Molecular Neurobiology

, Volume 54, Issue 5, pp 3439–3452 | Cite as

MicroRNA-338 Attenuates Cortical Neuronal Outgrowth by Modulating the Expression of Axon Guidance Genes

  • Aron Kos
  • Teun Klein-Gunnewiek
  • Julia Meinhardt
  • Nikkie F. M. Olde Loohuis
  • Hans van Bokhoven
  • Barry B. Kaplan
  • Gerard J. Martens
  • Sharon M. Kolk
  • Armaz AschrafiEmail author


MicroRNAs (miRs) are small non-coding RNAs that confer robustness to gene networks through post-transcriptional gene regulation. Previously, we identified miR-338 as a modulator of axonal outgrowth in sympathetic neurons. In the current study, we examined the role of miR-338 in the development of cortical neurons and uncovered its downstream mRNA targets. Long-term inhibition of miR-338 during neuronal differentiation resulted in reduced dendritic complexity and altered dendritic spine morphology. Furthermore, monitoring axon outgrowth in cortical cells revealed that miR-338 overexpression decreased, whereas inhibition of miR-338 increased axonal length. To identify gene targets mediating the observed phenotype, we inhibited miR-338 in cortical neurons and performed whole-transcriptome analysis. Pathway analysis revealed that miR-338 modulates a subset of transcripts involved in the axonal guidance machinery by means of direct and indirect gene targeting. Collectively, our results implicate miR-338 as a novel regulator of cortical neuronal maturation by fine-tuning the expression of gene networks governing cortical outgrowth.


MicroRNA Cortex Neurodevelopment Neurite development Robo2 



We thank N van Bakel, D Versteegden and M van Kessel for technical assistance. We thank the RIMLS microscopy platform ( for support and maintenance of the equipment. The research of the authors is supported by grants from the “Donders Center for Neuroscience fellowship award of the Radboudumc” [to A. A.]; the “FP7-Marie Curie International Reintegration Grant” [to A. A. grant number 276868] and GENCODYS, an EU FP7 large-scale integrating project grant [Grant number 241995] [to HvB].

Compliance with Ethical Standards

All animal use, care and experiments were performed according to protocols approved by the Committee for Animal Experiments of the Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.

Conflict of Interest

The authors declare no competing financial interests.

Supplementary material

12035_2016_9925_MOESM1_ESM.xlsx (39 kb)
ESM 1 (XLSX 39 kb)


