Skip to main content

Advertisement

Log in

Exendin-4 Reverses Biochemical and Functional Alterations in the Blood–Brain and Blood–CSF Barriers in Diabetic Rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Diabetes mellitus (DM) is a metabolic disorder associated with micro- and macrovascular alterations that contribute to the cognitive impairment observed in diabetic patients. Signs of breakdown of the blood–brain barrier (BBB) and the blood–cerebrospinal fluid barrier (BCSFB) have been found in patients and animal models of DM. Breakdown of the BBB and BCSFB can lead to disruptions in cerebral homeostasis and eventually neural dysfunction and degeneration. However, our understanding of the biochemistry underlying barrier protein modifications is incomplete. Herein, we evaluated changes in the levels of specific proteins in the BBB (occludin, claudin-5, ZO-1, and aquaporin-4) and BCSFB (claudin-2 and aquaporin-1) in the hippocampus of diabetic rats, and we also investigated the functional alterations in these barriers. In addition, we evaluated the ability of exendin-4 (EX-4), a glucagon-like peptide-1 agonist that can cross the BBB to reverse the functional and biochemical modifications observed in these animals. We observed a decrease in BBB proteins (except ZO-1) in diabetic rats, whereas the EX-4 treatment recovered the occludin and aquaporin-4 levels. Similarly, we observed a decrease in BCSFB proteins in diabetic rats, whereas EX-4 reversed such changes. EX-4 also reversed alterations in the permeability of the BBB and BCSFB in diabetic rats. Additionally, altered cognitive parameters in diabetic rats were improved by EX-4. These data further our understanding of the alterations in the central nervous system caused by DM, particularly changes in the proteins and permeability of the brain barriers, as well as cognitive dysfunction. Furthermore, these data suggest a role for EX-4 in therapeutic strategies for cognitive dysfunction in DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bornstein NM, Brainin M, Guekht A, Skoog I, Korczyn AD (2014) Diabetes and the brain: issues and unmet needs. Neurological Sci: Off J Italian Neurological Society Italian Society Clin Neurophysiology 35(7):995–1001. doi:10.1007/s10072-014-1797-2

    Article  Google Scholar 

  2. Hink U, Li H, Mollnau H, Oelze M, Matheis E, Hartmann M, Skatchkov M, Thaiss F et al (2001) Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res 88(2):E14–22

    Article  CAS  PubMed  Google Scholar 

  3. Huber JD, VanGilder RL, Houser KA (2006) Streptozotocin-induced diabetes progressively increases blood–brain barrier permeability in specific brain regions in rats. Am J Physiology Heart Circ Physiology 291(6):H2660–2668. doi:10.1152/ajpheart.00489.2006

    Article  CAS  Google Scholar 

  4. Biessels GJ, Reijmer YD (2014) Brain changes underlying cognitive dysfunction in diabetes: what can we learn from MRI? Diabetes 63(7):2244–2252. doi:10.2337/db14-0348

    Article  PubMed  Google Scholar 

  5. van Duinkerken E, Schoonheim MM, Sanz-Arigita EJ RGIJ, Moll AC, Snoek FJ, Ryan CM, Klein M, Diamant M et al (2012) Resting-state brain networks in type 1 diabetic patients with and without microangiopathy and their relation to cognitive functions and disease variables. Diabetes 61(7):1814–1821. doi:10.2337/db11-1358

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ramos-Rodriguez JJ, Infante-Garcia C, Galindo-Gonzalez L, Garcia-Molina Y, Lechuga-Sancho A, Garcia-Alloza M (2015) Increased spontaneous central bleeding and cognition impairment in APP/PS1 mice with poorly controlled diabetes mellitus. Mol Neurobiol. doi:10.1007/s12035-015-9311-2

    PubMed  PubMed Central  Google Scholar 

  7. Prasad S, Sajja RK, Naik P, Cucullo L (2014) Diabetes mellitus and blood–brain barrier dysfunction: an overview. J Pharmacovigilance 2(2):125. doi:10.4172/2329-6887.1000125

    PubMed  Google Scholar 

  8. Mogi M, Horiuchi M (2011) Neurovascular coupling in cognitive impairment associated with diabetes mellitus. Circ J 75(5):1042–1048

