Skip to main content

Advertisement

Log in

Role of Leptin and Orexin-A Within the Suprachiasmatic Nucleus on Anxiety-Like Behaviors in Hamsters

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

It is well established that the maintenance of energy expenditure is linked to active hypothalamic neural mechanisms controlling adaptive stimuli such as food intake. Variations of glucose levels and hormonal (leptin plus orexin-A) parameters, which are involved with energy homeostasis during different behavioral states, have not yet been fully defined. In this first study, behavioral analyses of an unpredictable stress model dealing with the actions of a sub-chronic administration of orexin-A (ORX-A) and the anti-hunger neuropeptide, i.e., leptin (LEP) within the hypothalamic suprachiasmatic (SCH) nucleus, were conducted on the valuable hibernating rodent (hamster; Mesocricetus auratus) model noted for its distinct depression and anxiety states. Treatment with LEP accounted for a notable reduction (p < 0.01) of body weight in stressed hamsters that not only executed very evident (p < 0.001) movements to and from elevated plus maze (EPM) but also spent less time in the dark area of the light–dark box test (LDT). Conversely, ORX-A predominantly evoked anxiogenic effects that were inverted by LEP. Interestingly, the anti-hunger neuropeptide accounted for both down-regulated NPY1 transcripts in mostly lateral-posterior hypothalamic areas while up-regulated levels were detected in the parietal cerebral cortex, hippocampus, and amygdala, which largely behaved in an opposite manner to ORX-A-dependent effects. Overall, the present findings corroborate a predominating LEPergic effect of the SCH toward the reduction of hamster anxiety-like behaviors with respect to that of ORX-A signaling, which may constitute useful therapeutic targets for stress-related obesity states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AMY:

Amygdala

ANOVA:

Analysis of variance

COR:

Cerebral cortex

CRH:

Corticotropin-releasing hormone

EPM:

Elevated plus maze

HIP:

Hippocampus

HTH:

Hypothalamus

ISH:

In situ hybridization

LDT:

Light–dark box test

LEP:

Leptin

ORX-A:

Orexin-A

SCH:

Hypothalamic suprachiasmatic nucleus

References

  1. Viveros MP, Marco EM, File SE (2005) Endocannabinoid system and stress and anxiety responses. Pharmacol Biochem Behav 81:331–342. doi:10.1016/j.pbb.2005.01.029

    Article  CAS  PubMed  Google Scholar 

  2. Holsboer F (2003) High-quality antidepressant discovery by understanding stress hormone physiology. Ann Acad Sci 1007:394–404. doi:10.1196/annals.1286.038

    Article  CAS  Google Scholar 

  3. Cho K, Waite EJ, McKenna M, Kershaw Y, Walker JJ, Piggins HD, Lightman SL (2012) Ultradian corticosterone secretion is maintained in the absence of circadian cues. Eur J Neurosci 36:3142–3150. doi:10.1111/j.1460-9568.2012.08213.x

    Article  PubMed  Google Scholar 

  4. McClung CA (2011) Circadian rhythms and mood regulation: insights from pre-clinical models. Eur Neuropsychopharmacol 21:683–693. doi:10.1016/j.euroneuro.2011.07.008

    Article  Google Scholar 

  5. Tapia-Osorio A, Salgado-Delgado R, Angeles-Castellanos M, Escobar C (2013) Disruption of circadian rhythms due to chronic constant light leads to depressive and anxiety-like behaviors in the rat. Behav Brain Res 252:1–9

    Article  PubMed  Google Scholar 

  6. Merali Z, Kent P, Anisman H (2002) Role of bombesin-related peptides in the mediation or integration of the stress response. Cell Mol Life Sci 59:272–287

    Article  CAS  PubMed  Google Scholar 

  7. Avolio E, Alò R, Mele M, Carelli A, Canonaco A, Bucarelli L, Canonaco M (2012) Amygdalar excitatory/inhibitory circuits interacting with orexinergic neurons influence differentially feeding behaviors in hamsters. Behav Brain Res 234:91–99. doi:10.1016/j.bbr.2012.06.013

