Abstract
Microdialysis is a sampling technique first introduced in the late 1950s. Although this technique was originally designed to study endogenous compounds in animal brain, it is later modified to be used in other organs. Additionally, microdialysis is not only able to collect unbound concentration of compounds from tissue sites; this technique can also be used to deliver exogenous compounds to a designated area. Due to its versatility, microdialysis technique is widely employed in a number of areas, including biomedical research. However, for most in vivo studies, the concentration of substance obtained directly from the microdialysis technique does not accurately describe the concentration of the substance on-site. In order to relate the results collected from microdialysis to the actual in vivo condition, a calibration method is required. To date, various microdialysis calibration methods have been reported, with each method being capable to provide valuable insights of the technique itself and its applications. This paper aims to provide a critical review on various calibration methods used in microdialysis applications, inclusive of a detailed description of the microdialysis technique itself to start with. It is expected that this article shall review in detail, the various calibration methods employed, present examples of work related to each calibration method including clinical efforts, plus the advantages and disadvantages of each of the methods.
This is a preview of subscription content,
to check access.






Similar content being viewed by others
References
Ungerstedt U (1991) Microdialysis—principles and applications for studies in animals and man. J Intern Med 230(4):365–373
Chefer VI, Thompson AC, Zapata A, Shippenberg TS (2009) Overview of brain microdialysis. In: Current protocols in neuroscience. John Wiley & Sons, Inc. doi:10.1002/0471142301.ns0701s47
Plock N, Kloft C (2005) Microdialysis—theoretical background and recent implementation in applied life-sciences. Eur J Pharm Sci 25(1):1–24. doi:10.1016/j.ejps.2005.01.017
Lee MKK, Di L (2014) Crosstalk the microdialysis in scientific research: from principle to its applications. Pharm Anal Acta 5(1):276. doi:10.4172/2153-2435.1000276
Kalant H (1958) A microdialysis procedure for extraction and isolation of corticosteroids from peripheral blood plasma. Biochem J 69(1):99–103
Bito L, Davson H, Levin E, Murray M, Snider N (1966) The concentrations of free amino acids and other electrolytes in cerebrospinal fluid, in vivo dialysate of brain, and blood plasma of the dog. J Neurochem 13(11):1057–1067. doi:10.1111/j.1471-4159.1966.tb04265.x
Wang X, Stenken JA (2006) Microdialysis sampling membrane performance during in vitro macromolecule collection. Anal Chem 78(17):6026–6034. doi:10.1021/ac0602930
Cremers TI, de Vries MG, Huinink KD, van Loon JP, v d Hart M, Ebert B, Westerink BH, De Lange EC (2009) Quantitative microdialysis using modified ultraslow microdialysis: direct rapid and reliable determination of free brain concentrations with the MetaQuant technique. J Neurosci Methods 178(2):249–254. doi:10.1016/j.jneumeth.2008.12.010
Robinson TE, Justice JB (1991) Microdialysis in the neurosciences: techniques in the behavioral and neural sciences. Elsevier Science
Benveniste H (1989) Brain microdialysis. J Neurochem 52(6):1667–1679. doi:10.1111/j.1471-4159.1989.tb07243.x
Reddi SA (2014) Body fluid compartments. In: Reddi SA (ed) Fluid, electrolyte and acid-base disorders: clinical evaluation and management. Springer, New York, pp 1–12. doi:10.1007/978-1-4614-9083-8_1
