Skip to main content
Log in

Enriched Endogenous Omega-3 Fatty Acids in Mice Ameliorate Parenchymal Cell Death After Traumatic Brain Injury

Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Currently no effective therapies are available for the treatment of traumatic brain injury (TBI). Early intervention that specifically provides neuroprotection is of most importance which profoundly influences the outcome of TBI. In the present study, we adopted a closed-skull mild TBI model to investigate potential roles of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) in protecting against TBI. Using two-photon laser scanning microscopy (2PLSM), parenchymal cell death and reactive oxidative species (ROS) expression were directly observed and recorded after TBI through a thinned skull bone window. Fat-1 mice with high endogenous ω-3 PUFAs significantly inhibited ROS expression and attenuated parenchymal cell death after compression injury during the early injury phase. Elevated generation of glutathione (GSH) and neuroprotectin D1 (NPD1) in the parenchyma of fat-1 mice could be the contributor to the beneficial role of ω-3 PUFAs in TBI. The results of the study suggest that ω-3 PUFAs is an effective neuroprotectant as an early pharmacological intervention for TBI and the information derived from this study may help guide dietary advice for those who are susceptible to repetitive mild TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Reference

  1. Cornelius C, Crupi R, Calabrese V, Graziano A, Milone P, Pennisi G et al (2013) Traumatic brain injury: oxidative stress and neuroprotection. Antioxid Redox Signal 19(8):836–853

    Article  CAS  PubMed  Google Scholar 

  2. Loane DJ, Faden AI (2010) Neuroprotection for traumatic brain injury: translational challenges and emerging therapeutic strategies. Trends Pharmacol Sci 31(12):596–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hall ED, Andrus PK, Yonkers PA (1993) Brain hydroxyl radical generation in acute experimental head injury. J Neurochem 60(2):588–594

    Article  CAS  PubMed  Google Scholar 

  4. Kontos HA, Wei EP (1986) Superoxide production in experimental brain injury. J Neurosurg 64(5):803–807

    Article  CAS  PubMed  Google Scholar 

  5. Bramlett HM, Dietrich WD (2004) Pathophysiology of cerebral ischemia and brain trauma: similarities and differences. J Cereb Blood Flow Metab 24(2):133–150

    Article  PubMed  Google Scholar 

  6. Kanemaru K, Kubota J, Sekiya H, Hirose K, Okubo Y, Iino M (2013) Calcium-dependent N-cadherin up-regulation mediates reactive astrogliosis and neuroprotection after brain injury. Proc Natl Acad Sci U S A 110(28):11612–11617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bullock R, Zauner A, Myseros JS, Marmarou A, Woodward JJ, Young HF (1995) Evidence for prolonged release of excitatory amino acids in severe human head trauma. Relationship to clinical events. Ann N Y Acad Sci 765:290–297, discussion 298

    Article  CAS  PubMed  Google Scholar 

  8. Gyoneva S, Ransohoff RM (2015) Inflammatory reaction after traumatic brain injury: therapeutic potential of targeting cell-cell communication by chemokines. Trends Pharmacol Sci 36(7):471–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lenzlinger PM, Morganti-Kossmann MC, Laurer HL, McIntosh TK (2001) The duality of the inflammatory response to traumatic brain injury. Mol Neurobiol 24(1–3):169–181

    CAS  PubMed  Google Scholar 

  10. Witcher KG, Eiferman DS, Godbout JP (2015) Priming the inflammatory pump of the CNS after traumatic brain injury. Trends Neurosci 38(10):609–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Signoretti S, Marmarou A, Tavazzi B, Dunbar J, Amorini AM, Lazzarino G et al (2004) The protective effect of cyclosporin A upon N-acetylaspartate and mitochondrial dysfunction following experimental diffuse traumatic brain injury. J Neurotrauma 21(9):1154–1167

    Article  PubMed  Google Scholar 

  12. Jennings JS, Gerber AM, Vallano ML (2008) Pharmacological strategies for neuroprotection in traumatic brain injury. Mini Rev Med Chem 8(7):689–701

    Article  CAS  PubMed  Google Scholar 

  13. Michael-Titus AT, Priestley JV (2014) Omega-3 fatty acids and traumatic neurological injury: from neuroprotection to neuroplasticity? Trends Neurosci 37(1):30–38

    Article  CAS  PubMed  Google Scholar 

  14. Belayev L, Khoutorova L, Atkins KD, Bazan NG (2009) Robust docosahexaenoic acid-mediated neuroprotection in a rat model of transient, focal cerebral ischemia. Stroke 40(9):3121–3126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kelly L, Grehan B, Chiesa AD, O’Mara SM, Downer E, Sahyoun G et al (2011) The polyunsaturated fatty acids, EPA and DPA exert a protective effect in the hippocampus of the aged rat. Neurobiol Aging 32(12):2311–2318

