Barage SH, Sonawane KD (2015) Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer’s disease. Neuropeptides 52:1–18
CAS
Article
PubMed
Google Scholar
Li X, Zhao X, Xu X, Mao X, Liu Z, Li H, Guo L, Bi K, Jia Y (2014) Schisantherin A recovers Aβ-induced neurodegeneration with cognitive decline in mice. Physiol Behav 132:10–6
CAS
Article
PubMed
Google Scholar
Yang H, Wang S, Yu L, Zhu X, Xu Y (2015) Esculentoside A suppresses Aβ(1–42)-induced neurinflammation by down-regulating MAPKs pathways in vivo. Neurol Res 37:859–66
CAS
Article
PubMed
Google Scholar
Lazzari C, Kipanyula MJ, Agostini M, Pozzan T, Fasolato C (2015) Aβ42 oligomers selectively disrupt neuronal calcium release. Neurobiol Aging 36:877–85
CAS
Article
PubMed
Google Scholar
Pozueta J, Lefort R, Shelanski ML (2013) Synaptic changes in Alzheimer’s disease and its models. Neuroscience 251:51–65
CAS
Article
PubMed
Google Scholar
Hu X, Li X, Zhao M, Gottesdiener A, Luo W, Paul S (2014) Tau pathogenesis is promoted by Aβ1-42 but not Aβ1-40. Mol Neurodegener 9:52
Article
PubMed
PubMed Central
Google Scholar
Ulrich D (2015) Amyloid-beta impairs synaptic inhibition via GABA (A) receptor endocytosis. J Neurosci 35:9205–10
CAS
Article
PubMed
Google Scholar
Varga E, Juhasz G, Bozso Z, Penke B, Fulop L, Szeqedi V (2015) Amyloid-β1-42 disrupts synaptic plasticity by altering glutamate recycling at the synapse. J Alzheimers Dis 45:449–56
CAS
PubMed
Google Scholar
Badshah H, Kim TH, Kim MO (2015) Protective effects of anthocyanins against amyloid beta-induced neurotoxicity in vivo and in vitro. Neurochem Int 80:51–9
CAS
Article
PubMed
Google Scholar
Viola KL, Klein WL (2015) Amyloid β oligomers in Alzheimer's disease pathogenesis, treatment, and diagnosis. Acta Neuropathol 129:183–206
CAS
Article
PubMed
PubMed Central
Google Scholar
Chen JH, Ke KF, Lu JH, Qiu YH, Peng YP (2015) Protection of TGF-β1 against neuroinflammation and neurodegeneration in Aβ1-42-induced Alzheimer’s disease model rats. PLoS One 10:e0116549
Article
PubMed
PubMed Central
Google Scholar
Rojo LE, Fernandez JA, Maccioni AA, Jimenez JM, Maccioni RB (2008) Neuroinflammation: implications for the pathogenesis and molecular diagnosis of Alzheimer’s disease. Arch Med Res 39:1–16
CAS
Article
PubMed
Google Scholar
Shi X, Zheng Z, Li J, Xiao Z, Qi W, Zhang A, Wu Q, Fang Y (2015) Curcumin inhibits Aβ-induced microglial inflammatory responses in vitro: Involvement of ERK1/2 and p38 signaling pathways. Neurosci Lett 594:105–10
CAS
Article
PubMed
Google Scholar
Huang Y, Mucke L (2012) Alzheimer mechanisms and therapeutic strategies. Cell 148:1204–22
CAS
Article
PubMed
PubMed Central
Google Scholar
Khan N, Syed DN, Ahmad N, Mukhtar H (2013) Fisetin: a dietary antioxidant for health promotion. Antioxid Redox Signal 19:151–62
CAS
Article
PubMed
PubMed Central
Google Scholar
Currais A, Prior M, Dargusch R, Armando A, Ehren J, Schubert D, Quehenberger O, Maher P (2014) Modulation of p25 and inflammatory pathways by fisetin maintains cognitive function in Alzheimer’s disease transgenic mice. Aging Cell 13:379–90
CAS
Article
PubMed
Google Scholar
Maher P (2015) How fisetin reduces the impact of age and disease on CNS function. Front Biosci (Schol Ed) 7:58–82
Article
Google Scholar