  1. 1.
    Corbett MA, Bahlo M, Jolly L, Afawi Z, Gardner AE, Oliver KL, Tan S, Coffey A et al (2010) A focal epilepsy and intellectual disability syndrome is due to a mutation in TBC1D24. Am J Hum Genet 87(3):371–375. doi: 10.1016/j.ajhg.2010.08.001 PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Guerrini R, Sicca F, Parmeggiani L (2003) Epilepsy and malformations of the cerebral cortex. Epileptic Disord: Int Epilepsy J Videotape 5(Suppl 2):S9–S26Google Scholar
  3. 3.
    Levitt P, Eagleson KL, Powell EM (2004) Regulation of neocortical interneuron development and the implications for neurodevelopmental disorders. Trends Neurosci 27(7):400–406. doi: 10.1016/j.tins.2004.05.008 PubMedCrossRefGoogle Scholar
  4. 4.
    Schmidt MJ, Mirnics K (2015) Neurodevelopment, GABA system dysfunction, and schizophrenia. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol 40(1):190–206. doi: 10.1038/npp.2014.95 CrossRefGoogle Scholar
  5. 5.
    Schubert D, Martens GJ, Kolk SM (2015) Molecular underpinnings of prefrontal cortex development in rodents provide insights into the etiology of neurodevelopmental disorders. Mol Psychiatry 20(7):795–809. doi: 10.1038/mp.2014.147 PubMedCrossRefGoogle Scholar
  6. 6.
    Lui JH, Hansen DV, Kriegstein AR (2011) Development and evolution of the human neocortex. Cell 146(1):18–36. doi: 10.1016/j.cell.2011.06.030 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS et al (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433(7027):769–773. doi: 10.1038/nature03315 PubMedCrossRefGoogle Scholar
  8. 8.
    Stark A, Brennecke J, Bushati N, Russell RB, Cohen SM (2005) Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell 123(6):1133–1146. doi: 10.1016/j.cell.2005.11.023 PubMedCrossRefGoogle Scholar
  9. 9.
    Li X, Cassidy JJ, Reinke CA, Fischboeck S, Carthew RW (2009) A microRNA imparts robustness against environmental fluctuation during development. Cell 137(2):273–282. doi: 10.1016/j.cell.2009.01.058 PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Ebert MS, Sharp PA (2012) Roles for microRNAs in conferring robustness to biological processes. Cell 149(3):515–524. doi: 10.1016/j.cell.2012.04.005 PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Rago L, Beattie R, Taylor V, Winter J (2014) miR379-410 cluster miRNAs regulate neurogenesis and neuronal migration by fine-tuning N-cadherin. EMBO J 33(8):906–920. doi: 10.1002/embj.201386591 PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Gaughwin P, Ciesla M, Yang H, Lim B, Brundin P (2011) Stage-specific modulation of cortical neuronal development by Mmu-miR-134. Cereb Cortex 21(8):1857–1869. doi: 10.1093/cercor/bhq262 PubMedCrossRefGoogle Scholar
  13. 13.
    Dajas-Bailador F, Bonev B, Garcez P, Stanley P, Guillemot F, Papalopulu N (2012) microRNA-9 regulates axon extension and branching by targeting Map1b in mouse cortical neurons. Nature neuroscience. doi: 10.1038/nn.3082 PubMedGoogle Scholar
  14. 14.
    Smrt RD, Szulwach KE, Pfeiffer RL, Li X, Guo W, Pathania M, Teng ZQ, Luo Y et al (2010) MicroRNA miR-137 regulates neuronal maturation by targeting ubiquitin ligase mind bomb-1. Stem Cells 28(6):1060–1070. doi: 10.1002/stem.431 PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439(7074):283–289. doi: 10.1038/nature04367 PubMedCrossRefGoogle Scholar
  16. 16.
    Mellios N, Sugihara H, Castro J, Banerjee A, Le C, Kumar A, Crawford B, Strathmann J et al (2011) miR-132, an experience-dependent microRNA, is essential for visual cortex plasticity. Nat Neurosci 14(10):1240–1242. doi: 10.1038/nn.2909 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Lee K, Kim JH, Kwon OB, An K, Ryu J, Cho K, Suh YH, Kim HS (2012) An activity-regulated microRNA, miR-188, controls dendritic plasticity and synaptic transmission by downregulating neuropilin-2. J Neurosci: Off J Soc Neurosci 32(16):5678–5687. doi: 10.1523/JNEUROSCI.6471-11.2012 CrossRefGoogle Scholar