    Article  CAS  PubMed  Google Scholar 

  9. Engelhardt B, Sorokin L (2009) The blood–brain and the blood-cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol 31(4):497–511. doi:10.1007/s00281-009-0177-0

    Article  PubMed  Google Scholar 

  10. Coisne C, Engelhardt B (2011) Tight junctions in brain barriers during central nervous system inflammation. Antioxidants Redox Signaling 15(5):1285–1303. doi:10.1089/ars.2011.3929

    Article  CAS  PubMed  Google Scholar 

  11. Krueger M, Bechmann I, Immig K, Reichenbach A, Hartig W, Michalski D (2015) Blood–brain barrier breakdown involves four distinct stages of vascular damage in various models of experimental focal cerebral ischemia. J Cerebral Blood Flow Metabolism: Off J Int Soc Cerebral Blood Flow Metabolism 35(2):292–303. doi:10.1038/jcbfm.2014.199

    Article  CAS  Google Scholar 

  12. Marchi N, Granata T, Ghosh C, Janigro D (2012) Blood–brain barrier dysfunction and epilepsy: pathophysiologic role and therapeutic approaches. Epilepsia 53(11):1877–1886. doi:10.1111/j.1528-1167.2012.03637.x

    Article  PubMed  PubMed Central  Google Scholar 

  13. Daneman R (2012) The blood–brain barrier in health and disease. Ann Neurol 72(5):648–672. doi:10.1002/ana.23648

    Article  CAS  PubMed  Google Scholar 

  14. Benga O, Huber VJ (2012) Brain water channel proteins in health and disease. Mol Asp Med 33(5–6):562–578. doi:10.1016/j.mam.2012.03.008

    Article  CAS  Google Scholar 

  15. Badaut J, Fukuda AM, Jullienne A, Petry KG (2014) Aquaporin and brain diseases. Biochim Biophys Acta 1840(5):1554–1565. doi:10.1016/j.bbagen.2013.10.032

    Article  CAS  PubMed  Google Scholar 

  16. Drucker DJ, Nauck MA (2006) The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368(9548):1696–1705. doi:10.1016/S0140-6736(06)69705-5

    Article  CAS  PubMed  Google Scholar 

  17. Unger J (2013) Rationale use of GLP-1 receptor agonists in patients with type 1 diabetes. Current Diabetes Reports 13(5):663–668. doi:10.1007/s11892-013-0404-x

    Article  CAS  PubMed  Google Scholar 

  18. Li Y, Cao X, Li LX, Brubaker PL, Edlund H, Drucker DJ (2005) beta-Cell Pdx1 expression is essential for the glucoregulatory, proliferative, and cytoprotective actions of glucagon-like peptide-1. Diabetes 54(2):482–491

    Article  CAS  PubMed  Google Scholar 

  19. Pettus J, Hirsch I, Edelman S (2013) GLP-1 agonists in type 1 diabetes. Clin Immunol 149(3):317–323. doi:10.1016/j.clim.2013.04.006

    Article  CAS  PubMed  Google Scholar 

  20. Holscher C (2014) Central effects of GLP-1: new opportunities for treatments of neurodegenerative diseases. J Endocrinology 221(1):T31–41. doi:10.1530/JOE-13-0221

    Article  CAS  Google Scholar 

  21. Huang HJ, Chen YH, Liang KC, Jheng YS, Jhao JJ, Su MT, Lee-Chen GJ, Hsieh-Li HM (2012) Exendin-4 protected against cognitive dysfunction in hyperglycemic mice receiving an intrahippocampal lipopolysaccharide injection. PLoS One 7(7), e39656. doi:10.1371/journal.pone.0039656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11(1):47–60

    Article  CAS  PubMed  Google Scholar 

  23. Kozler P, Pokorny J (2003) Evans blue distribution in the rate brain after intracarotid injection with the blood–brain barrier intact and open to osmosis. Sb Lek 104(3):255–262

    CAS  PubMed  Google Scholar 

  24. Liu X, Wang Z, Wang P, Yu B, Liu Y, Xue Y (2013) Green tea polyphenols alleviate early BBB damage during experimental focal cerebral ischemia through regulating tight junctions and PKCalpha signaling. BMC Complementary Alternative Med 13:187. doi:10.1186/1472-6882-13-187