Echeverry C, Arredondo F, Martinez M, Abin-Carriquiry JA, Midiwo J, Dajas F (2015) Antioxidant activity, cellular bioavailability, and iron and calcium management of neuroprotective and nonneuroprotective flavones. Neurotox Res 27:31–42
CAS
Article
PubMed
Google Scholar
Akaishi T, Morimoto T, Shibao M, Watanabe S, Sakai-Kato K, Utsunomiva-Tate N, Abe K (2008) Structural requirements for the flavonoid fisetin in inhibiting fibril formation of amyloid beta protein. Neurosci Lett 444:280–5
CAS
Article
PubMed
Google Scholar
Prakash D, Gopinath K, Sudhandiran G (2013) Fisetin enhances behavioral performances and attenuates reactive gliosis and inflammation during aluminum chloride-induced neurotoxicity. Neuromolecular Med 15:192–208
CAS
Article
PubMed
Google Scholar
Prakash D, Sudhandiran G (2015) Dietary flavonoid fisetin regulates aluminium chloride induced neuronal apoptosis in cortex and hippocampus of mice brain. J Nutr Biochem 26:1527–39
CAS
Article
PubMed
Google Scholar
Maher P, Dargusch R, Bodai L, Gerard PE, Purcell JM, Marsh JL (2011) ERK activation by the polyphenols fisetin and resveratrol provides neuroprotection in multiple models of Huntington's disease. Hum Mol Genet 20:261–70
CAS
Article
PubMed
Google Scholar
Maher P (2009) Modulation of multiple pathways involved in the maintenance of neuronal function during aging by fisetin. Genes Nutr 4:297–307
CAS
Article
PubMed
PubMed Central
Google Scholar
Maher P, Dargusch R, Ehren JL, Okada S, Sharma K, Schubert D (2011) Fisetin lowers methylglyoxal dependent protein glycation and limits the complications of diabetes. PLoS One 6:e21226
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhou CH, Wang CX, Xie GB, Wu LY, Wei YX, Wang Q, Zhang HS, Hang CH, Zhou ML, Shi JX (2015) Fisetin alleviates early brain injury following experimental subarachnoid hemorrhage in rats possibly by suppressing TLR4/NF-kB signaling pathway. Brain Res 1629:250–9
CAS
Article
PubMed
Google Scholar
Bretteville A, Marcouiller F, Julien C, EI Khoury NB, Petry FR, Poitras I, Mouginot D, Levesque G, Hebert SS, Planel E (2012) Hypothermia-induced hyperphosphorylation: a new model to study tau kinase inhibitors. Sci Rep 2:480
Article
PubMed
PubMed Central
Google Scholar
Ali T, Badshah H, Kim T, Kim MO (2015) Melatonin attenuates D-galactose-induced memory impairment, neuroinflammation and neurodegeneration via RAGE/NF-KB/JNK signaling pathway in aging mouse model. J Pineal Res 58:71–85
CAS
Article
PubMed
Google Scholar
Rehman SU, Shah SA, Ali T, Chung JI, Kim MO (2016) Anthocyanins reversed D-galactose-induced oxidative stress and neuroinflammation mediated cognitive impairment in adult rats. Mol Neurobiol 26738855:1–17
Google Scholar
Ali T, Kim MO (2015) Melatonin ameliorates amyloid beta-induced memory deficits, tau hyperphosphorylation and neurodegeneration via PI3/Akt/GSK3β pathway in the mouse hippocampus. J Pineal Res 59:47–59
CAS
Article
PubMed
Google Scholar
Badshah H, Ali T, Rehman SU, Amin FU, Ullah F, Kim TH, Kim MO (2015) Protective effect of lupeol against lipopolysaccharide-induced neuroinflammation via the p38/c-jun N-terminal kinase pathway in the adult mouse brain. J Neuroimmune Pharamacol 11:48–60
Article
Google Scholar
Shah SA, Yoon GH, Kim MO (2015) Protection of the developing brain with anthocyanins against ethanol-induced oxidative stress and neurodegeneration. Mol Neurobiol 51:1278–91