  18. 18.
    Im HI, Kenny PJ (2012) MicroRNAs in neuronal function and dysfunction. Trends Neurosci 35(5):325–334. doi: 10.1016/j.tins.2012.01.004 PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Beveridge NJ, Gardiner E, Carroll AP, Tooney PA, Cairns MJ (2010) Schizophrenia is associated with an increase in cortical microRNA biogenesis. Mol Psychiatry 15(12):1176–1189. doi: 10.1038/mp.2009.84 PubMedCrossRefGoogle Scholar
  20. 20.
    Perkins DO, Jeffries CD, Jarskog LF, Thomson JM, Woods K, Newman MA, Parker JS, Jin J et al (2007) microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biol 8(2):R27. doi: 10.1186/gb-2007-8-2-r27 PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Aschrafi A, Kar AN, Natera-Naranjo O, Macgibeny MA, Gioio AE, Kaplan BB (2012) MicroRNA-338 regulates the axonal expression of multiple nuclear-encoded mitochondrial mRNAs encoding subunits of the oxidative phosphorylation machinery. Cell Mol Life Sci: CMLS. doi: 10.1007/s00018-012-1064-8 Google Scholar
  22. 22.
    Zhao X, He X, Han X, Yu Y, Ye F, Chen Y, Hoang T, Xu X et al (2010) MicroRNA-mediated control of oligodendrocyte differentiation. Neuron 65(5):612–626. doi: 10.1016/j.neuron.2010.02.018 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Raghunath M, Patti R, Bannerman P, Lee CM, Baker S, Sutton LN, Phillips PC, Damodar Reddy C (2000) A novel kinase, AATYK induces and promotes neuronal differentiation in a human neuroblastoma (SH-SY5Y) cell line. Brain Res Mol Brain Res 77(2):151–162PubMedCrossRefGoogle Scholar
  24. 24.
    Takano T, Tomomura M, Yoshioka N, Tsutsumi K, Terasawa Y, Saito T, Kawano H, Kamiguchi H et al (2012) LMTK1/AATYK1 is a novel regulator of axonal outgrowth that acts via Rab11 in a Cdk5-dependent manner. J Neurosci: Off J Soc Neurosci 32(19):6587–6599. doi: 10.1523/JNEUROSCI.5317-11.2012 CrossRefGoogle Scholar
  25. 25.
    Takano T, Urushibara T, Yoshioka N, Saito T, Fukuda M, Tomomura M, Hisanaga S (2014) LMTK1 regulates dendritic formation by regulating movement of Rab11A-positive endosomes. Mol Biol Cell 25(11):1755–1768. doi: 10.1091/mbc.E14-01-0675 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Natera-Naranjo O, Aschrafi A, Gioio AE, Kaplan BB (2010) Identification and quantitative analyses of microRNAs located in the distal axons of sympathetic neurons. RNA 16(8):1516–1529. doi: 10.1261/rna.1833310 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Aschrafi A, Schwechter AD, Mameza MG, Natera-Naranjo O, Gioio AE, Kaplan BB (2008) MicroRNA-338 regulates local cytochrome c oxidase IV mRNA levels and oxidative phosphorylation in the axons of sympathetic neurons. J Neurosci: Off J Soc Neurosci 28(47):12581–12590. doi: 10.1523/JNEUROSCI.3338-08.2008 CrossRefGoogle Scholar
  28. 28.
    De Felice B, Annunziata A, Fiorentino G, Borra M, Biffali E, Coppola C, Cotrufo R, Brettschneider J et al (2014) miR-338-3p is over-expressed in blood, CFS, serum and spinal cord from sporadic amyotrophic lateral sclerosis patients. Neurogenetics 15(4):243–253. doi: 10.1007/s10048-014-0420-2 PubMedCrossRefGoogle Scholar
  29. 29.
    Ragusa M, Majorana A, Banelli B, Barbagallo D, Statello L, Casciano I, Guglielmino MR, Duro LR et al (2010) MIR152, MIR200B, and MIR338, human positional and functional neuroblastoma candidates, are involved in neuroblast differentiation and apoptosis. J Mol Med 88(10):1041–1053. doi: 10.1007/s00109-010-0643-0 PubMedCrossRefGoogle Scholar
