Skip to main content

Aqueous Leaf Extract of Withania somnifera as a Potential Neuroprotective Agent in Sleep-deprived Rats: a Mechanistic Study

Abstract

Modern lifestyle and sustained stress of professional commitments in the current societal set up often disrupts the normal sleep cycle and duration which is known to lead to cognitive impairments. In the present study, we report whether leaf extract of Withania somnifera (Ashwagandha) has potential neuroprotective role in acute stress of sleep deprivation. Experiments were performed on three groups of adult Wistar rats: group 1 (vehicle treated-undisturbed sleep [VUD]), group 2 (vehicle treated-sleep deprived [VSD]), and group 3 (ASH-WEX treated-sleep deprived [WSD]). Groups 1 and 2 received single oral feeding of vehicle and group 3 received ASH-WEX orally (140 mg/kg or 1 ml/250 g of body weight) for 15 consecutive days. Immediately after this regimen, animals from group 1 were allowed undisturbed sleep (between 6 a.m. and 6 p.m.), whereas rats of groups 2 and 3 were deprived of sleep during this period. We observed that WSD rats showed significant improvement in their performance in behavioral tests as compared to VSD group. At the molecular level, VSD rats showed acute change in the expression of proteins involved in synaptic plasticity, cell survival, and apoptosis in the hippocampus region of brain, which was suppressed by ASH-WEX treatment thus indicating decreased cellular stress and apoptosis in WSD group. This data suggest that Ashwagandha may be a potential agent to suppress the acute effects of sleep loss on learning and memory impairments and may emerge as a novel supplement to control SD-induced cognitive impairments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Gais S, Born J (2004) Declarative memory consolidation: mechanisms acting during human sleep. Learn Memory 11:679–685. doi:10.1101/lm.80504

    Article  Google Scholar 

  2. Rasch B, Born J (2013) About sleep’s role in memory. Physiol Rev 93:681–766. doi:10.1152/physrev.00032.2012

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Campbell IG, Guinan MJ, Horowitz JM (2002) Sleep deprivation impairs long-term potentiation in rat hippocampal slices. J Neurophysiol 88:1073–1076. doi:10.1152/jn.00873.2001

    CAS  PubMed  Google Scholar 

  4. Kopp C, Longordo F, Nicholson JR, Luthi A (2006) Insufficient sleep reversibly alters bidirectional synaptic plasticity and NMDA receptor function. J Neurosci 26:12456–12465. doi:10.1523/jneurosci.2702-06.2006

    CAS  Article  PubMed  Google Scholar 

  5. Tartar JL, Ward CP, McKenna JT, Thakkar M, Arrigoni E, McCarley RW et al (2006) Hippocampal synaptic plasticity and spatial learning are impaired in a rat model of sleep fragmentation. Eur J Neurosci 23:2739–2748. doi:10.1111/j.1460-9568.2006.04808.x

    Article  PubMed  PubMed Central  Google Scholar 

  6. Vecsey CG, Baillie GS, Jaganath D, Havekes R, Daniels A, Wimmer M et al (2009) Sleep deprivation impairs cAMP signaling in the hippocampus. Nature 461:1122–1125. doi:10.1038/nature08488

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Verma SK, Kumar A (2011) Therapeutic uses of Withania somnifera (Ashwagandha) with a note on withanoloids and its pharmacological actions. Asian J Pharm Clin Res 4(1):1–4

    CAS  Google Scholar 

  8. Konar A, Shah N, Singh R, Saxena N, Kaul SC, Wadhwa R, Thakur MK (2011) Protective role of Ashwagandha leaf extract and its component withanone on scopolamine-induced changes in the brain and brain derived cells. PLoS ONE 6(11):e27265. doi:10.1371/journal.pone.0027265

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Gautam A, Wadhwa A, Thakur MK (2013) Involvement of hippocampal Arc in amnesia and its recovery by alcoholic extract of Ashwagandha leaves. Neurobiology of Learning and Memory 106:177–184

    Article  PubMed  Google Scholar 

  10. Khan MA, Subramaneyaan M, Arora VK, Banerjee BD, Ahmed RS (2015) Effect of Withania somnifera (Ashwagandha) root extract on amelioration of oxidative stress and autoantibodies production in collagen-induced arthritic rats. Journal of Complementary and Integrative Medicine 12(2):117–125

    Article  PubMed  Google Scholar 

  11. Ahmad M, Saleem S, Ahmad AS, Ansari MA, Yousuf S, Hoda MN (2005) Neuroprotective effects of Withania somnifera on 6-hydroxydopamine induced Parkinsonism in rats. Human & Experimental Toxicology 24(3):137–147

    Article  Google Scholar 

  12. Kulkarni SK, Dhir A (2008) Withania somnifera: an Indian ginseng. Progress in Neuro-Psychopharmacology and Biological Psychiatry 32(5):1093–1105.