CAS
Article
PubMed
Google Scholar
Ferreira IL, Bajouco LM, Mota SI, Auberson YP, Oliveira CR, Rego AC (2012) Amyloid beta peptide 1–42 disturbs intracellular calcium homeostasis through activation of GluN2B-containing N-methyl-d-aspartate receptors in cortical cultures. Cell Calcium 51:95–106
CAS
Article
PubMed
Google Scholar
Minano-Molina AJ, Espana J, Martin E, Barneda-Zahonero B, Fado R, Sole M, Trullas R, Saura CA, Rodriguez-Alvarez J (2011) Soluble oligomers of amyloid-β peptide disrupt membrane trafficking of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor contributing to early synapse dysfunction. J Biol Chem 286:27311–21
CAS
Article
PubMed
PubMed Central
Google Scholar
Mercado-Gomez O, Hernandez-Fonseca K, Villavicencio-Queijeiro A, Massieu L, Chimal-Monroy J, Arias C (2008) Inhibition of Wnt and PI3K signaling modulates GSK-3beta activity and induces morphological changes in cortical neurons: role of tau phosphorylation. Neurochem Res 33:1599–609
CAS
Article
PubMed
Google Scholar
Ali T, Yoon GH, Shah SA, Lee HY, Kim MO (2015) Osmotin attenuates amyloid beta-induced memory impairment, tau phosphorylation and neurodegeneration in the mouse hippocampus. Sci Rep 5:11708
CAS
Article
PubMed
PubMed Central
Google Scholar
Wyss-Coray T, Mucke L (2002) Inflammation in neurodegenerative disease—a double-edged sword. Neuron 35:419–32
CAS
Article
PubMed
Google Scholar
Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy S, Griffin WS, Hampel H, Hull M, Landreth G, Lue L, Mrak R, Mackenzie IR, McGeer PL, O’Banion MK, Pachter J, Pasinetti G, Plata-Salaman C, Rogers J, Rydel R, Shen Y, Streit W, Strohmeyer R, Tooyoma I, Van Muiswinkel FL, Veerhuis R, Walker D, Webster S, Wegrzyniak B, Wenk G, Wyss-Coray T (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21:383–421
CAS
Article
PubMed
PubMed Central
Google Scholar
Akhtar R, Sanphui P, Biswas SC (2014) The essential role of p53-up-regulated modulator of apoptosis (Puma) and its regulation by FoxO3a transcription factor in β-amyloid-induced neuron death. J Biol Chem 289:10812–22
Article
Google Scholar
Strosznajder JB, Jesko H, Strosznajder RP (2000) Effect of amyloid beta peptide on poly (ADP-ribose) polymerase activity in adult and aged rat hippocampus. Acta Biochim Pol 47:847–54
CAS
PubMed
Google Scholar
Tokutake T, Kasuga K, Yajima R, Sekine Y, Tezuka T, Nishizawa M, Nishizawa M, Ikeuchi T (2012) Hyperphosphorylation of Tau induced by naturally secreted amyloid-β at nanomolar concentrations is modulated by insulin-dependent Akt-GSK3β signaling pathway. J Biol Chem 287:35222–33
CAS
Article
PubMed
PubMed Central
Google Scholar
Woodruff-Pak DS (2008) Animal models of Alzheimer's disease: therapeutic implications. J Alzheimers Dis 15:507–21
CAS
Article
PubMed
Google Scholar
Brouillette J, Caillierez R, Zommer N, Alves-Pires C, Benilova I, Blum D, De Strooper B, Buee L (2012) Neurotoxicity and memory deficits induced by soluble low-molecular-weight amyloid-β1-42 oligomers are revealed in vivo by using a novel animal model. J Neurosci 32:7852–61
CAS
Article
PubMed
Google Scholar
