Molecular Neurobiology

, Volume 54, Issue 4, pp 2878–2888 | Cite as

Genetic Variants of Microtubule Actin Cross-linking Factor 1 (MACF1) Confer Risk for Parkinson’s Disease

  • Xin Wang
  • Nuomin Li
  • Nian Xiong
  • Qi You
  • Jie Li
  • Jinlong Yu
  • Hong Qing
  • Tao Wang
  • Heather J. Cordell
  • Ole Isacson
  • Jeffery M. Vance
  • Eden R. Martin
  • Ying Zhao
  • Bruce M. Cohen
  • Edgar A. Buttner
  • Zhicheng Lin


The cytoskeleton not only provides structure, it is an active component of cell function, and in several neurodegenerative disorders, there is evidence of cytoskeletal collapse. Cytoskeletal proteins have been specifically implicated in the pathogenesis of Parkinson’s disease (PD), where degeneration of dopaminergic (DA) neurons is the hallmark, but in which many factors may determine the resilience of DA neurons during aging and stress. Here we report that the human Microtubule Actin Cross-linking Factor 1 gene (MACF1), a downstream target of PD biochemical pathways, was significantly associated with PD in 713 nuclear families. A significant allelic association between PD and rs12118033, with P = 0.0098, was observed, and a P < 0.03 was observed in the association analysis by both a trend test and an allelic test. We further observed that it is the MACF1b isoform, not the MACF1a isoform, which is expressed in DA neurons from six human postmortem brains. In a Caenorhabditis elegans system, used to explore the effect of altered MACF1b on neurons, knockdown or knockout of the MACF1b orthologue vab-10 resulted in the selective loss of DA neurons, which validated MACF1’s risk candidacy in PD. These findings strongly suggest that MACF1b may contribute to the genetic etiology and mechanistic causation of PD.


Association study Nuclear family study Genetics Parkinson’s disease Caenorhabditis elegans modeling 



Parkinson’s disease


Microtubule actin cross-linking factor 1


Single nucleotide polymorphism


Growth-Arrest-Specific Protein 2


Laser capture microdissection


Association in the Presence of Linkage


Genotype-pedigree disequilibrium test


Quantitative transmission disequilibrium test




Polymerase chain reaction


Nematode growth medium

Supplementary material

12035_2016_9861_MOESM1_ESM.pdf (730 kb)
ESM 1(PDF 729 kb)