Langer O, Karch R, Müller U, Dobrozemsky G, Abrahim A, Zeitlinger M, Lackner E, Joukhadar C, Dudczak R, Kletter K, Müller M, Brunner M (2005) Combined PET and microdialysis for in vivo assessment of intracellular drug pharmacokinetics in humans. J Nucl Med 46(11):1835–1841
Hammarlund-Udenaes M (2013) Microdialysis in CNS PKPD research: unraveling unbound concentrations. In: Müller M (ed) Microdialysis in drug development. Springer, New York, pp 83–102. doi:10.1007/978-1-4614-4815-0_5
Jansson PA, Fowelin J, Smith U, Lonnroth P (1988) Characterization by microdialysis of intracellular glucose level in subcutaneous tissue in humans. Am J Physiol Endocrinol Metab 255(2):E218–E220
Evrard PA, Ragusi C, Boschi G, Verbeeck RK, Scherrmann J-M (1998) Simultaneous microdialysis in brain and blood of the mouse: extracellular and intracellular brain colchicine disposition. Brain Res 786(1–2):122–127. doi:10.1016/S0006-8993(97)01454-6
Moon BU, de Vries MG, Cordeiro CA, Westerink BH, Verpoorte E (2013) Microdialysis-coupled enzymatic microreactor for in vivo glucose monitoring in rats. Anal Chem 85(22):10949–10955. doi:10.1021/ac402414m
Diczfalusy E, Dizdar N, Zsigmond P, Kullman A, Loyd D, Wardell K (2012) Simulations and visualizations for interpretation of brain microdialysis data during deep brain stimulation. In: Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, Aug. 28 2012-Sept. 1 2012. pp 6438–6441. doi:10.1109/EMBC.2012.6347468
Stenken JA, Church MK, Gill CA, Clough GF (2010) How minimally invasive is microdialysis sampling? A cautionary note for cytokine collection in human skin and other clinical studies. AAPS J 12(1):73–78. doi:10.1208/s12248-009-9163-7
Torto N (2009) A review of microdialysis sampling systems. Chromatographia 70(9-10):1305–1309. doi:10.1365/s10337-009-1335-1
Li Z, Cui Z (2008) Application of microdialysis in tissue engineering monitoring. Prog Nat Sci 18(5):503–511. doi:10.1016/j.pnsc.2008.02.001
Rosenbloom AJ, Sipe DM, Weedn VW (2005) Microdialysis of proteins: performance of the CMA/20 probe. J Neurosci Methods 148(2):147–153. doi:10.1016/j.jneumeth.2005.04.018
Tsai T-H (2003) Assaying protein unbound drugs using microdialysis techniques. J Chromatogr B 797(1–2):161–173. doi:10.1016/j.jchromb.2003.08.036
Clynen E, Swijsen A, Raijmakers M, Hoogland G, Rigo J-M (2014) Neuropeptides as targets for the development of anticonvulsant drugs. Mol Neurobiol 50(2):626–646. doi:10.1007/s12035-014-8669-x
Zhou Q, Gallo JM (2005) In vivo microdialysis for PK and PD studies of anticancer drugs. AAPS J 7(3):E659–E667. doi:10.1208/aapsj070366
Verbeeck RK (2000) Blood microdialysis in pharmacokinetic and drug metabolism studies. Adv Drug Deliv Rev 45(2-3):217–228
Davies MI (1999) A review of microdialysis sampling for pharmacokinetic applications. Anal Chim Acta 379(3):227–249. doi:10.1016/S0003-2670(98)00633-3
Boubriak OA, Urban JPG, Cui ZF (2006) Monitoring of lactate and glucose levels in engineered cartilage construct by microdialysis. J Membr Sci 273(1–2):77–83. doi:10.1016/j.memsci.2005.10.011
Enche Ab Rahim SK, Mohamed Dzahir MIH, Arbain D, Abdullah NS Microdialysis technique: overview and applications in biomedical research. In: Proc IMiEJS2012, 2012. Universiti Malaysia Perlis (UniMAP), pp 1083–1093
de Lange EC, de Boer AG, Breimer DD (2000) Methodological issues in microdialysis sampling for pharmacokinetic studies. Adv Drug Deliv Rev 45(2-3):125–148