    Article  CAS  PubMed  Google Scholar 

  8. Mela V, Diaz F, Borcel E, Argente J, Chowen JA, Viveros MP (2015) Long term hippocampal and cortical changes induced by maternal deprivation and neonatal leptin treatment in male and female rats. PLoS One 10:eO137283. doi:10.1371/journal.pone.0137283.eCollection

    Google Scholar 

  9. Reis WL, Yi CX, Gao Y, Tschöp MH, Stern JE (2015) Brain innate immunity regulates hypothalamic arcuate neuronal activity and feeding behavior. Endocrinology 156:1303–1315. doi:10.1210/en.2014-1849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yamada N, Katsuura G, Ochi Y, Ebihara K, Kusakabe T, Hosoda K, Nakao K (2011) Impaired CNS leptin action is implicated in depression associated with obesity. Endocrinol 152:2634–2643. doi:10.1210/en.2011-0004

    Article  CAS  Google Scholar 

  11. Liu J, Perez SM, Zhang W, Lodge DJ, Lu XY (2011) Selective deletion of the leptin receptor in dopamine neurons produces anxiogenic-like behavior and increases dopaminergic activity in amygdala. Mol Psychiatry 16:1024–1028. doi:10.1038/mp.2011.36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chan JL, Heist K, DePaoli AM, Veldhuis JD, Mantzoros CS (2003) The role of falling leptin levels in the neuroendocrine and metabolic adaptation to short-term starvation in healthy men. J Clin Invest 111:1409–1421. doi:10.1172/JCI17490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Inutsuka A, Yamanaka A (2013) The physiological role of orexin/hypocretin neurons in the regulation of sleep/wakefulness and neuroendocrine functions. Front Endocrinol 4:18. doi:10.3389/fendo.2013.00018

    Article  Google Scholar 

  14. Veyrat-Durebex C, Quirion R, Ferland G, Dumont Y, Gaudreau P (2013) Aging and long-term caloric restriction regulate neuropeptide Y receptor subtype densities in the rat brain. Neuropeptides 47:163–169. doi:10.1016/j.npep.2013.01.001

    Article  CAS  PubMed  Google Scholar 

  15. Brown TM, Coogan AN, Cutler DJ, Hughes AT, Piggins HD (2008) Electrophysiological actions of orexins on rat suprachiasmatic neurons in vitro. Neurosci Lett 448:273–278. doi:10.1016/j.neulet.2008.10.058

    Article  CAS  PubMed  Google Scholar 

  16. Inyushkin AN, Bhumbra GS, Dyball RE (2009) Leptin modulates spike coding in the rat suprachiasmatic nucleus. J Neuroendocrinol 21:705–714. doi:10.1111/j.1365-2826.2009.01889.x

    Article  CAS  PubMed  Google Scholar 

  17. Yan HC, Cao X, Das M, Zhu XH, Gao TM (2010) Behavioral animal models of depression. Neurosci Bull 26:327–337. doi:10.1007/s12264-010-0323-7

    Article  CAS  PubMed  Google Scholar 

  18. Avolio E, Biasone A, Mele M, Alò R (2014) Distinct anxiogenic/anxiolytic effects exerted by the hamster lateral amygdala nucleus injected with ORX-A or ORX-B in the presence of a GABAergic agonist. Neuroreport 25:932–937. doi:10.1097/WNR.0000000000000213

    Article  CAS  PubMed  Google Scholar 

  19. Alò R, Mele M, Avolio E, Fazzari G, Canonaco M (2015) Distinct amygdala AMPAergic/GABAergic promote anxiolytic-like effects in an unpredictable stress model of the hamster. J Mol Neurosci 55:541–551. doi:10.1007/s12031-014-0386-4

    Article  PubMed  Google Scholar 

  20. Bethell EJ, Koyama NF (2015) Happy hamsters? Enrichment induces positive judgement bias for mildly (but not truly) ambiguous cues to reward and punishment in Mesocricetus auratus. R Soc Open Sci 2:140399. doi:10.1098/rsos.140399, eCollection 2015