  13. Kataria H, Kumar S, Chaudhary H, Kaur G (2015) Withania somnifera suppresses tumor growth of intracranial allograft of glioma cells. Molecular Neurobiology 1–16

  14. Kalueff AV, Tuohimaa P (2004) The grooming analysis algorithm discriminates between different levels of anxiety in rats: potential utility for neurobehavioural stress research. Journal of Neuroscience Methods 143:169–177

    Article  PubMed  Google Scholar 

  15. Gao Q, Liu L, Chen Y, Li H, Yang L, Wang Y, Qian Q (2015) Synaptosome-related (SNARE) genes and their interactions contribute to the susceptibility and working memory of attention-deficit/hyperactivity disorder in males. Progress in Neuro-Psychopharmacology & Biological Psychiatry 57:132–139

    CAS  Article  Google Scholar 

  16. Wang Q, Wang Y, Ji W, Zhou G, He K, Li Z et al (2015) SNAP25 is associated with schizophrenia and major depressive disorder in the Han Chinese population. J Clin Psychiatry 76(1):e76–e82

    Article  PubMed  Google Scholar 

  17. Gautam A, Kaul SC, Thakur MK (2015) Alcoholic extract of Ashwagandha leaves protects against amnesia by regulation of Arc function. Molecular Neurobiology 1–10. doi 10.1007/s12035-015-9117-2

  18. Baitharu I, Jain V, Deep SN, Hota KB, Hota SK, Prasad K et al (2013) Withania somnifera root extract ameliorates hypobaric hypoxia induced memory impairment in rats. Journal of ethnopharmacology 145(2):431–441

    Article  PubMed  Google Scholar 

  19. McEwen BS (2008) Central effects of stress hormones in health and disease: understanding the protective and damaging effects of stress and stress mediators. Eur J Pharmacol 583(2–3):174–185

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Tsoory M, Guterman A, Levin GR (2008) Exposure to stressors during juvenility disrupts development-related alterations in the PSA-NCAM to NCAM expression ratio: potential relevance for mood and anxiety disorders. Neuropsychopharmacology 33:378–393

    Article  PubMed  Google Scholar 

  21. Djordjevic A, Djordjevic J, Elakovic I, Adzic M, Matic G, Radojcic MB (2012) Fluoxetine affects hippocampal plasticity, apoptosis and depressive-like behavior of chronically isolated rats. Prog Neuropsychopharmacol Bio Psychiatry 36(1):92–100

    CAS  Article  Google Scholar 

  22. Abrial E, Betourne A, Etievant A et al (2014) Protein kinase C inhibition rescues manic-like behaviors and hippocampal cell proliferation deficits in the sleep deprivation model of mania. International Journal of Neuropsychopharmacology 18(2):1–11. doi:10.1093/ijnp/pyu031

    Google Scholar 

  23. Lisman J, Raghvachari S (2014) Biochemical principles underlying the stable maintenance of LTP by the CaMKII/NMDAR complex. Brain Research

  24. Alkadhi K, Zagaar M, Alhaidar I, Salim S, Aleisa A (2013) Neurobiological consequences of sleep deprivation. Curr Neuropharmacol 11(3):231–49

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Alhaider IA, Aleisa AM, Tran TT, Alkadhi KA (2010) Caffeine prevents sleep loss-induced deficits in long-term potentiation and related signaling molecules in the dentate gyrus. European Journal of Neuroscience 31(8):1368–1376. doi:10.1111/j.1460-9568.2010.07175.x

