurosci.4968-12.2013

    Article  CAS  PubMed  Google Scholar 

  37. Milligan ED, Zapata V, Chacur M, Schoeniger D, Biedenkapp J, O’Connor KA, Verge GM, Chapman G et al (2004) Evidence that exogenous and endogenous fractalkine can induce spinal nociceptive facilitation in rats. Eur J Neurosci 20(9):2294–302. doi:10.1111/j.1460-9568.2004.03709.x

    Article  CAS  PubMed  Google Scholar 

  38. Sun S, Cao H, Han M, Li TT, Pan HL, Zhao ZQ, Zhang YQ (2007) New evidence for the involvement of spinal fractalkine receptor in pain facilitation and spinal glial activation in rat model of monoarthritis. Pain 129(1-2):64–75. doi:10.1016/j.pain.2006.09.035

    CAS  PubMed  Google Scholar 

  39. Yin Q, Cheng W, Cheng MY, Fan SZ, Shen W (2010) Intrathecal injection of anti-CX3CR1 neutralizing antibody delayed and attenuated pain facilitation in rat tibial bone cancer pain model. Behav Pharmacol 21(7):595–601. doi:10.1097/FBP.0b013e32833e7e2a

    Article  CAS  PubMed  Google Scholar 

  40. Zhuang ZY, Kawasaki Y, Tan PH, Wen YR, Huang J, Ji RR (2007) Role of the CX3CR1/p38 MAPK pathway in spinal microglia for the development of neuropathic pain following nerve injury-induced cleavage of fractalkine. Brain Behav Immun 21(5):642–51. doi:10.1016/j.bbi.2006.11.003

    Article  CAS  PubMed  Google Scholar 

  41. Covasala O, Stirn SL, Albrecht S, De Col R, Messlinger K (2012) Calcitonin gene-related peptide receptors in rat trigeminal ganglion do not control spinal trigeminal activity. J Neurophysiol 108(2):431–40. doi:10.1152/jn.00167.2011

    Article  CAS  PubMed  Google Scholar 

  42. Taves S, Berta T, Liu DL, Gan S, Chen G, Kim YH, Van de Ven T, Laufer S et al (2015) Spinal inhibition of p38 MAP kinase reduces inflammatory and neuropathic pain in male but not female mice: Sex-dependent microglial signaling in the spinal cord. Brain Behav Immun. doi:10.1016/j.bbi.2015.10.006

    PubMed  Google Scholar 

  43. Agalliu I, Xue X, Cushman M, Cornell E, Hsing AW, Kaplan RC, Anastos K, Rajpathak S et al (2013) Detectability and reproducibility of plasma levels of chemokines and soluble receptors. Results Immunol 3:79–84. doi:10.1016/j.rinim.2013.07.001

    Article  PubMed  PubMed Central  Google Scholar 

  44. Suzuki F, Kubota T, Miyazaki Y, Ishikawa K, Ebisawa M, Hirohata S, Ogura T, Mizusawa H et al (2012) Serum level of soluble CX3CL1/fractalkine is elevated in patients with polymyositis and dermatomyositis, which is correlated with disease activity. Arthritis Res Ther 14(2):R48. doi:10.1186/ar3761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Findlay AR, Goyal NA, Mozaffar T (2015) An overview of polymyositis and dermatomyositis. Muscle Nerve 51(5):638–56. doi:10.1002/mus.24566

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This research was supported by a 2010 Sapere Aude grant from the Danish Council for Independent Research to PG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parisa Gazerani.

Ethics declarations

Conflict of Interest

None to declare

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cairns, B.E., O’Brien, M., Dong, XD. et al. Elevated Fractalkine (CX3CL1) Levels in the Trigeminal Ganglion Mechanically Sensitize Temporalis Muscle Nociceptors. Mol Neurobiol 54, 3695–3706 (2017). https://doi.org/10.1007/s12035-016-9935-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9935-x

Keywords

Navigation