    Article  Google Scholar 

  16. Zhang W, Hu X, Yang W, Gao Y, Chen J (2010) Omega-3 polyunsaturated fatty acid supplementation confers long-term neuroprotection against neonatal hypoxic-ischemic brain injury through anti-inflammatory actions. Stroke 41(10):2341–2347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lalancette-Hebert M, Julien C, Cordeau P, Bohacek I, Weng YC, Calon F et al (2011) Accumulation of dietary docosahexaenoic acid in the brain attenuates acute immune response and development of postischemic neuronal damage. Stroke 42(10):2903–2909

    Article  CAS  PubMed  Google Scholar 

  18. Hong SH, Belayev L, Khoutorova L, Obenaus A, Bazan NG (2014) Docosahexaenoic acid confers enduring neuroprotection in experimental stroke. J Neurol Sci 338(1–2):135–141

    Article  CAS  PubMed  Google Scholar 

  19. Lim SN, Huang W, Hall JC, Michael-Titus AT, Priestley JV (2013) Improved outcome after spinal cord compression injury in mice treated with docosahexaenoic acid. Exp Neurol 239:13–27

    Article  CAS  PubMed  Google Scholar 

  20. Lim SN, Gladman SJ, Dyall SC, Patel U, Virani N, Kang JX et al (2013) Transgenic mice with high endogenous omega-3 fatty acids are protected from spinal cord injury. Neurobiol Dis 51:104–112

    Article  CAS  PubMed  Google Scholar 

  21. Luo C, Ren H, Wan JB, Yao X, Zhang X, He C et al (2014) Enriched endogenous omega-3 fatty acids in mice protect against global ischemia injury. J Lipid Res 55(7):1288–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shi Z, Ren H, Luo C, Yao X, Li P, He C et al. (2015) Enriched endogenous omega-3 polyunsaturated fatty acids protect cortical neurons from experimental ischemic injury. Mol Neurobiol (In Press).

  23. Antony R, Lukiw WJ, Bazan NG (2010) Neuroprotectin D1 induces dephosphorylation of Bcl-xL in a PP2A-dependent manner during oxidative stress and promotes retinal pigment epithelial cell survival. J Biol Chem 285(24):18301–18308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bazan NG, Calandria JM, Serhan CN (2010) Rescue and repair during photoreceptor cell renewal mediated by docosahexaenoic acid-derived neuroprotectin D1. J Lipid Res 51(8):2018–2031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bazan NG (2012) Neuroinflammation and proteostasis are modulated by endogenously biosynthesized neuroprotectin D1. Mol Neurobiol 46(1):221–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lukiw WJ, Cui JG, Marcheselli VL, Bodker M, Botkjaer A, Gotlinger K et al (2005) A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J Clin Invest 115(10):2774–2783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Roth TL, Nayak D, Atanasijevic T, Koretsky AP, Latour LL, McGavern DB (2014) Transcranial amelioration of inflammation and cell death after brain injury. Nature 505(7482):223–228

    Article  CAS  PubMed  Google Scholar 

  28. Kang JX, Wang J, Wu L, Kang ZB (2004) Transgenic mice: fat-1 mice convert n-6 to n-3 fatty acids. Nature 427(6974):504

    Article  CAS  PubMed  Google Scholar 

  29. Das UN, Puskás LG (2009) Transgenic fat-1 mouse as a model to study the pathophysiology of cardiovascular, neurological and psychiatric disorders. Lipids Health Dis 8:61

    Article  PubMed  PubMed Central  Google Scholar 

  30. Orr SK, Palumbo S, Bosetti F, Mount HT, Kang JX, Greenwood CE et al (2013) Unesterified docosahexaenoic acid is protective in neuroinflammation. J Neurochem 127(3):378–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang R, Chiang N, Oh SF, Serhan CN (2011) Metabolomics-lipidomics of eicosanoids and docosanoids generated by phagocytes. Curr Protoc Immunol Chapter 14(14):26

    Google Scholar 

  32. Bains M, Hall ED (2012) Antioxidant therapies in traumatic brain and spinal cord injury. Biochim Biophys Acta 1822(5):675–684