Kho CM, Aziz A, Ahmad ZA, Enche Ab Rahim SK, Abdullah NS (2014) Initial efforts in modelling mass transport in microdialysis probes: physical characterization of the microdialysis probe membrane. Adv Mater Res 1087:365–369
Mishra P, Lehmann J, Nair S (1995) Microdialysis probes and methods of use. Google Patents
Hansen DK, Davies MI, Lunte SM, Lunte CE (1999) Pharmacokinetic and metabolism studies using microdialysis sampling. J Pharm Sci 88(1):14–27. doi:10.1021/js9801485
Sani S (2013) Microdialysis technique overview—probe types. AAPS Microdialysis Focus Group Mag 2(1):3–4, Accessed July 2014
Heppert KE, Davies MI (1999) Using a microdialysis shunt probe to monitor phenolphthalein glucuronide in rats with intact and diverted bile flow. Anal Chim Acta 379(3):359–366. doi:10.1016/S0003-2670(98)00597-2
Stenken JA, Topp EM, Southard MZ, Lunte CE (1993) Examination of microdialysis sampling in a well-characterized hydrodynamic system. Anal Chem 65(17):2324–2328. doi:10.1021/ac00065a026
de Lange EM (2013) Recovery and calibration techniques: toward quantitative microdialysis. In: Müller M (ed) Microdialysis in Drug Development, vol 4. AAPS Advances in the Pharmaceutical Sciences Series. Springer New York, pp 13–33. doi:10.1007/978-1-4614-4815-0_2
Garrison KE, Pasas SA, Cooper JD, Davies MI (2002) A review of membrane sampling from biological tissues with applications in pharmacokinetics, metabolism and pharmacodynamics. Eur J Pharm Sci 17(1–2):1–12. doi:10.1016/S0928-0987(02)00149-5
Clough GF (2005) Microdialysis of large molecules. AAPS J 7(3):E686–E692. doi:10.1208/aapsj070369
Angst MS, Clark JD, Carvalho B, Tingle M, Schmelz M, Yeomans DC (2008) Cytokine profile in human skin in response to experimental inflammation, noxious stimulation, and administration of a COX-inhibitor: a microdialysis study. Pain 139(1):15–27. doi:10.1016/j.pain.2008.02.028
Winter CD, Iannotti F, Pringle AK, Trikkas C, Clough GF, Church MK (2002) A microdialysis method for the recovery of IL-1β, IL-6 and nerve growth factor from human brain in vivo. J Neurosci Methods 119(1):45–50. doi:10.1016/S0165-0270(02)00153-X
Shintani F, Nakaki T, Kanba S, Kato R, Asai M (1995) Role of interleukin-1 in stress responses. Mol Neurobiol 10(1):47–71. doi:10.1007/BF02740837
Stenken JA (1999) Methods and issues in microdialysis calibration. Anal Chim Acta 379(3):337–358. doi:10.1016/S0003-2670(98)00598-4
Bungay PM, Wang T, Yang H, Elmquist WF (2010) Utilizing transmembrane convection to enhance solute sampling and delivery by microdialysis: theory and in vitro validation. J Membr Sci 348(1–2):131–149. doi:10.1016/j.memsci.2009.10.050
Kho CM, Ahmad ZA, Enche Ab Rahim SK, Abdullah NS (2016) Why a comprehensive physical characterization effort of microdialysis membranes is imperative for computational mass transfer studies? Mater Sci Forum 840:180–184. doi:10.4028/www.scientific.net/MSF.840.180
Leegsma-Vogt G, Janle E, Ash SR, Venema K, Korf J (2003) Utilization of in vivo ultrafiltration in biomedical research and clinical applications. Life Sci 73(16):2005–2018. doi:10.1016/S0024-3205(03)00569-1
Abdullah NSB, Cui Z (2009) Mathematical modelling of nutrient transport in bioreactors for bone tissue growth. Dissertation, Oxford University
Melgaard L, Hersini KJ, Gazerani P, Petersen LJ (2013) Retrodialysis: a review of experimental and clinical applications of reverse microdialysis in the skin. Skin Pharmacol Physiol 26(3):160–174. doi:10.1159/000351341
Höcht C, Opezzo JAW, Taira CA (2007) Applicability of reverse microdialysis in pharmacological and toxicological studies. J Pharmacol Toxicol Methods 55(1):3–15. doi:10.1016/j.vascn.2006.02.007