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bremner JD (2006) Traumatic stress: effects on the brain. Dial Clin Neurosci 8:445–461

    Google Scholar 

  22. Morin LP, Wood RI (2001) A stereotaxic atlas of the golden hamster brain. Elsevier, New York

    Google Scholar 

  23. Gouirand AM, Matuszewich L (2005) The effects of chronic unpredictable stress on male rats in the water maze. Physiol Behav 86:21–31. doi:10.1016/j.physbeh.2005.06.027

    Article  CAS  PubMed  Google Scholar 

  24. Alò R, Avolio E, Mele M, Storino F, Canonaco A, Carelli A, Canonaco M (2014) Excitatory/inhibitory equilibrium of the central amygdala nucleus gates anti-depressive and anxiolytic states in the hamster. Pharm Biochem Behav 118:79–86. doi:10.1016/j.pbb.2014.01.007

    Article  Google Scholar 

  25. Walf AA, Frye CA (2007) The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc 2:322–328. doi:10.1038/nprot.2007.44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Degroit A, Kashluba S, Treit D (2001) Septal GABAergic and hippocampal cholinergic systems modulate anxiety in the plus-maze and shok-probe tests. Pharmacol. Biochem Behav 69:391–399. doi:10.1016/S0091-3057(01)00541-X

    Article  Google Scholar 

  27. Alò R, Avolio E, Carelli A, Facciolo RM, Canonaco M (2011) Amygdalar glutamatergic neuronal systems play a key role on the hibernating state of hamsters. BMC Neurosci BioMed Central 12:10–21. doi:10.1186/1471-2202-12-10

    Article  Google Scholar 

  28. Cai H, Haubensak W, Anthony TE, Anderson DJ (2014) Central amygdala PKC-δ(+) neurons mediate the influence of multiple anorexigenic signals. Nat Neurosci 17:1240–1248. doi:10.1038/nn.3767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Faria MP, Miguel TT, Gones KS, Nunes-de-Souza RL (2016) Anxiety-like responses induced by nitric oxide within the BNST in mice: role of CRF1 and NMDA receptors. Horm Behav 79:74–83. doi:10.1016/j.yhbeh.2016.01.002

    Article  CAS  PubMed  Google Scholar 

  30. Drew KL, Buck CL, Barnes M, Christian SL, Rasley BT, Harris MB (2007) Central nervous system regulation of mammalian hibernation: implications for metabolic suppression and ischemia tolerance. J Neurochem 102:1713–1726. doi:10.1111/j.1471-4159.2007.04675.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ishida N (2009) Role of PPAR in the control of torpor through FGF21-NPY pathway: from circadian clock to seasonal change in mammals. PPAR Res 2009:412949. doi:10.1155/2009/412949

    Article  PubMed  PubMed Central  Google Scholar 

  32. Motosugi Y, Ando H, Ushijima K, Maekawa T, Ishikawa E, Kumazaki M, Fujimura A (2011) Tissue-dependent alterations of the clock gene expression rhythms in leptin-resistant Zucker diabetic fatty rats. Chronobiol Int 28:968–972. doi:10.3109/07420528.2011.613325

    Article  CAS  PubMed  Google Scholar 

  33. Levin E, Yorm-Tov Y, Hefetz A, Krnofeld-Schor N (2013) Changes in diet, body mass and fatty acid composition during pre-hibernation in a subtropical bat in relation to NPY and AgRP expression. J Comp Physiol B 183:157–166. doi:10.1007/s00360-012-0689-0

    Article  CAS  PubMed  Google Scholar 

  34. Mele M, Avolio E, Alò R, Fazzari G, Mahata SK, Canonaco M (2014) Catestatin and orexin-A neuronal signals alter feeding habits in relation to hibernating states. Neurosci 269:331–342. doi:10.1016/j.neuroscience.2014.03.065