  1. 1.
    Trinh J, Farrer M (2013) Advances in the genetics of Parkinson disease. Nat Rev Neurol 9(8):445–454CrossRefPubMedGoogle Scholar
  2. 2.
    Nalls MA, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M, DeStefano AL, Kara E (2014) Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet 46(9):989–993CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Edwards YJ, Beecham GW, Scott WK, Khuri S, Bademci G, Tekin D, Martin ER (2011) Identifying consensus disease pathways in Parkinson’s disease using an integrative systems biology approach. PLoS One 6(2):e16917. doi:10.1371/journal.pone.0016917 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bellani S, Mescola A, Ronzitti G, Tsushima H, Tilve S, Canale C, Valtorta F (2014) GRP78 clustering at the cell surface of neurons transduces the action of exogenous alpha-synuclein. Cell Death Differ 21(12):1971–1983CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Esteves AR, Gozes I, Cardoso SM (2014) The rescue of microtubule-dependent traffic recovers mitochondrial function in Parkinson’s disease. Biochim Biophys Acta 1842(1):7–21CrossRefPubMedGoogle Scholar
  6. 6.
    Lee HJ, Khoshaghideh F, Lee S, Lee SJ (2006) Impairment of microtubule-dependent trafficking by overexpression of alpha-synuclein. Eur J Neurosci 24(11):3153–3162CrossRefPubMedGoogle Scholar
  7. 7.
    Esposito A, Dohm CP, Kermer P, Bähr M, Wouters FS (2007) alpha-Synuclein and its disease-related mutants interact differentially with the microtubule protein tau and associate with the actin cytoskeleton. Neurobiol Disord 26(3):521–531CrossRefGoogle Scholar
  8. 8.
    Freundt EC, Maynard N, Clancy EK, Roy S, Bousset L, Sourigues Y, Covert M (2012) Neuron-to-neuron transmission of α-synuclein fibrils through axonal transport. Ann Neurol 72(4):517–524CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Roy B, Jackson GR (2014) Interactions between Tau and α-synuclein augment neurotoxicity in a Drosophila model of Parkinson’s disease. Hum Mol Genet 23(11):3008–3023CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Xun Z, Sowell RA, Kaufman TC, Clemmer DE (2007) Lifetime proteomic profiling of an A30P alpha-synuclein Drosophila model of Parkinson’s disease. J Proteome Res 6(9):3729–3738CrossRefPubMedGoogle Scholar
  11. 11.
    Mata IF, Leverenz JB, Weintraub D, Trojanowski JQHHI, Van Deerlin VM, Ritz B (2014) APOE, MAPT, and SNCA genes and cognitive performance in Parkinson Disease. JAMA Neurol 71(11):1405–1412CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Shulman JM, Yu L, Buchman AS, Evans DA, Schneider JA, Bennett DA, De Jager PL (2014) Association of Parkinson disease risk loci with mild parkinsonian signs in older persons. JAMA Neurol 71(4):429–435CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Simón-Sánchez J, Schulte C, Bras JM, Sharma M, Gibbs JR, Berg D, Paisan-Ruiz C (2009) Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet 41(12):1308–1312CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Satake W, Nakabayashi Y, Mizuta I, Hirota Y, Ito C, Kubo M, Kawaguchi T, Tsunoda T (2009) Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat Genet 41(12):1303–1307CrossRefPubMedGoogle Scholar
  15. 15.
    Dan X, Wang C, Ma J, Feng X, Wang T, Zheng Z, Chan P (2014) MAPT IVS1 + 124 C > G modifies risk of LRRK2 G2385R for Parkinson’s disease in Chinese individuals. Neurobiol Aging 35(7):1780CrossRefPubMedGoogle Scholar
  16. 16.