Torto N, Bång J, Richardson S, Nilsson GS, Gorton L, Laurell T, Marko-Varga G (1998) Optimal membrane choice for microdialysis sampling of oligosaccharides. J Chromatogr A 806(2):265–278. doi:10.1016/S0021-9673(98)00063-6
Ramakrishna S, Ma Z, Matsuura T (2011) Polymer membranes in biotechnology: preparation, functionalization and application. Imperial College Press
Hsiao JK, Ball BA, Morrison PF, Mefford IN, Bungay PM (1990) Effects of different semipermeable membranes on in vitro and in vivo performance of microdialysis probes. J Neurochem 54(4):1449–1452. doi:10.1111/j.1471-4159.1990.tb01982.x
Buttler T, Nilsson C, Gorton L, Marko-Varga G, Laurell T (1996) Membrane characterisation and performance of microdialysis probes intended for use as bioprocess sampling units. J Chromatogr A 725(1):41–56. doi:10.1016/0021-9673(95)01120-X
Brunner M, Joukhadar C, Schmid R, Erovic B, Eichler HG, Müller M (2000) Validation of urea as an endogenous reference compound for the in vivo calibration of microdialysis probes. Life Sci 67(8):977–984. doi:10.1016/S0024-3205(00)00685-8
Sauernheimer C, Williams KM, Brune K, Geisslinger G (1994) Application of microdialysis to the pharmacokinetics of analgesics: problems with reduction of dialysis efficiency in vivo. J Pharmacol Toxicol Methods 32(3):149–154
Stenken JA, Lunte CE, Southard MZ, Stahle L (1997) Factors that influence microdialysis recovery. Comparison of experimental and theoretical microdialysis recoveries in rat liver. J Pharm Sci 86(8):958–966. doi:10.1021/js960269+
Lafontan M, Arner P (1996) Application of in situ microdialysis to measure metabolic and vascular responses in adipose tissue. Trends Pharmacol Sci 17(9):309–313
Menacherry S, Hubert W, Justice JB (1992) In vivo calibration of microdialysis probes for exogenous compounds. Anal Chem 64(6):577–583. doi:10.1021/ac00030a003
Jacobson I, Sandberg M, Hamberger A (1985) Mass transfer in brain dialysis devices—a new method for the estimation of extracellular amino acids concentration. J Neurosci Methods 15(3):263–268. doi:10.1016/0165-0270(85)90107-4
Kaptein WA, Zwaagstra JJ, Venema K, Korf J (1998) Continuous ultraslow microdialysis and ultrafiltration for subcutaneous sampling as demonstrated by glucose and lactate measurements in rats. Anal Chem 70(22):4696–4700
Lada MW, Kennedy RT (1995) Quantitative in vivo measurements using microdialysis on-line with capillary zone electrophoresis. J Neurosci Methods 63(1–2):147–152. doi:10.1016/0165-0270(95)00104-2
Lada MW, Kennedy RT (1997) In vivo monitoring of glutathione and cysteine in rat caudate nucleus using microdialysis on-line with capillary zone electrophoresis-laser induced fluorescence detection. J Neurosci Methods 72(2):153–159. doi:10.1016/S0165-0270(96)02174-7
Slaney TR (2013) Low-flow push-pull perfusion for measuring neurotransmitters with high spatial and temporal resolution within the living brain. Dissertation, University of Michigan
May M, Batkai S, Zoerner AA, Tsikas D, Jordan J, Engeli S (2013) Enhanced human tissue microdialysis using hydroxypropyl-ß-Cyclodextrin as molecular carrier. PLoS ONE 8(4):e60628. doi:10.1371/journal.pone.0060628
Ao X, Stenken JA (2006) Microdialysis sampling of cytokines. Methods 38(4):331–341. doi:10.1016/j.ymeth.2005.11.012
Di Giovanni G, Di Matteo V (2013) Microdialysis techniques in neuroscience. Neuromethods; 75. Humana Press, Totowa, NJ
Song Y, Lunte CE (1999) Comparison of calibration by delivery versus no net flux for quantitative in vivo microdialysis sampling. Anal Chim Acta 379(3):251–262. doi:10.1016/S0003-2670(98)00363-8