    Article  CAS  PubMed  Google Scholar 

  33. Hall ED, Vaishnav RA, Mustafa AG (2010) Antioxidant therapies for traumatic brain injury. Neurotherapeutics 7(1):51–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Casanas-Sanchez V, Perez JA, Fabelo N, Herrera-Herrera AV, Fernandez C, Marin R et al (2014) Addition of docosahexaenoic acid, but not arachidonic acid, activates glutathione and thioredoxin antioxidant systems in murine hippocampal HT22 cells: potential implications in neuroprotection. J Neurochem 131(4):470–483

    Article  CAS  PubMed  Google Scholar 

  35. Bazan NG (2014) Is there a molecular logic that sustains neuronal functional integrity and survival? Lipid signaling is necessary for neuroprotective neuronal transcriptional programs. Mol Neurobiol 50(1):1–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nikolenko V, Poskanzer KE, Yuste R (2007) Two-photon photostimulation and imaging of neural circuits. Nat Methods 4(11):943–950

    Article  CAS  PubMed  Google Scholar 

  37. Schaffer CB, Friedman B, Nishimura N, Schroeder LF, Tsai PS, Ebner FF et al (2006) Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion. PLoS Biol 4(2):e22

    Article  PubMed  PubMed Central  Google Scholar 

  38. Shih AY, Driscoll JD, Drew PJ, Nishimura N, Schaffer CB, Kleinfeld D (2012) Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain. J Cereb Blood Flow Metab 32(7):1277–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wolf S, Supatto W, Debrégeas G, Mahou P, Kruglik SG, Sintes JM et al (2015) Whole-brain functional imaging with two-photon light-sheet microscopy. Nat Methods 12(5):379–380

    Article  CAS  PubMed  Google Scholar 

  40. Roozenbeek B, Maas AI, Menon DK (2013) Changing patterns in the epidemiology of traumatic brain injury. Nat Rev Neurol 9(4):231–236

    Article  PubMed  Google Scholar 

  41. Moraes LA, Piqueras L, Bishop-Bailey D (2006) Peroxisome proliferator-activated receptors and inflammation. Pharmacol Ther 110(3):371–385

    Article  CAS  PubMed  Google Scholar 

  42. Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan W et al (2010) GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142(5):687–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bazan NG (2006) Cell survival matters: docosahexaenoic acid signaling, neuroprotection and photoreceptors. Trends Neurosci 29(5):263–271

    Article  CAS  PubMed  Google Scholar 

  44. Kohli P, Levy BD (2009) Resolvins and protectins: mediating solutions to inflammation. Br J Pharmacol 158(4):960–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schwab JM, Chiang N, Arita M, Serhan CN (2007) Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature 447(7146):869–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vreugdenhil M, Bruehl C, Voskuyl RA, Kang JX, Leaf A, Wadman WJ (1996) Polyunsaturated fatty acids modulate sodium and calcium currents in CA1 neurons. Proc Natl Acad Sci U S A 93(22):12559–12563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wu A, Ying Z, Gomez-Pinilla F (2004) Dietary omega-3 fatty acids normalize BDNF levels, reduce oxidative damage, and counteract learning disability after traumatic brain injury in rats. J Neurotrauma 21(10):1457–1467

    Article  PubMed  Google Scholar 

  48. Wu A, Ying Z, Gomez-Pinilla F (2007) Omega-3 fatty acids supplementation restores mechanisms that maintain brain homeostasis in traumatic brain injury. J Neurotrauma 24(10):1587–1595

    Article  PubMed  Google Scholar 

  49. Mills JD, Hadley K, Bailes JE (2011) Dietary supplementation with the omega-3 fatty acid docosahexaenoic acid in traumatic brain injury. Neurosurgery 68(2):474–481

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Macao Science and Technology Development Fund (063/2015/A1), multi-year research grant, University of Macau, MYRG122 (Y1-L3)-ICMS12-SHX and MYRG110 (Y1-L2)-ICMS13-SHX, the National Natural Scientific Foundation of China (31270992 and 30800215), Zhu Jiang Science and Technology New Star of Guangzhou City (2013 J2200019), Guangdong Province Science and Technology Plan (2013B021800275), and the Fundamental Research Funds for the Central Universities in Sun Yat-Sen University (13ykpy24).

Author Contributions

HR and HS designed the study; RH, ZY, CL, HZ, PL, CH, JK, JW, and HS performed and analyzed the results; and all authors wrote the draft together and approved the final version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanxing Su.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Huixia Ren and Zhen Yang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, H., Yang, Z., Luo, C. et al. Enriched Endogenous Omega-3 Fatty Acids in Mice Ameliorate Parenchymal Cell Death After Traumatic Brain Injury. Mol Neurobiol 54, 3317–3326 (2017). https://doi.org/10.1007/s12035-016-9931-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9931-1

Keywords

Navigation