    Article  CAS  Google Scholar 

  35. Schwartz C, Hampton M, Andrews MT (2015) Hypothalamic gene expression underlying pre-hibernation satiety. Genes Brain Behav 14:310–318. doi:10.1111/gbb.12199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hu K, Meijer JH, Shea SA, vander Leest HT, Pittman-Polletta B, Houben T, van Oosterhout F, Deboer T et al (2012) Fractal patterns of neural activity exist within the suprachiasmatic nucleus and require extrinsic network interactions. PLoS One 7:4. doi:10.1371/journal.pone.0048927

    Google Scholar 

  37. Razzoli M, Karsten C, Yoder JM, Bartolomucci A, Engeland WC (2014) Chronic subordination stress phase advances adrenal and anterior pituitary clock gene rhythms. Am J Physiol Integr Comp Physiol 307:R198–205. doi:10.1152/ajpregu.00101.2014

    Article  CAS  Google Scholar 

  38. De Berardis D, Fornaro M, Serroni N, Campanella D, Rapini G, Olivieri L, Srinivasan V, Iasevoli F et al (2015) Agomelatine beyond borders: current evidences of its efficacy in disorders other than major depression. Int J Mol Sci 16:1111–1130. doi:10.3390/ijms16011111

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fonken LK, Nelson RJ (2013) Dim light at night increases depressive-like responses in male C3H/HeNHsd mice. Behav Brain Res 243:74–78. doi:10.1016/j.arr.2013.01.009

    Article  PubMed  Google Scholar 

  40. Tsujino N, Sakurai T (2013) Role of orexin in modulating arousal, feeding, and motivation. Front Behav Neurosci 7:28. doi:10.3389/fnbeh.2013.00028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yau YHC, Potenza MN (2013) Stress and eating behaviors. Minerva Endocrinol 38:255–267

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Harris RB (2015) Chronic and acute effects of stress on energy balance: are there appropriate animal models? Am J Physiol Regul Integr Comp Physiol 308:R250–265. doi:10.1152/ajpregu.00361.2014

    Article  CAS  PubMed  Google Scholar 

  43. Martins PJ, Marques MS, Tufik S, D’Almeida V (2010) Orexin activation precedes increased NPY expression, hyperphagia, and metabolic changes in response to sleep deprivation. Am J Physiol Endocrinol Metab 298:726–734. doi:10.1152/ajpendo.00660.2009

    Article  Google Scholar 

  44. Funato H, Tsai A, Wille JT, Kisanuki Y, Williams SC, Sakurai T, Yanagisawa M (2009) Enhanced orexin receptor-2 signaling prevents diet-induced obesity and improves leptin sensitivity. Cell Metab 9:64–76. doi:10.1016/j.cmet.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Patterson ZR, Abizaid A (2013) Stress induced obesity: lessons from rodent models of stress. Front Neurosci 7:130. doi:10.3389/fnins.2013.00130

    PubMed  PubMed Central  Google Scholar 

  46. Cristino L, Busetto G, Imperatore R, Ferrandino I, Palomba L, Silvestri C, Petrosino S, Orlando P et al (2013) Obesity-driven synaptic remodeling affects endocannabinoid control of orexinergic neurons. Proc Natl Acad Sci 110:2229–2238. doi:10.1073/pnas.1219485110

    Article  Google Scholar 

  47. Besing RC, Hablitz LM, Paul JR, Johnson RL, Prosser RA, Gamble KL (2012) Neuropeptide Y-induced phase shifts of PER2::LUC rhythms are mediated by long-term suppression of neuronal excitability in a phase-specific manner. Chronobiol Int 29:91–102. doi:10.3109/07420528.2011.649382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fadel JR, Jolivalt CG, Reagan LP (2013) Food for thought: the role of appetitive peptides in age-related cognitive decline. Ageing Res Rev 12:764–776. doi:10.1016/j.arr.2013.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Crujeiras AB, Carreira MC, Cabia B, Andrade S, Amil M, Casanueva FF (2015) Leptin resistance in obesity: an epigenetic landscape. Life Sci 140:57–63. doi:10.1016/j.lfs.2015.05.003