Lönnroth P, Strindberg L (1995) Validation of the ‘internal reference technique’ for calibrating microdialysis catheters in situ. Acta Physiol Scand 153(4):375–380. doi:10.1111/j.1748-1716.1995.tb09875.x
Chefer VI, Zapata A, Shippenberg TS, Bungay PM (2006) Quantitative no-net-flux microdialysis permits detection of increases and decreases in dopamine uptake in mouse nucleus accumbens. J Neurosci Methods 155(2):187–193. doi:10.1016/j.jneumeth.2005.12.018
Le Quellec A, Dupin S, Genissel P, Saivin S, Marchand B, Houin G (1995) Microdialysis probes calibration: gradient and tissue dependent changes in no net flux and reverse dialysis methods. J Pharmacol Toxicol Methods 33(1):11–16
Rizell M, Naredi P, Lindnér P, Hellstrand K, Jansson P-A (1999) Validation of the internal reference technique for microdialysis measurements of interstitial histamine in the rat. Life Sci 65(17):1765–1771. doi:10.1016/S0024-3205(99)00429-4
Hershey ND, Kennedy RT (2013) In vivo calibration of microdialysis using infusion of stable-isotope labeled neurotransmitters. ACS Chem Neurosci 4(5):729–736. doi:10.1021/cn300199m
Schroeder U, Himpe B, Pries R, Vonthein R, Nitsch S, Wollenberg B (2013) Decline of lactate in tumor tissue after ketogenic diet: in vivo microdialysis study in patients with head and neck cancer. Nutr Cancer 65(6):843–849. doi:10.1080/01635581.2013.804579
Unger EL, Bianco LE, Jones BC, Allen RP, Earley CJ (2014) Low brain iron effects and reversibility on striatal dopamine dynamics. Exp Neurol 261:462–468. doi:10.1016/j.expneurol.2014.06.023
Ding Z-M, Engleman EA, Rodd ZA, McBride WJ (2012) Ethanol increases glutamate neurotransmission in the posterior ventral tegmental area of female Wistar rats. Alcohol Clin Exp Res 36(4):633–640. doi:10.1111/j.1530-0277.2011.01665.x
Hurtado FK, Weber B, Derendorf H, Hochhaus G, Dalla Costa T (2014) Population pharmacokinetic modeling of the unbound levofloxacin concentrations in rat plasma and prostate tissue measured by microdialysis. Antimicrob Agents Chemother 58(2):678–686. doi:10.1128/aac.01884-13
Olson RJ, Justice JB (1993) Quantitative microdialysis under transient conditions. Anal Chem 65(8):1017–1022. doi:10.1021/ac00056a012
Xie R, Hammarlund-Udenaes M, De Boer AG, De Lange ECM (1999) The role of P-glycoprotein in blood-brain barrier transport of morphine: transcortical microdialysis studies in mdr1a (−/−) and mdr1a (+/+) mice. Br J Pharmacol 128(3):563–568. doi:10.1038/sj.bjp.0702804
de Lange ECM, Marchand S, van den Berg D-J, van der Sandt ICJ, de Boer AG, Delon A, Bouquet S, Couet W (2000) In vitro and in vivo investigations on fluoroquinolones; effects of the P-glycoprotein efflux transporter on brain distribution of sparfloxacin. Eur J Pharm Sci 12(2):85–93. doi:10.1016/S0928-0987(00)00149-4
Cremers TIFH, Flik G, Hofland C, Stratford RE (2012) Microdialysis evaluation of clozapine and N-Desmethylclozapine pharmacokinetics in rat brain. Drug Metab Dispos 40(10):1909–1916. doi:10.1124/dmd.112.045682
Krogstad AL, Jansson PA, GisslÉN P, LÖNnroth P (1996) Microdialysis methodology for the measurement of dermal interstitial fluid in humans. Br J Dermatol 134(6):1005–1012. doi:10.1046/j.1365-2133.1996.d01-893.x
Larsson CI (1991) The use of an “internal standard” for control of the recovery in microdialysis. Life Sci 49(13):Pl73–Pl78
Stahle L (1991) Drug distribution studies with microdialysis: I. Tissue dependent difference in recovery between caffeine and theophylline. Life Sci 49(24):1835–1842