Malm T, Ort M, Tahtivaara L, Jukarainen N, Goldsteins G, Puolivali J, Nurmi A, Pussinen R, Ahtoniemi T, Miettinen TK, Kanninen K, Leskinen S, Vartiainen N, Yrjanheikki J, Laatikainen R, Harris-White ME, Koistinaho M, Frautschy SA, Bures J, Koistinaho J (2006) beta-Amyloid infusion results in delayed and age-dependent learning deficits without role of inflammation or beta-amyloid deposits. Proc Natl Acad Sci U S A 103:8852–7
CAS
Article
PubMed
PubMed Central
Google Scholar
Rijal Upadhaya A, Kosterin I, Kumar S, Von Arnim CA, Yamaguchi H, Fandrich M, Walter J, Thal DR (2014) Biochemical stages of amyloid-β peptide aggregation and accumulation in the human brain and their association with symptomatic and pathologically preclinical Alzheimer's disease. Brain 137:887–903
Article
PubMed
Google Scholar
Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nat Rev Mol Cell Biol 8:101–12
CAS
Article
PubMed
Google Scholar
Mao X, Liao Z, Guo L, Xu X, Wu B, Xu M, Zhao X, Bi K, Jia Y (2015) Schisandrin C ameliorates learning and memory deficits by Aβ1-42-induced oxidative stress and neurotoxicity in mice. Phytother Res Dio:10.1002/ptr.5390.
Hsieh H, Boehm J, Sato C, Iwatsubo T, Tomita T, Sisodia S, Milinow R (2006) AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss. Neuron 52:831–43
CAS
Article
PubMed
PubMed Central
Google Scholar
Canas PM, Porciuncula LO, Cunha GM, Silva CG, Machado NJ, Oliveira JM, Oliveira CR, Cunha RA (2009) Adenosine A2A receptor blockade prevents synaptotoxicity and memory dysfunction caused by beta-amyloid peptides via p38 mitogen-activated protein kinase pathway. J Neurosci 29:14741–51
CAS
Article
PubMed
Google Scholar
Ehrlich I, Malinow R (2004) Postsynaptic density 95 controls AMPA receptor incorporation during long-term potentiation and experience-driven synaptic plasticity. J Neurosci 24:916–927
CAS
Article
PubMed
Google Scholar
Mizuno M, Yamada K, Maekawa N, Saito K, Seishima M, Nabeshima T (2002) CREB phosphorylation as a molecular marker of memory processing in the hippocampus for spatial learning. Behav Brain Res 133:135–41
CAS
Article
PubMed
Google Scholar
Barco A, Marie H (2011) Genetic approaches to investigate the role of CREB in neuronal plasticity and memory. Mol Neurobiol 44:330–349
CAS
Article
PubMed
Google Scholar
Wei L, Lv S, Huang Q, Wei J, Zhang S, Huang R, Lu Z, Lin X (2015) Pratensein attenuates Aβ-induced cognitive deficits in rats: enhancement of synaptic plasticity and cholinergic function. Fitoterapia 101:208–17
CAS
Article
PubMed
Google Scholar
Cho N, Lee KY, Huh J, Choi JH, Yang H, Jeong EJ, Kim HP, Sung SH (2013) Cognitive-enhancing effects of Rhus verniciflua bark extract and its active flavonoids with neuroprotective and anti-inflammatory activities. Food Chem Toxicol 58:355–61
CAS
Article
PubMed
Google Scholar
Middei S, Houeland G, Cavallucci V, Ammassari-Teule M, D’Amelio M, Marie H (2013) CREB is necessary for synaptic maintenance and learning-induced changes of the AMPA receptor GluA1 subunit. Hippocampus 23:488–99
CAS
Article
PubMed
Google Scholar
Jimenez S, Torres M, Vizuete M, Sanchez-Varo R, Sanchez-Mejias E, Trujillo-Estrada L, Carmona-Cuenca I, Caballero C, Ruano D, Gutierrez A, Vitorica J (2011) Age-dependent accumulation of soluble amyloid beta (Abeta) oligomers reverses the neuroprotective effect of soluble amyloid precursor protein-alpha (sAPP(alpha)) by modulating phosphatidylinositol 3-kinase (PI3K)/Akt-GSK-3beta pathway in Alzheimer mouse model. J Biol Chem 286:18414–25