  30. 30.
    He M, Liu Y, Wang X, Zhang MQ, Hannon GJ, Huang ZJ (2012) Cell-type-based analysis of microRNA profiles in the mouse brain. Neuron 73(1):35–48. doi: 10.1016/j.neuron.2011.11.010 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Lin Q, Wei W, Coelho CM, Li X, Baker-Andresen D, Dudley K, Ratnu VS, Boskovic Z et al (2011) The brain-specific microRNA miR-128b regulates the formation of fear-extinction memory. Nat Neurosci 14(9):1115–1117. doi: 10.1038/nn.2891 PubMedCrossRefGoogle Scholar
  32. 32.
    Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15(2):185–197. doi: 10.1016/j.molcel.2004.07.007 PubMedCrossRefGoogle Scholar
  33. 33.
    Zhang F, Gradinaru V, Adamantidis AR, Durand R, Airan RD, de Lecea L, Deisseroth K (2010) Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat Protoc 5(3):439–456. doi: 10.1038/nprot.2009.226 PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Kos A, Olde Loohuis NF, Wieczorek ML, Glennon JC, Martens GJ, Kolk SM, Aschrafi A (2012) A potential regulatory role for intronic microRNA-338-3p for its host gene encoding apoptosis-associated tyrosine kinase. PLoS One 7(2):e31022. doi: 10.1371/journal.pone.0031022 PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):0034CrossRefGoogle Scholar
  36. 36.
    Nonne N, Ameyar-Zazoua M, Souidi M, Harel-Bellan A (2010) Tandem affinity purification of miRNA target mRNAs (TAP-Tar). Nucleic Acids Res 38(4):e20. doi: 10.1093/nar/gkp1100 PubMedCrossRefGoogle Scholar
  37. 37.
    da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57. doi: 10.1038/nprot.2008.211 CrossRefGoogle Scholar
  38. 38.
    da Huang W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1):1–13. doi: 10.1093/nar/gkn923 CrossRefGoogle Scholar
  39. 39.
    Maragkakis M, Reczko M, Simossis VA, Alexiou P, Papadopoulos GL, Dalamagas T, Giannopoulos G, Goumas G et al (2009) DIANA-microT web server: elucidating microRNA functions through target prediction. Nucleic Acids Res 37(Web Server issue):W273–W276. doi: 10.1093/nar/gkp292 PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Meijering E, Jacob M, Sarria JC, Steiner P, Hirling H, Unser M (2004) Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytom Part A: J Int Soc Anal Cytol 58(2):167–176. doi: 10.1002/cyto.a.20022 CrossRefGoogle Scholar
  41. 41.
    Rodriguez A, Ehlenberger DB, Dickstein DL, Hof PR, Wearne SL (2008) Automated three-dimensional detection and shape classification of dendritic spines from fluorescence microscopy images. PLoS One 3(4):e1997. doi: 10.1371/journal.pone.0001997 PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4(9):721–726. doi: 10.1038/Nmeth1079 PubMedCrossRefGoogle Scholar
  43. 43.
    Nikolic M, Dudek H, Kwon YT, Ramos YFM, Tsai LH (1996) The cdk5/p35 kinase is essential for neurite outgrowth during neuronal differentiation. Gene Dev 10(7):816–825. doi: 10.1101/Gad.10.7.816 PubMedCrossRefGoogle Scholar
  44. 44.
    Aschrafi A, Natera-Naranjo O, Gioio AE, Kaplan BB (2010) Regulation of axonal trafficking of cytochrome c oxidase IV mRNA. Mol Cell Neurosci 43(4):422–430. doi: 10.1016/j.mcn.2010.01.009 PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355. doi: 10.1038/nature02871 PubMedCrossRefGoogle Scholar
  46. 46.
    Martinez NJ, Gregory RI (2010) MicroRNA gene regulatory pathways in the establishment and maintenance of ESC identity. Cell Stem Cell 7(1):31–35. doi: 10.1016/j.stem.2010.06.011 PubMedCrossRefGoogle Scholar
  47. 47.