Wei J-B, Lai Q, Shumyak SP, Xu L-F, Zhang C-X, Ling J-J, Yu Y (2015) An LC/MS quantitative and microdialysis method for cyclovirobuxine D pharmacokinetics in rat plasma and brain: the pharmacokinetic comparison of three different drug delivery routes. J Chromatogr B 1002:185–193. doi:10.1016/j.jchromb.2015.08.022
Yokel RA, Allen DD, Burgio DE, McNamara PJ (1992) Antipyrine as a dialyzable reference to correct differences in efficiency among and within sampling devices during in vivo microdialysis. J Pharmacol Toxicol Methods 27(3):135–142. doi:10.1016/1056-8719(92)90034-X
Vestergaard ET, Møller N, Jørgensen JOL (2013) Acute peripheral tissue effects of ghrelin on interstitial levels of glucose, glycerol, and lactate: a microdialysis study in healthy human subjects. Am J Physiol Endocrinol Metab 304(12):E1273–E1280. doi:10.1152/ajpendo.00662.2012
Langkilde A, Andersen O, Henriksen JH, Langberg H, Petersen J, Eugen-Olsen J (2015) Assessment of in situ adipose tissue inflammation by microdialysis. Clin Physiol Funct Imaging 35(2):110–119. doi:10.1111/cpf.12134
Hashimoto Y, Murakami T, Kumasa C, Higashi Y, Yata N, Takano M (1998) In-vivo calibration of microdialysis probe by use of endogenous glucose as an internal recovery marker: measurement of skin distribution of tranilast in rats. J Pharm Pharmacol 50(6):621–626
Schwalbe O, Buerger C, Plock N, Joukhadar C, Kloft C (2006) Urea as an endogenous surrogate in human microdialysis to determine relative recovery of drugs: analytics and applications. J Pharm Biomed Anal 41(1):233–239. doi:10.1016/j.jpba.2005.11.017
Strindberg L, Lönnroth P (2000) Validation of an endogenous reference technique for the calibration of microdialysis catheters. Scand J Clin Lab Invest 60(3):205–212. doi:10.1080/003655100750044857
Levick JR (1991) Chapter 8—solute transport between blood and tissue. In: Levick JR (ed) An introduction to cardiovascular physiology. Butterworth-Heinemann, pp 117–141. doi:10.1016/B978-0-7506-1028-5.50011-1
Ronne-Engström E, Cesarini KG, Enblad P, Hesselager G, Marklund N, Nilsson P, Salci K, Persson L, Hillered L (2001) Intracerebral microdialysis in neurointensive care: the use of urea as an endogenous reference compound. J Neurosurg 94(3):397–402. doi:10.3171/jns.2001.94.3.0397
Willie JT, Lim MM, Bennett RE, Azarion AA, Schwetye KE, Brody DL (2012) Controlled cortical impact traumatic brain injury acutely disrupts wakefulness and extracellular orexin dynamics as determined by intracerebral microdialysis in mice. J Neurotrauma 29(10):1908–1921. doi:10.1089/neu.2012.2404
Quarder O, Ferrari S, Stephan P (2008) Method and device for determining the glucose concentration in tissue liquid. Google Patents
Gottås A, Ripel Å, Boix F, Vindenes V, Mørland J, Øiestad EL (2015) Determination of dopamine concentrations in brain extracellular fluid using microdialysis with short sampling intervals, analyzed by ultra high performance liquid chromatography tandem mass spectrometry. J Pharmacol Toxicol Methods 74:75–79. doi:10.1016/j.vascn.2015.06.002
Bouw MR, Hammarlund-Udenaes M (1998) Methodological aspects of the use of a calibrator in in vivo microdialysis-further development of the retrodialysis method. Pharm Res 15(11):1673–1679
Sane R, Wu S-P, Zhang R, Gallo JM (2014) The effect of ABCG2 and ABCC4 on the pharmacokinetics of methotrexate in the brain. Drug Metab Dispos 42(4):537–540. doi:10.1124/dmd.113.055228
Matzneller P, Brunner M (2011) Recent advances in clinical microdialysis. TrAC Trends Anal Chem 30(9):1497–1504. doi:10.1016/j.trac.2011.06.008