    Wills J, Jones J, Haggerty T, Duka V, Joyce JN, Sidhu A (2010) Elevated tauopathy and alpha-synuclein pathology in postmortem Parkinson’s disease brains with and without dementia. Exp Neurol 225(1):210–218CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Haggerty T, Credle J, Rodriguez O, Wills J, Oaks AW, Masliah E, Sidhu A (2011) Hyperphosphorylated Tau in an α-synuclein-overexpressing transgenic model of Parkinson’s disease. Eur J Neurosci 33(9):1598–1610CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Jiang Q, Yan Z, Feng J (2006) Activation of group III metabotropic glutamate receptors attenuates rotenone toxicity on dopaminergic neurons through a microtubule-dependent mechanism. J Neurosci 26(16):4318–4328CrossRefPubMedGoogle Scholar
  19. 19.
    Jiang Q, Yan Z, Feng J (2006) Neurotrophic factors stabilize microtubules and protect against rotenone toxicity on dopaminergic neurons. J Biol Chem 281(39):29391–29400CrossRefPubMedGoogle Scholar
  20. 20.
    Corona JC, de Souza SC, Duchen MR (2014) PPARγ activation rescues mitochondrial function from inhibition of complex I and loss of PINK1. Exp Neurol 253:16–27CrossRefPubMedGoogle Scholar
  21. 21.
    Feng J (2006) Microtubule: a common target for parkin and Parkinson’s disease toxins. Neuroscientist 12(6):469–476CrossRefPubMedGoogle Scholar
  22. 22.
    Ka M, Jung EM, Mueller U, Kim WY (2014) MACF1 regulates the migration of pyramidal neurons via microtubule dynamics and GSK-3 signaling. Dev Biol S0012–1606(14):452–457Google Scholar
  23. 23.
    L’Episcopo F, Tirolo C, Testa N, Caniglia S, Morale MC, Serapide MF, Pluchino S, Marchetti B (2014) Wnt/β-catenin signaling is required to rescue midbrain dopaminergic progenitors and promote neurorepair in ageing mouse model of Parkinson’s disease. Stem Cells 32(8):2147–2163CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Chung CY, Seo H, Sonntag KC, Brooks A, Lin L, Isacson O (2005) Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Hum Mol Genet 14(13):1709–1725CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Simunovic F, Yi M, Wang Y, Macey L, Brown LT, Krichevsky AM, Andersen SL (2009) Gene expression profiling of substantia nigra dopamine neurons: further insights into Parkinson’s disease pathology. Brain 132(Pt 7):1795–1809CrossRefPubMedGoogle Scholar
  26. 26.
    Ekins S, Nikolsky Y, Bugrim A, Kirillov E, Nikolskaya T (2007) Pathway mapping tools for analysis of high content data. Methods Mol Biol 356:319–350PubMedGoogle Scholar
  27. 27.
    Gao X, Scott WK, Wang G, Mayhew G, Li YJ, Vance JM, Martin ER (2008) Gene-gene interaction between FGF20 and MAOB in Parkinson disease. Ann Hum Genet 72(Pt 2):1469–1809Google Scholar
  28. 28.
    Fahn S, Elton RL, Members of the UPDRS Development Committee (1987) Unified Parkinson’s Disease rating scale. In: Fahn S, Marsden CD, Calne DB, Goldstein M (eds.) Recent developments in Parkinson’s Disease: 153–164Google Scholar
  29. 29.
    Oliveira SA, Li YJ, Noureddine MA, Zuchner S, Qin X, Pericak-Vance MA (2005) Identification of risk and age-at-onset genes on chromosome 1p in Parkinson disease. Am J Hum Genet 77(2):252–264CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zaykin D, Zhivotovsky L, Weir BS (1995) Exact tests for association between alleles at arbitrary numbers of loci. Genetica 96(1–2):169–178CrossRefPubMedGoogle Scholar
  31. 31.
    Martin ER, Monks SA, Warren LL, Kaplan NL (2000) A test for linkage and association in general pedigrees: the pedigree disequilibrium test. Am J Hum Genet 67(1):146–154CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Martin ER, Bass MP, Hauser ER, Kaplan NL (2003) Accounting for linkage in family-based tests of association with missing parental genotypes. Am J Hum Genet 73(5):1016–1026CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Martin ER, Bass MP, Gilbert JR, Pericak-Vance MA, Hauser ER (2003) Genotype-based association test for general pedigrees: the genotype-PDT. Genet Epidemiol 25(3):203–213CrossRefPubMedGoogle Scholar
  34. 34.