    Article  CAS  Google Scholar 

  25. Netto CB, Conte S, Leite MC, Pires C, Martins TL, Vidal P, Benfato MS, Giugliani R et al (2006) Serum S100B protein is increased in fasting rats. Arch Med Res 37(5):683–686. doi:10.1016/j.arcmed.2005.11.005

    Article  CAS  PubMed  Google Scholar 

  26. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biological Chem 193(1):265–275

    CAS  Google Scholar 

  27. Durgawale P, Kanase S, Shukla PS, Sontakke S (2005) A sensitive and economical modified method for estimation of cerebrospinal fluid proteins. Indian J Clin Biochem: IJCB 20(2):174–177. doi:10.1007/BF02867422

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zanotto C, Abib RT, Batassini C, Tortorelli LS, Biasibetti R, Rodrigues L, Nardin P, Hansen F et al (2013) Non-specific inhibitors of aquaporin-4 stimulate S100B secretion in acute hippocampal slices of rats. Brain Res 1491:14–22. doi:10.1016/j.brainres.2012.10.065

    Article  CAS  PubMed  Google Scholar 

  29. Ahmad W (2013) Overlapped metabolic and therapeutic links between Alzheimer and diabetes. Mol Neurobiol 47(1):399–424. doi:10.1007/s12035-012-8352-z

    Article  CAS  PubMed  Google Scholar 

  30. Taguchi A (2009) Vascular factors in diabetes and Alzheimer’s disease. J Alzheimer’s Disease: JAD 16(4):859–864. doi:10.3233/JAD-2009-0975

    Article  PubMed  Google Scholar 

  31. Jolivalt CG, Lee CA, Beiswenger KK, Smith JL, Orlov M, Torrance MA, Masliah E (2008) Defective insulin signaling pathway and increased glycogen synthase kinase-3 activity in the brain of diabetic mice: parallels with Alzheimer’s disease and correction by insulin. J Neurosci Res 86(15):3265–3274. doi:10.1002/jnr.21787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Takeda S, Sato N, Uchio-Yamada K, Sawada K, Kunieda T, Takeuchi D, Kurinami H, Shinohara M et al (2010) Diabetes-accelerated memory dysfunction via cerebrovascular inflammation and Abeta deposition in an Alzheimer mouse model with diabetes. Proc Natl Acad Sci U S A 107(15):7036–7041. doi:10.1073/pnas.1000645107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Biessels GJ, van der Heide LP, Kamal A, Bleys RL, Gispen WH (2002) Ageing and diabetes: implications for brain function. Eur J Pharmacol 441(1–2):1–14

    Article  CAS  PubMed  Google Scholar 

  34. de Senna PN, Ilha J, Baptista PP, do Nascimento PS, Leite MC, Paim MF, Goncalves CA, Achaval M et al (2011) Effects of physical exercise on spatial memory and astroglial alterations in the hippocampus of diabetic rats. Metab Brain Dis 26(4):269–279. doi:10.1007/s11011-011-9262-x

    Article  CAS  PubMed  Google Scholar 

  35. Serlin Y, Levy J, Shalev H (2011) Vascular pathology and blood–brain barrier disruption in cognitive and psychiatric complications of type 2 diabetes mellitus. Cardiovascular Psych Neurol 2011:609202. doi:10.1155/2011/609202

    Google Scholar 

  36. Aggarwal A, Khera A, Singh I, Sandhir R (2014) S-nitrosoglutathione prevents blood–brain barrier disruption associated with increased matrix metalloproteinase-9 activity in experimental diabetes. J Neurochem. doi:10.1111/jnc.12939

    PubMed  Google Scholar 

  37. VanGilder RL, Kelly KA, Chua MD, Ptachcinski RL, Huber JD (2009) Administration of sesamol improved blood–brain barrier function in streptozotocin-induced diabetic rats. Exp Brain Res 197(1):23–34. doi:10.1007/s00221-009-1866-6

    Article  CAS  PubMed  Google Scholar 

  38. Hawkins BT, Lundeen TF, Norwood KM, Brooks HL, Egleton RD (2007) Increased blood–brain barrier permeability and altered tight junctions in experimental diabetes in the rat: contribution of hyperglycaemia and matrix metalloproteinases. Diabetologia 50(1):202–211. doi:10.1007/s00125-006-0485-z