    Article  PubMed  Google Scholar 

  26. Alhaider IA, Aleisa AM, Tran TT, Alzoubi KH, Alkadhi KA (2010) Chronic caffeine treatment prevents sleep deprivation-induced impairment of cognitive function and synaptic plasticity. SLEEP 33(4):437–444

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tohda C, Kuboyama T, Komatsu K (2000) Dendrite extension by methanol extract of Ashwagandha (roots of Withania somnifera) in SK‐N‐SH cells. Neuroreport 11:1981–1985

    CAS  Article  PubMed  Google Scholar 

  28. Zhao J, Nakamura N, Hattori M, Kuboyama T, Tohda C, Komatsu K (2002) Withanolide derivatives from the roots of Withania somnifera and their neurite outgrowth activities. Chem Pharm Bull 50(6):760–765

    CAS  Article  PubMed  Google Scholar 

  29. Kuboyama T, Tohda C, Zhao J, Nakamura N, Hattori M, Komatsu K (2002) Axon- or dendrite-predominant outgrowth induced by constituents from Ashwagandha. Neuroreport 13:1715–1752

    CAS  Article  PubMed  Google Scholar 

  30. Kuboyama T, Tohda C, Komatsu K (2005) Neuritic regeneration and synaptic reconstruction induced by withanolide A. Br J Pharmacol 144:961–971

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Kuboyama T, Tohda C, Komatsu K (2006) Withanoside IV and its active metabolite, sominone, attenuate Ab (25-35)-induced neurodegeneration. Eur J Neurosci 23:1417–1426

    Article  PubMed  Google Scholar 

  32. Basheer R, Brown R, Ramesh V, Begum S, McCarley RW (2005) Sleep deprivation-induced protein changes in basal forebrain: implications for synaptic plasticity. Journal of Neuroscience Research 82:650–658

    CAS  Article  PubMed  Google Scholar 

  33. Guzman-Marín R, Suntsova N, Methippara M, Grieffenstein R, Szymusiak R, McGinty D (2005) Sleep deprivation suppresses neurogenesis in the adult hippocampus of rats. Eur J Neurosci 22(8):2111–6

    Article  PubMed  Google Scholar 

  34. Guzman-Marín R, Suntsova N, Stewart DR, Gong H, Szymusiak R, McGinty D (2003) Sleep deprivation reduces proliferation of cells in the dentate gyrus of the hippocampus in rats. J Physiol 549(2):563–571. doi:10.1113/jphysiol.2003.041665

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hairston IS, Little MTM, Scanlon MD et al (2005) Sleep restriction suppresses neurogenesis induced by hippocampus-dependent learning. J Neurophysiology 94(6):4224–4233. doi:10.1152/jn.00218.2005

    Article  PubMed  Google Scholar 

  36. Terao A, Greco MA, Davis RW, Heller HC, Kilduff TS (2003) Region-specific changes in immediate early gene expression in response to sleep deprivation and recovery sleep in the mouse brain. Neuroscience 120:1115–1124

    CAS  Article  PubMed  Google Scholar 

  37. Everson CA, Laatsch CD, Hogg N (2005) Antioxidant defense responses to sleep loss and sleep recovery. Am J Physiol Regul Integr Comp Physiol 288:R374–R383

    CAS  Article  PubMed  Google Scholar 

  38. Everson CA, Henchen CJ, Szabo A, Hogg N (2014) Cell injury and repair resulting from sleep loss and sleep recovery in laboratory rats. Sleep 37(12):1929–1940

    Article  PubMed  PubMed Central  Google Scholar 

  39. Duveau V, Arthaud S, Rougier A, La Salle GLG (2007) Polysialylation of NCAM is up regulated by hyperthermia and participates in heat shock preconditioning-induced neuroprotection. Neurobiology of Disease 26:385–395

    CAS  Article  PubMed  Google Scholar 

  40. Yu Q, Lu Z, Tao L et al (2015) ROS-dependent neuroprotective effects of NaHS in ischemia brain injury involves the PARP/AIF pathway. Cell Physiol Biochem 36:1539–1551. doi:10.1159/000430317

    CAS  Article  PubMed  Google Scholar 

  41. Prakash J, Chouhan S, Yadav SK, Westfall S, Rai SN, Singh SP (2014) Withania somnifera alleviates parkinsonian phenotypes by inhibiting apoptotic pathways in dopaminergic neurons. Neurochem Res 39:2527–2536. doi:10.1007/s11064-014-1443-7