Brunner M, Derendorf H (2006) Clinical microdialysis: current applications and potential use in drug development. TrAC Trends Anal Chem 25(7):674–680. doi:10.1016/j.trac.2006.05.004
Shukla C, Bashaw ED, Stagni G, Benfeldt E (2014) Applications of dermal microdialysis: a review. J Drug Delivery Sci Technol 24(3):259–269. doi:10.1016/S1773-2247(14)50044-5
Goodman JC (2011) Clinical microdialysis in neuro-oncology: principles and applications. Chin J Cancer 30(3):173–181. doi:10.5732/cjc.010.10588
Azeredo F, Dalla Costa T, Derendorf H (2014) Role of microdialysis in pharmacokinetics and pharmacodynamics: current status and future directions. Clin Pharmacokinet 53(3):205–212. doi:10.1007/s40262-014-0131-8
Boutelle MG, Fillenz M (1996) Clinical microdialysis: the role of on-line measurement and quantitative microdialysis. In: Mendelowitsch A, Langemann H, Alessandri B, Landolt H, Gratzl O (eds) Clinical aspects of microdialysis. Springer, Vienna, pp 13–20. doi:10.1007/978-3-7091-6894-3_3
Chen JW, Rogers SL, Gombart ZJ, Adler DE, Cecil S (2012) Implementation of cerebral microdialysis at a community-based hospital: a 5-year retrospective analysis. Surg Neurol Int 3:57. doi:10.4103/2152-7806.96868
Kennedy RT (2013) Emerging trends in in vivo neurochemical monitoring by microdialysis. Curr Opin Chem Biol 17(5):860–867. doi:10.1016/j.cbpa.2013.06.012
Ulrich JD, Burchett JM, Restivo JL, Schuler DR, Verghese PB, Mahan TE, Landreth GE, Castellano JM, Jiang H, Cirrito JR, Holtzman DM (2013) In vivo measurement of apolipoprotein E from the brain interstitial fluid using microdialysis. Mol Neurodegener 8(1):1–7. doi:10.1186/1750-1326-8-13
Mader JK, Feichtner F, Bock G, Köhler G, Schaller R, Plank J, Pieber TR, Ellmerer M (2012) Microdialysis—a versatile technology to perform metabolic monitoring in diabetes and critically ill patients. Diabetes Res Clin Pract 97(1):112–118. doi:10.1016/j.diabres.2012.02.010
Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P (2012) Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 12 (12):860–875. doi:http://www.nature.com/nrc/journal/v12/n12/suppinfo/nrc3380_S1.html
Nandi P, Lunte SM (2009) Recent trends in microdialysis sampling integrated with conventional and microanalytical systems for monitoring biological events: a review. Anal Chim Acta 651(1):1–14. doi:10.1016/j.aca.2009.07.064
Matzneller P, Krasniqi S, Kinzig M, Sörgel F, Hüttner S, Lackner E, Müller M, Zeitlinger M (2013) Blood, tissue, and intracellular concentrations of azithromycin during and after end of therapy. Antimicrob Agents Chemother 57(4):1736–1742. doi:10.1128/aac.02011-12
Nikitas N, Kopterides P, Ilias I, Theodorakopoulou M, Vassiliadi DA, Armaganidis A, Dimopoulou I (2013) Elevated adipose tissue lactate to pyruvate (L/P) ratio predicts poor outcome in critically ill patients with septic shock: a microdialysis study. Minerva Anestesiol 79(11):1229–1237
Konings IRHM, Engels FK, Sleijfer S, Verweij J, Wiemer EAC, Loos WJ (2008) Application of prolonged microdialysis sampling in carboplatin-treated cancer patients. Cancer Chemother Pharmacol 64(3):509–516. doi:10.1007/s00280-008-0898-0
Burša F, Pleva L (2014) Anaerobic metabolism associated with traumatic hemorrhagic shock monitored by microdialysis of muscle tissue is dependent on the levels of hemoglobin and central venous oxygen saturation: a prospective, observational study. Scand J Trauma Resusc Emerg Med 22:11–11. doi:10.1186/1757-7241-22-11
Zsigmond P, Dernroth N, Kullman A, Augustinsson L-E, Dizdar N (2012) Stereotactic microdialysis of the basal ganglia in Parkinson’s disease. J Neurosci Methods 207(1):17–22. doi:10.1016/j.jneumeth.2012.02.021