    Article  CAS  PubMed  Google Scholar 

  39. Bradbury MW, Lightman SL, Yuen L, Pinter GG (1991) Permeability of blood–brain and blood-nerve barriers in experimental diabetes mellitus in the anaesthetized rat. Exp Physiol 76(6):887–898

    Article  CAS  PubMed  Google Scholar 

  40. Dai J, Vrensen GF, Schlingemann RO (2002) Blood–brain barrier integrity is unaltered in human brain cortex with diabetes mellitus. Brain Res 954(2):311–316

    Article  CAS  PubMed  Google Scholar 

  41. Mooradian AD, Haas MJ, Batejko O, Hovsepyan M, Feman SS (2005) Statins ameliorate endothelial barrier permeability changes in the cerebral tissue of streptozotocin-induced diabetic rats. Diabetes 54(10):2977–2982

    Article  CAS  PubMed  Google Scholar 

  42. Chehade JM, Haas MJ, Mooradian AD (2002) Diabetes-related changes in rat cerebral occludin and zonula occludens-1 (ZO-1) expression. Neurochem Res 27(3):249–252

    Article  CAS  PubMed  Google Scholar 

  43. Shao B, Bayraktutan U (2013) Hyperglycaemia promotes cerebral barrier dysfunction through activation of protein kinase C-beta. Diabetes, Obesity Metabolism 15(11):993–999. doi:10.1111/dom.12120

    Article  CAS  PubMed  Google Scholar 

  44. Sun YN, Liu LB, Xue YX, Wang P (2015) Effects of insulin combined with idebenone on blood–brain barrier permeability in diabetic rats. J Neurosci Res 93(4):666–677. doi:10.1002/jnr.23511

    Article  CAS  PubMed  Google Scholar 

  45. Shimizu F, Sano Y, Tominaga O, Maeda T, Abe MA, Kanda T (2013) Advanced glycation end-products disrupt the blood–brain barrier by stimulating the release of transforming growth factor-beta by pericytes and vascular endothelial growth factor and matrix metalloproteinase-2 by endothelial cells in vitro. Neurobiol Aging 34(7):1902–1912. doi:10.1016/j.neurobiolaging.2013.01.012

    Article  CAS  PubMed  Google Scholar 

  46. Arlt S, Kontush A, Zerr I, Buhmann C, Jacobi C, Schroter A, Poser S, Beisiegel U (2002) Increased lipid peroxidation in cerebrospinal fluid and plasma from patients with Creutzfeldt-Jakob disease. Neurobiol Dis 10(2):150–156

    Article  CAS  PubMed  Google Scholar 

  47. Egleton RD, Campos CC, Huber JD, Brown RC, Davis TP (2003) Differential effects of diabetes on rat choroid plexus ion transporter expression. Diabetes 52(6):1496–1501

    Article  CAS  PubMed  Google Scholar 

  48. de Senna PN, Xavier LL, Bagatini PB, Saur L, Galland F, Zanotto C, Bernardi C, Nardin P et al (2015) Physical training improves non-spatial memory, locomotor skills and the blood brain barrier in diabetic rats. Brain Res 1618:75–82. doi:10.1016/j.brainres.2015.05.026

    Article  PubMed  Google Scholar 

  49. Koves IH, Russo VC, Higgins S, Mishra A, Pitt J, Cameron FJ, Werther GA (2012) An in vitro paradigm for diabetic cerebral oedema and its therapy: a critical role for taurine and water channels. Neurochem Res 37(1):182–192. doi:10.1007/s11064-011-0598-8

    Article  CAS  PubMed  Google Scholar 

  50. Deng J, Zhao F, Yu X, Zhao Y, Li D, Shi H, Sun Y (2014) Expression of aquaporin 4 and breakdown of the blood–brain barrier after hypoglycemia-induced brain edema in rats. PLoS One 9(9), e107022. doi:10.1371/journal.pone.0107022

    Article  PubMed  PubMed Central  Google Scholar 

  51. Nejsum LN, Kwon TH, Marples D, Flyvbjerg A, Knepper MA, Frokiaer J, Nielsen S (2001) Compensatory increase in AQP2, p-AQP2, and AQP3 expression in rats with diabetes mellitus. Am J Physiology Renal Physiology 280(4):F715–726