    CAS  Article  PubMed  Google Scholar 

  42. Zhao W, Wang J, Bi W et al (2015) Novel application of brain-targeting polyphenol compounds in sleep deprivation-induced cognitive dysfunction. Neurochemistry International 89:191–197

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Downward J (2004) PI 3-kinase, Akt and cell survival. Seminars in Cell & Developmental Biology 15:177–182

    CAS  Article  Google Scholar 

  44. Chang HF, Su CL, Chang CH, Chen YW, Gean PW (2013) The beneficial effects of leptin on REM sleep deprivation-induced cognitive deficits in mice. Learning & Memory 20:328–335

    CAS  Article  Google Scholar 

  45. Mester L, Szabo A, Atlasz T et al (2009) Protection against chronic hypoperfusion-induced retinal neurodegeneration by PARP inhibition via activation of PI-3-kinase Akt pathway and suppression of JNK and p38 MAP kinases. Neurotox Res 16:68–76. doi:10.1007/s12640-009-9049-6

    CAS  Article  PubMed  Google Scholar 

  46. Semba K, Pastorjus J, Wilkinson M, Rusak B (2001) Sleep deprivation-induced c-fos and junB expression in the rat brain: effects of duration and timing. Behav Brain Res 120(1):75–86

    CAS  Article  PubMed  Google Scholar 

  47. Ravassard P, Hamieh AM, Malleret G, Salin PA (2014) Paradoxical sleep: a vigilance state to gate long-term brain plasticity. Neurobiology of Learning and Memory 122:4–10

    Article  PubMed  Google Scholar 

  48. Kalinchuk AV, McCarley RW, Heiskanen TP, Basheer R (2010) Sleep deprivation triggers inducible nitric-oxide dependent nitric-oxide production in wake-active basal forebrain neurons. The Journal of Neuroscience 30(40):13254–13264

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Li Y, Panossian LA, Zhang J et al (2014) Effects of chronic sleep fragmentation on wake-active neurons and the hypercapnic arousal response. SLEEP 37(1):51–64

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Prakash J, Yadav SK, Chouhan S, Singh SP (2013) Neuroprotective role of Withania somnifera root extract in maneb–paraquat induced mouse model of parkinsonism. Neurochem Res 38:972–980. doi:10.1007/s11064-013-1005-4

    CAS  Article  PubMed  Google Scholar 

  51. RajaSankar S, Manivasagam T, Surendran S (2009) Ashwagandha leaf extract: a potential agent in treating oxidative damage and physiological abnormalities seen in a mouse model of Parkinson’s disease. Neuroscience Letters 454(1):11–15

    CAS  Article  PubMed  Google Scholar 

  52. Manjunath MJ (2015) Standardized extract of Withania somnifera (Ashwagandha) markedly offsets rotenone-induced locomotor deficits, oxidative impairments and neurotoxicity in Drosophila melanogaster. Journal of food science and technology 52(4):1971–1981

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

Shaffi Manchanda and Taranjeet Kaur are thankful to University Grants Commission (UGC) for fellowship grant under UPE (University with Potential for Excellence) and CPEPA (Centre with Potential for Excellence in Particular Area) schemes during the entire course of study. The infrastructure provided by the University Grants Commission (UGC), India, under UPE and CPEPA schemes and the Department of Biotechnology (DBT), India, under DISC facility is highly acknowledged. This study was funded by DST, Government of India (GOI) project grant to Gurcharan Kaur. Muskan Gupta, Vedangana Saini, and Anuradha Sharma are deeply acknowledged for their help and support during the experimental study. The funding source had no role in the study design; in the collection, analysis, and interpretation of data; in writing of report; and in the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurcharan Kaur.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Manchanda, S., Mishra, R., Singh, R. et al. Aqueous Leaf Extract of Withania somnifera as a Potential Neuroprotective Agent in Sleep-deprived Rats: a Mechanistic Study. Mol Neurobiol 54, 3050–3061 (2017). https://doi.org/10.1007/s12035-016-9883-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9883-5

Keywords

  • Ashwagandha
  • Neuroprotection
  • Sleep deprivation
  • Synaptic plasticity
  • Cell survival