Poeppl W, Zeitlinger M, Donath O, Wurm G, Müller M, Botha F, Illievich UM, Burgmann H (2012) Penetration of doripenem in human brain: an observational microdialysis study in patients with acute brain injury. Int J Antimicrob Agents 39(4):343–345. doi:10.1016/j.ijantimicag.2011.11.019
Helmark IC, Mikkelsen UR, Børglum J, Rothe A, Petersen MCH, Andersen O, Langberg H, Kjaer M (2010) Exercise increases interleukin-10 levels both intraarticularly and peri-synovially in patients with knee osteoarthritis: a randomized controlled trial. Arthritis Res Ther 12(4):R126–R126. doi:10.1186/ar3064
Rostami E, Bellander B-M (2011) Monitoring of glucose in brain, adipose tissue, and peripheral blood in patients with traumatic brain injury: a microdialysis study. J Diabetes Sci Technol 5(3):596–604
Ståhle L (2000) On mathematical models of microdialysis: geometry, steady-state models, recovery and probe radius. Adv Drug Deliv Rev 45(2–3):149–167. doi:10.1016/S0169-409X(00)00108-3
Wang P, Chung T-S (2015) Recent advances in membrane distillation processes: membrane development, configuration design and application exploring. J Membr Sci 474:39–56. doi:10.1016/j.memsci.2014.09.016
Song Y, Lunte CE (1999) Calibration methods for microdialysis sampling in vivo: muscle and adipose tissue. Anal Chim Acta 400(1–3):143–152. doi:10.1016/S0003-2670(99)00613-3
Janle EM, Kissinger PT (1996) Chapter 11 microdialysis and ultrafiltration. In: Stephen PC, Douglas WT (eds) Advances in food and nutrition research, vol Volume 40. Academic Press, pp 183–196. doi:10.1016/S1043-4526(08)60028-5
Hsu K-C, Hung C-C, Lee C-F, Hsu P-F, Huang Y-L (2014) Combining microdialysis sampling and inductively coupled plasma mass spectrometry for dynamic monitoring of trace metal ions during bacterial growth periods. RSC Adv 4(93):51716–51721. doi:10.1039/C4RA07941H
Davies MI, Cooper JD, Desmond SS, Lunte CE, Lunte SM (2000) Analytical considerations for microdialysis sampling. Adv Drug Deliv Rev 45(2–3):169–188. doi:10.1016/S0169-409X(00)00114-9
Saylor RA, Lunte SM (2015) A review of microdialysis coupled to microchip electrophoresis for monitoring biological events. J Chromatogr A 1382:48–64. doi:10.1016/j.chroma.2014.12.086
Vuckovic D (2012) Current trends and challenges in sample preparation for global metabolomics using liquid chromatography–mass spectrometry. Anal Bioanal Chem 403(6):1523–1548. doi:10.1007/s00216-012-6039-y
Acknowledgments
The authors gratefully acknowledge the endless and unreserved support provided by the School of Materials and Mineral Resources Engineering (SMMRE), Universiti Sains Malaysia (USM), especially in terms of funding, through USM’s RUI research grant (No. 1001/PBAHAN/814177). The authors also would like express their gratitude to the Ministry of Higher Education (MOHE) Malaysia, through the MyBrain15 Program (Ref: 890529115391/MyPhD) for financial support. The authors also thank BRAINetwork, USM, and Universiti Malaysia Perlis (UniMAP) through the School of Bioprocess Engineering and the Faculty of Engineering Technology for their excellent facilities and technical assistance.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kho, C.M., Enche Ab Rahim, S.K., Ahmad, Z.A. et al. A Review on Microdialysis Calibration Methods: the Theory and Current Related Efforts. Mol Neurobiol 54, 3506–3527 (2017). https://doi.org/10.1007/s12035-016-9929-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12035-016-9929-8