    Allison DB (1997) Transmission-disequilibrium tests for quantitative traits. Am J Hum Genet 60(3):676–690PubMedPubMedCentralGoogle Scholar
  35. 35.
    Monks SA, Kaplan NL (2000) Removing the sampling restrictions from family-based tests of association for a quantitative-trait locus. Am J Hum Genet 66(2):576–592CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Valente AX, das Neves RP, Oliveira PJ (2012) Epigenetic engineering to reverse the Parkinson’s expression state. Parkinsonism Relat Disord 18(6):717–721CrossRefPubMedGoogle Scholar
  37. 37.
    Li CX, Han JP, Ren WY, Ji AQ, Xu XL, Hu L (2011) DNA profiling of spermatozoa by laser capture microdissection and low volume-PCR. PLoS One 6(8):e22316CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Simmer F, Moorman C, van der Linden AM, Kuijk E, van den Berghe PV, Kamath RS, Fraser AG, Ahringer J et al (2003) Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions. PLoS Biol 1(1):E12. doi:10.1371/journal.pbio.0000012 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kamath RS, Martinez-Campos M, Zipperlen P, Fraser AG, Ahringer J (2000) Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol 2(1):1–10CrossRefGoogle Scholar
  40. 40.
    Yuan Y, Tong Q, Zhou X, Zhang R, Qi Z, Zhang K (2013) The association between glycogen synthase kinase 3 beta polymorphisms and Parkinson’s disease susceptibility: a meta-analysis. Gene 524(2):133–138CrossRefPubMedGoogle Scholar
  41. 41.
    Hartmann A, Hunot S, Michel PP, Muriel MP, Vyas S, Faucheux BA, Mouatt-Prigent A (2000) Caspase-3: a vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson’s disease. Proc Natl Acad Sci U S A 97(6):2875–2880CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Khan S, Ahmad K, Alshammari EM, Adnan M, Baig MH, Lohani M, Somvanshi P (2015) Implication of caspase-3 as a common therapeutic target for multineurodegenerative disorders and its inhibition using nonpeptidyl natural compounds. Biomed Res Int. doi:10.1155/2015/379817 Google Scholar
  43. 43.
    Daher JP, Abdelmotilib HA, Hu X, Volpicelli-Daley LA, Moehle MS, Faser KB (2015) LRRK2 pharmacological inhibition abates α-synuclein induced neurodegeneration. J Biol Chem. doi:10.1074/jbc.M115.660001 PubMedPubMedCentralGoogle Scholar
  44. 44.
    International Parkinson Disease Genomics Consortium, Nalls MA, Plagnol V, Hernandez DG, Sharma M, Sheerin UM, Saad M (2011) Imputation of sequence variants for identification of genetic risks for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet 377(9766):641–649CrossRefPubMedCentralGoogle Scholar
  45. 45.
    Sharma M, Ioannidis JP, Aasly JO, Annesi G, Brice A, Van Broeckhoven C, Bertram L (2012) Large-scale replication and heterogeneity in Parkinson disease genetic loci. Neurology 79(7):659–667CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Maraganore DM, de Andrade M, Lesnick TG, Strain KJ, Farrer MJ, Rocca WA, Pant PV (2005) High-resolution whole-genome association study of Parkinson disease. Am J Hum Genet 77(5):685–693CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Bosher JM, Hahn BS, Legouis R, Sookhareea S, Weimer RM, Gansmuller A, Chisholm AD (2003) The Caenorhabditis elegans vab-10 spectraplakin isoforms protect the epidermis against internal and external forces. J Cell Biol 161(4):757–768, 26 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Sharafeldin N, Slattery ML, Liu Q, Franco-Villalobos C, Caan BJ, Potter JD, Yasui Y (2015) A candidate-pathway approach to identify gene-environment interactions: analyses of colon cancer risk and survival. J Natl Cancer Inst 107(9):djv160. doi:10.1093/jnci/djv160 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Li Y, Klena NT, Gabriel GC, Liu X, Kim AJ, Lemke K, Chen Y (2015) Global genetic analysis in mice unveils central role