    Article  CAS  PubMed  Google Scholar 

  50. Tsujino N, Sakurai T (2009) Orexin/hypocretin: a neuropeptide at the interface of sleep, energy homeostasis, and reward system. Pharmacol Rev 61:162–176. doi:10.1124/pr.109.001321

    Article  CAS  PubMed  Google Scholar 

  51. Golforth PB, Leinninger GM, Patterson CM, Satin LS, Myers MG Jr (2014) Leptin acts via lateral hypothalamic area neurotensin neurons to orexin neurons by multiple GABA-independent mechanisms. J Neurosci 34:11405–11415. doi:10.1523/JNEUROSCI.5167-13.2014

    Article  Google Scholar 

  52. Liu J, Guo M, Lu XY (2015) Leptin/LepRb in the ventral tegmental area mediates anxiety-related behaviors. Int J Neuropsychopharmacol pii: pyv115.doi: 10.1093/ijnp/pyv115

  53. Deats SP, Adidharma W, Lonstein JS, Yan L (2014) Attenuated orexinergic signaling underlies depression-like responses induced by daytime light deficiency. Neurosci 272:252–260. doi:10.1016/j.neuroscience.2014.04.069

    Article  CAS  Google Scholar 

  54. Hsu DT, Kirouac GJ, Zubieta JK, Bhatnagar S (2014) Contributions of the paraventricular thalamic nucleus in the regulation of stress, motivation, and mood. Front Behav Neurosc 8:73. doi:10.3389/fnbeh.2014.00073

    Google Scholar 

  55. Cohen H, Liu T, Kozlovsky N, Kaplan Z, Zohar J, Mathe AA (2012) The neuropeptide Y (NPY)-ergic system is associated with behavioral resilience to stress exposure in an animal model of post-traumatic stress disorder. Neuropsychopharmacol 37:350–363. doi:10.1038/npp.2011.230

    Article  CAS  Google Scholar 

  56. Zhao ZJ, Chen KX, Liu YA, Wang CM, Cao J (2014) Decreased circulating leptin and increased neuropeptide Y gene expression are implicated in food deprivation-induced hyperactivity in striped hamsters, Cricetulus barabensis. Horm Behav 65:355–362. doi:10.1016/j.yhbeh.2014.03.001

    Article  CAS  PubMed  Google Scholar 

  57. Mercer RE, Chee MJS, Colmers WS (2011) The role of NPY in hypothalamic mediated food intake. Front Neuroendocrinol 32:398–415. doi:10.1016/j.yfrne.2011.06.001

    Article  CAS  PubMed  Google Scholar 

  58. Ragu VD, Rajan KE (2015) Environmental enrichment reduces anxiety by differentially activating serotonergic and neuropeptide Y (NPY)-ergic system in Indian field mouse (Mus booduga): an animal model of post-traumatic stress disorder. PloSOne 10:e0127945. doi:10.1371/journal.pone.0127945

    Article  Google Scholar 

  59. Bali A, Singh N, Jaggi AS (2014) Neuropeptides as therapeutic targets to combat stress-associated behavioral and neuroendocrinological effects. CNS Neurol Disord Drug Targets 13:347–368. doi:10.2174/1871527313666140314163920

    Article  CAS  PubMed  Google Scholar 

  60. O’Loughlin EK, Pakan JM, McDermott KW, Yilmazer-Hanke D (2014) Expression of neuropeptide Y1 receptors in the amygdala and hippocampus and anxiety-like behavior associated with Ammon’s horn sclerosis following intrahippocampal kainate injection in C57BL/6J mice. Epilepsy Behav 37:175–183. doi:10.1016/j.yebeh.2014.06.033

    Article  PubMed  Google Scholar 

  61. Bacchi F, Mathé AA, Jiménez P, Stasi L, Arban R, Gerrard P, Caberllotto L (2006) Anxiolytic-like effect of the selective neuropeptide Y Y2 receptor antagonist BIIE0246 in the elevated plus-maze. Peptides 27:3202–3207. doi:10.1016/j.peptides.2006.07.020