    CAS  PubMed  Google Scholar 

  52. Nesic O, Lee J, Unabia GC, Johnson K, Ye Z, Vergara L, Hulsebosch CE, Perez-Polo JR (2008) Aquaporin 1—a novel player in spinal cord injury. J Neurochem 105(3):628–640. doi:10.1111/j.1471-4159.2007.05177.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE et al (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med 4(147), 147ra111. doi:10.1126/scitranslmed.3003748

    Article  PubMed  PubMed Central  Google Scholar 

  54. Nagelhus EA, Ottersen OP (2013) Physiological roles of aquaporin-4 in brain. Physiol Rev 93(4):1543–1562. doi:10.1152/physrev.00011.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ninomiya T (2014) Diabetes mellitus and dementia. Current Diabetes Reports 14(5):487. doi:10.1007/s11892-014-0487-z

    Article  PubMed  Google Scholar 

  56. Kaya M, Kalayci R, Kucuk M, Arican N, Elmas I, Kudat H, Korkut F (2003) Effect of losartan on the blood–brain barrier permeability in diabetic hypertensive rats. Life Sci 73(25):3235–3244

    Article  CAS  PubMed  Google Scholar 

  57. Jing YH, Chen KH, Kuo PC, Pao CC, Chen JK (2013) Neurodegeneration in streptozotocin-induced diabetic rats is attenuated by treatment with resveratrol. Neuroendocrinology 98(2):116–127. doi:10.1159/000350435

    Article  CAS  PubMed  Google Scholar 

  58. Yamagishi S, Nakamura K, Inoue H, Kikuchi S, Takeuchi M (2005) Serum or cerebrospinal fluid levels of glyceraldehyde-derived advanced glycation end products (AGEs) may be a promising biomarker for early detection of Alzheimer’s disease. Med Hypotheses 64(6):1205–1207. doi:10.1016/j.mehy.2005.01.016

    Article  CAS  PubMed  Google Scholar 

  59. Gunzel D, Yu AS (2013) Claudins and the modulation of tight junction permeability. Physiol Rev 93(2):525–569. doi:10.1152/physrev.00019.2012

    Article  PubMed  PubMed Central  Google Scholar 

  60. Harhaj NS, Antonetti DA (2004) Regulation of tight junctions and loss of barrier function in pathophysiology. Int J Biochem Cell Biol 36(7):1206–1237. doi:10.1016/j.biocel.2003.08.007

    Article  CAS  PubMed  Google Scholar 

  61. Seufert J, Gallwitz B (2014) The extra-pancreatic effects of GLP-1 receptor agonists: a focus on the cardiovascular, gastrointestinal and central nervous systems. Diabetes, Obesity Metabolism 16(8):673–688. doi:10.1111/dom.12251

    Article  CAS  PubMed  Google Scholar 

  62. Li Y, Tweedie D, Mattson MP, Holloway HW, Greig NH (2010) Enhancing the GLP-1 receptor signaling pathway leads to proliferation and neuroprotection in human neuroblastoma cells. J Neurochem 113(6):1621–1631. doi:10.1111/j.1471-4159.2010.06731.x

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Muriach M, Flores-Bellver M, Romero FJ, Barcia JM (2014) Diabetes and the brain: oxidative stress, inflammation, and autophagy. Oxidative Med Cell Longev 2014:102158. doi:10.1155/2014/102158

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Council for Scientific and Technological Development (CNPq, Brazil), Ministry of Education (MEC/CAPES, Brazi), State Foundation for Scientific Research of Rio Grande do Sul (FAPERGS), and National Institute of Science and Technology for Excitotoxicity and Neuroprotection (MCT/INCTEN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrícia Nardin.

Ethics declarations

All animal experiments were carried out in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals (NIH Publications no. 80–23), and all procedures were previously approved by the local Animal Care Ethical Committee (CEUA-UFRGS; project number 24076). All efforts were made to minimize animal suffering and reduce the number of animals used.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanotto, C., Simão, F., Gasparin, M.S. et al. Exendin-4 Reverses Biochemical and Functional Alterations in the Blood–Brain and Blood–CSF Barriers in Diabetic Rats. Mol Neurobiol 54, 2154–2166 (2017). https://doi.org/10.1007/s12035-016-9798-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9798-1

Keywords

Navigation