for cilia in congenital heart disease. Nature 521(7553):520–524CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Nelson CP, Hamby SE, Saleheen D, Hopewell JC, Zeng L, Assimes TL, Kanoni S (2015) Genetically determined height and coronary artery disease. N Engl J Med 372(17):1608–1618CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Cirulli ET, Lasseigne BN, Petrovski S, Sapp PC, Dion PA, Leblond CS, Couthouis J (2015) Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science 347(6229):1436–1441CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Xu W, Tan L, Yu JT (2015) The link between the SNCA gene and parkinsonism. Neurobiol Aging 36(3):1505–1518CrossRefPubMedGoogle Scholar
  53. 53.
    Spillantini MG, Goedert M (2013) Tau pathology and neurodegeneration. Lancet Neurol 12(6):609–622CrossRefPubMedGoogle Scholar
  54. 54.
    Johar AS, Mastronardi C, Rojas-Villarraga A, Patel HR, Chuah A, Peng K, Higgins A et al (2015) Novel and rare functional genomic variants in multiple autoimmune syndrome and Sjögren’s syndrome. J Transl Med 13:173. doi:10.1186/s12967-015-0525-x CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Kim R, Schell MJ, Teer JK, Greenawalt DM, Yang M, Yeatman TJ (2015) Co-evolution of somatic variation in primary and metastatic colorectal cancer may expand biopsy indications in the molecular era. PLoS One 10(5):e0126670. doi:10.1371/journal.pone.0126670 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Jørgensen LH, Mosbech MB, Færgeman NJ, Graakjaer J, Jacobsen SV, Schrøder HD (2014) Duplication in the microtubule-actin cross-linking factor 1 gene causes a novel neuromuscular condition. Sci Rep 4:srep05180. doi:10.1038/srep05180 Google Scholar
  57. 57.
    Wan JY, Edwards KL, Hutter CM, Mata IF, Samii A, Roberts JW, Agarwal P, Checkoway H et al (2014) Association mapping of the PARK10 region for Parkinson’s disease susceptibility genes. Parkinsonism Relat Disord 20(1):93–98CrossRefPubMedGoogle Scholar
  58. 58.
    2. IPsDGCaWTCCC (2011) A two-stage meta-analysis identifies several new loci for Parkinson’s disease. PLoS Genet 7(6):e1002142. doi:10.1371/journal.pgen.1002142 CrossRefGoogle Scholar
  59. 59.
    Beecham GW, Dickson DW, Scott WK, Martin ER, Schellenberg G, Nuytemans K, Larson EB (2015) PARK10 is a major locus for sporadic neuropathologically confirmed Parkinson disease. Neurology 84(10):972–980CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Costas J, Suarez-Rama JJ, Carrera N, Paz E, Paramo M, Agra S, Brenlla J, Ramos-Rios R et al (2013) Role of DISC1 interacting proteins in schizophrenia risk from genome-wide analysis of missense SNPs. Ann Hum Genet 77:504–512. doi:10.1111/ahg.12037 CrossRefPubMedGoogle Scholar
  61. 61.
    Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S, Kachergus J, Hulihan M et al (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44(4):601–607CrossRefPubMedGoogle Scholar
  62. 62.
    Neudorfer O, Giladi N, Elstein D, Abrahamov A, Turezkite T, Aghai AR E, Bembi B, Zimran A (1996) Occurrence of Parkinson syndrome in type I Gaucher disease. Q J Med 89(9):691–694CrossRefGoogle Scholar
  63. 63.
    Jørgensen LH, Mosbech MB, Færgeman NJ, Graakjaer J, Jacobsen SV, Schrøder HD (2014) Duplication in the microtubule-actin cross-linking factor 1 gene causes a novel neuromuscular condition. Sci Rep 4:5180CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Kuwahara T, Koyama A, Gengyo-Ando K, Masuda M, Kowa H, Tsunoda M, Mitani S (2006) Familial Parkinson mutant alpha-synuclein causes dopamine neuron dysfunction in transgenic Caenorhabditis elegans. J Biol Chem 281(1):334–340CrossRefPubMedGoogle Scholar
  65. 65.