    Eichhorn SW, Guo H, McGeary SE, Rodriguez-Mias RA, Shin C, Baek D, Hsu SH, Ghoshal K et al (2014) mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. Mol Cell 56(1):104–115. doi: 10.1016/j.molcel.2014.08.028 PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Inui M, Martello G, Piccolo S (2010) MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 11(4):252–263. doi: 10.1038/nrm2868 PubMedCrossRefGoogle Scholar
  49. 49.
    Ghosh T, Aprea J, Nardelli J, Engel H, Selinger C, Mombereau C, Lemonnier T, Moutkine I et al (2014) MicroRNAs establish robustness and adaptability of a critical gene network to regulate progenitor fate decisions during cortical neurogenesis. Cell Rep 7(6):1779–1788. doi: 10.1016/j.celrep.2014.05.029 PubMedCrossRefGoogle Scholar
  50. 50.
    Maragkakis M, Alexiou P, Papadopoulos GL, Reczko M, Dalamagas T, Giannopoulos G, Goumas G, Koukis E et al (2009) Accurate microRNA target prediction correlates with protein repression levels. BMC Bioinforma 10:295. doi: 10.1186/1471-2105-10-295 CrossRefGoogle Scholar
  51. 51.
    Hivert B, Liu Z, Chuang CY, Doherty P, Sundaresan V (2002) Robo1 and Robo2 are homophilic binding molecules that promote axonal growth. Mol Cell Neurosci 21(4):534–545PubMedCrossRefGoogle Scholar
  52. 52.
    Borrell V, Cardenas A, Ciceri G, Galceran J, Flames N, Pla R, Nobrega-Pereira S, Garcia-Frigola C et al (2012) Slit/Robo signaling modulates the proliferation of central nervous system progenitors. Neuron 76(2):338–352. doi: 10.1016/j.neuron.2012.08.003 PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Andrews W, Barber M, Hernadez-Miranda LR, Xian J, Rakic S, Sundaresan V, Rabbitts TH, Pannell R et al (2008) The role of Slit-Robo signaling in the generation, migration and morphological differentiation of cortical interneurons. Dev Biol 313(2):648–658. doi: 10.1016/j.ydbio.2007.10.052 PubMedCrossRefGoogle Scholar
  54. 54.
    Helwak A, Kudla G, Dudnakova T, Tollervey D (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153(3):654–665. doi: 10.1016/j.cell.2013.03.043 PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Wang WX, Wilfred BR, Xie K, Jennings MH, Hu YH, Stromberg AJ, Nelson PT (2010) Individual microRNAs (miRNAs) display distinct mRNA targeting “rules”. RNA Biol 7(3):373–380PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Grueter CE, van Rooij E, Johnson BA, DeLeon SM, Sutherland LB, Qi X, Gautron L, Elmquist JK et al (2012) A cardiac microRNA governs systemic energy homeostasis by regulation of MED13. Cell 149(3):671–683. doi: 10.1016/j.cell.2012.03.029 PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Bruno IG, Karam R, Huang L, Bhardwaj A, Lou CH, Shum EY, Song HW, Corbett MA et al (2011) Identification of a microRNA that activates gene expression by repressing nonsense-mediated RNA decay. Mol Cell 42(4):500–510. doi: 10.1016/j.molcel.2011.04.018 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Aron Kos
    • 1
    • 2
  • Teun Klein-Gunnewiek
    • 1
    • 2
  • Julia Meinhardt
    • 1
    • 2
  • Nikkie F. M. Olde Loohuis
    • 1
    • 2
  • Hans van Bokhoven
    • 1
    • 3
    • 2
  • Barry B. Kaplan
    • 4
  • Gerard J. Martens
    • 5
    • 2
  • Sharon M. Kolk
    • 5
    • 2
  • Armaz Aschrafi
    • 2
    • 4
    Email author
  1. 1.Department of Cognitive NeuroscienceRadboud university medical centerNijmegenThe Netherlands
  2. 2.Donders Institute for Brain, Cognition, and Behaviour, Centre for NeuroscienceNijmegenThe Netherlands
  3. 3.Department of Human GeneticsRadboud university medical centerNijmegenThe Netherlands
  4. 4.Laboratory of Molecular Biology, National Institute of Mental HealthNational Institutes of HealthBethesdaUSA
  5. 5.Department of Molecular Animal PhysiologyRadboud UniversityNijmegenThe Netherlands

Personalised recommendations