    Article  CAS  PubMed  Google Scholar 

  62. Stadlbauer U, Langhans W, Meyer U (2013) Administration of the Y2 receptor agonist PYY3-36 in mice induces multiple behavioral changes relevant to schizophrenia. Neuropharmacol 38:2446–2455. doi:10.1038/npp.2013.146

    CAS  Google Scholar 

  63. Xu L, Janssen D, derKnaap N, Roubos E, Leshan R, MyersJr MG (2014) Integration of stress and leptin signaling by CART producing neuron in the rodent midbrain centrally projecting Edinger-Westphal nucleus. Front Neuroanat 3:8. doi:10.3389/fnana.2014.00008

    Google Scholar 

  64. Tsuneki H, Wada T, Sasaoka T (2012) Role of orexin in the central regulation of glucose and energy homeostasis. Endocr J 59:365–374

    Article  CAS  PubMed  Google Scholar 

  65. Lu XY (2007) The leptin hypothesis of depression: a potential link between mood disorders and obesity? Curr Opin Pharmacol 7:648–652. doi:10.1016/j.coph.2007.10.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Escribano BM, Moreno A, Tasser I, Túnez I (2014) Impact of light/dark cycle pattern on oxidative stress in an adriamycin-induced nephropathy model in rats. Plos One 9:e97713. doi:10.1371/journal.pone.0097713

    Article  PubMed  PubMed Central  Google Scholar 

  67. Guo M, Lu X-Y (2014) Leptin receptor deficiency confers resistance behavioral effects of fluoxetine and desipramine via separable substrates. Trasl Psychiatry 4:e486. doi:10.1038/tp.2014.126

    CAS  Google Scholar 

  68. Saderi N, Cazarez-Márquez F, Buijs FN, Salgado-Delgado RC, Guzman-Ruiz MA, del Carmen BM, Escobar C, Ruijs RM (2013) The NPY intergeniculate leaflet projections to the suprachiasmatic nucleus transmit metabolic conditions. Neurosci 246:291–300. doi:10.1016/j.neuroscience.2013.05.004

    Article  CAS  Google Scholar 

  69. Roseboom PH, Nanda A, Fox AS, Oler JA, Shackman AJ, Shelton SE, Davidson RJ, Kalin NH (2013) Neuropeptide Y receptor gene expression in the primate amygdala predict anxious temperament and brain metabolism. Biol Psychiatry 76:850–857. doi:10.1016/j.biopsych.2013.11.012

    Article  PubMed  PubMed Central  Google Scholar 

  70. Enman NM, Sabban EL, McGonigle P, Van Bockstaele EJ (2015) Targeting the neuropeptide Y system in stress-related psychiatric disorders. Neurobiol Stress 1:33–43. doi:10.1016/j.ynstr.2014.09.007

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by Italian University Research Ministry (MIUR).

Author Contributions

RA and MC conceived and designed the experiments. RA, EA, MM, and FG performed the experiments. RA, MC, RMF, and AC analyzed the data. RA and MC wrote the paper. RA supervised the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaella Alò.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Animals

Animal maintenance and experimental procedures were carried out in compliance with the ethical provisions for Care and Use of Laboratory Animals reported in the legislative law no. 116 (27-01-1992) and authorized by the National Committee of the Italian Ministry of Health. The protocol was approved by the Scientific Committee of Biology, Ecology and Earth Science Department (DiBEST), University of Calabria, Italy (2015). All efforts were made to minimize animal suffering and to reduce the number of animals used.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alò, R., Avolio, E., Mele, M. et al. Role of Leptin and Orexin-A Within the Suprachiasmatic Nucleus on Anxiety-Like Behaviors in Hamsters. Mol Neurobiol 54, 2674–2684 (2017). https://doi.org/10.1007/s12035-016-9847-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9847-9

Keywords

Navigation