    Braungart E, Geriach M, Riederer P, Baumeister R, Hoener MC (2004) Caenorhabditis elegans MPP+ model of Parkinson’s disease for high-throughput drug screenings. Neurodegener Dis 1(4–5):175–183CrossRefPubMedGoogle Scholar
  66. 66.
    Caldwell KA, Tucci ML, Armagost J, Hodges TW, Chen J, Memon SB, Blalock JE (2009) Investigating bacterial sources of toxicity as an environmental contributor to dopaminergic neurodegeneration. PLoS One 4(10):e7227CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Gitler AD, Chesi A, Geddie ML, Strathearn KE, Hamamichi S, Hill KJC, Caldwell KA (2009) α-Synuclein is part of Investigating bacterial sources of toxicity as an environmental contributor to dopaminergic neurodegeneration a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nat Genet 41(3):308–315CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Lalioti MD, Scott HS, Buresi C, Rossier C, Bottani A, Morris MA, Malafosse A, Antonarakis SE (1997) Dodecamer repeat expansion in cystatin B gene in progressive myoclonus epilepsy. Nature 386(6627):847–851CrossRefPubMedGoogle Scholar
  69. 69.
    Faustino P, Lavinha J, Marini MG, Moi P (1996) beta-Thalassemia mutation at -90C-- > T impairs the interaction of the proximal CACCC box with both erythroid and nonerythroid factors. Blood 88(8):3248–3249PubMedGoogle Scholar
  70. 70.
    Esteves AR, Arduino DM, Swerdlow RH, Oliveira CR, Cardoso SM (2010) Microtubule depolymerization potentiates alpha-synuclein oligomerization. Front Aging Neurosci 1(5):1–6Google Scholar
  71. 71.
    Sousa VL, Bellani S, Giannandrea M, Yousuf M, Valtorta F, Meldolesi J, Chieregatti E (2009) {alpha}-synuclein and its A30P mutant affect actin cytoskeletal structure and dynamics. Mol Biol Cell 20(16):3725–3739CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Parisiadou L, Xie C, Cho HJ, Lin X, Gu XL, Long CX, Lobbestael E (2009) Phosphorylation of ezrin/radixin/moesin proteins by LRRK2 promotes the rearrangement of actin cytoskeleton in neuronal morphogenesis. J Neurosci 29(44):13971–13980CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Choi WS, Palmiter RD, Xia Z (2011) Loss of mitochondrial complex I activity potentiates dopamine neuron death induced by microtubule dysfunction in a Parkinson’s disease model. J Cell Biol 192(5):873–882CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Xin Wang
    • 1
    • 2
    • 3
  • Nuomin Li
    • 2
    • 4
    • 5
  • Nian Xiong
    • 2
    • 3
    • 4
    • 6
    • 7
  • Qi You
    • 2
    • 4
    • 8
  • Jie Li
    • 2
    • 9
  • Jinlong Yu
    • 2
  • Hong Qing
    • 5
  • Tao Wang
    • 7
  • Heather J. Cordell
    • 10
  • Ole Isacson
    • 3
    • 6
    • 11
  • Jeffery M. Vance
    • 12
  • Eden R. Martin
    • 12
  • Ying Zhao
    • 2
    • 4
    • 13
  • Bruce M. Cohen
    • 2
    • 3
  • Edgar A. Buttner
    • 2
    • 3
  • Zhicheng Lin
    • 2
    • 3
    • 4
    • 6
  1. 1.School of Public HealthXinxiang Medical UniversityXinxiangChina
  2. 2.Department of PsychiatryHarvard Medical SchoolBostonUSA
  3. 3.Mailman Research CenterMcLean HospitalBelmontUSA
  4. 4.Laboratory of Psychiatric NeurogenomicsMcLean HospitalBelmontUSA
  5. 5.School of Life ScienceBeijing Institute of TechnologyBeijingChina
  6. 6.Harvard NeuroDiscovery CenterHarvard Medical SchoolBostonUSA
  7. 7.Department of Neurology, Union HospitalHuazhong University of Science and TechnologyWuhanChina
  8. 8.Department of NeurologyHubei Zhongshan HospitalWuhanChina
  9. 9.Tianjin Mental Health CenterTianjinChina
  10. 10.Institute of Genetic MedicineNewcastle UniversityNewcastle upon TyneUK
  11. 11.Neuroregeneration LaboratoriesMcLean HospitalBelmontUSA
  12. 12.Hussman Institute for Human Genomics, Miller School of MedicineUniversity of MiamiMiamiUSA
  13. 13.School of PharmacyXinxiang Medical UniversityXinxiangChina

Personalised recommendations