CAS
Article
PubMed
PubMed Central
Google Scholar
Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378:785–9
CAS
Article
PubMed
Google Scholar
Van Weeren PC, De Bruyn KM, De Vries-Smits AM, Van Lint J, Burgering BM (1998) Essential role for protein kinase B (PKB) in insulin-induced glycogen synthase kinase 3 inactivation. Characterization of dominant-negative mutant of PKB. J Biol Chem 273:13150–6
Article
PubMed
Google Scholar
Koh SH, Noh MY, Kim SH (2008) Amyloid-beta-induced neurotoxicity is reduced by inhibition of glycogen synthase kinase-3. Brain Res 1188:254–62
CAS
Article
PubMed
Google Scholar
Bao XQ, Li N, Wang T, Kong XC, Tai WJ, Sun H, Zhang D (2013) FLZ alleviates the memory deficits in transgenic mouse model of Alzheimer's disease via decreasing beta-amyloid production and tau hyperphosphorylation. PLoS One 8:e78033
CAS
Article
PubMed
PubMed Central
Google Scholar
Jin N, Yin X, Yu D, Cao M, Gong CX, Iqbal K, Ding F, Gu X, Liu F (2015) Truncation and activation of GSK-3beta by calpain I: a molecular mechanism links to tau hyperphosphorylation in Alzheimer’s disease. Sci Rep 5:8187
CAS
Article
PubMed
PubMed Central
Google Scholar
Engel T, Goni-Oliver P, Lucas JJ, Avila J, Hernandez F (2006) Chronic lithium administration to FTDP-17 tau and GSK-3beta overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but pre-formed neurofibrillary tangles do not revert. J Neurochem 99:1445–55
CAS
Article
PubMed
Google Scholar
Zhang X, Luhrs KJ, Ryff KA, Malik WT, Driscoll MJ, Culver B (2009) Suppression of nuclear factor kappa B ameliorates astrogliosis but not amyloid burden in APPswe/PS1dE9 mice. Neuroscience 161:53–8
CAS
Article
PubMed
Google Scholar
Wyss-Coray T, Rogers J (2012) Inflammation in Alzheimer disease- a brief review of the basic science and clinical literature. Cold Spring Harb Perspect Med 2:a006346
Article
PubMed
PubMed Central
Google Scholar
LaFerla FM, Hall CK, Ngo L, Jay G (1996) Extracellular deposition of beta-amyloid upon p53-dependent neuronal cell death in transgenic mice. J Clin Invest 98:1626–32
CAS
Article
PubMed
PubMed Central
Google Scholar
Akhter R, Sanphui P, Das H, Saha P, Biswas SC (2015) The regulation of p53 up-regulated modulator of apoptosis by JNK/c-Jun pathway in β-amyloid-induced neuron death. J Neurochem 134:1091–103
CAS
Article
PubMed
Google Scholar
Li Y, Dai YB, Sun JY, Xiang Y, Yang J, Dai SY, Zhang X (2015) Neuroglobin attenuates beta amyloid-induced apoptosis through inhibiting caspases activity by activating PI3K/Akt signaling pathway. J Mol Neurosci 58:28–38
Article
PubMed
Google Scholar
Strosznajder JB, Czapski GA, Adamczyk A, Strosznajder RP (2012) Poly(ADP-ribose) polymerase-1 in amyloid beta toxicity and Alzheimer's disease. Mol Neurobiol 46:78–84
CAS
Article
PubMed
Google Scholar
Spencer JP (2009) Flavonoids and brain health: multiple effects underpinned by common mechanisms. Genes Nutr 4:243–50
CAS
Article
PubMed
PubMed Central
Google Scholar
Vauzour D (2014) Effect of flavonoids on learning, memory and neurocognitive performance: relevance and potential implications for Alzheimer's disease pathophysiology. J Sci Food Agric 94:1042–56
CAS
Article
PubMed
Google Scholar