Skip to main content

Advertisement

Log in

A Tale of the Good and Bad: Remodeling of the Microtubule Network in the Brain by Cdk5

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Cdk5, a cyclin-dependent kinase family member, is a global orchestrator of neuronal cytoskeletal dynamics. During embryogenesis, Cdk5 is indispensable for brain development. In adults, it is essential for numerous neuronal processes, including higher cognitive functions such as learning and memory formation, drug addiction, pain signaling, and long-term behavior changes through long-term potentiation and long-term depression, all of which rely on rapid alterations in the cytoskeleton. Cdk5 activity becomes deregulated in various brain disorders, including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, attention-deficit hyperactivity disorder, epilepsy, schizophrenia, and ischemic stroke; these all result in profound remodeling of the neuronal cytoskeleton. This Commentary specifically focuses on the pleiotropic contribution of Cdk5 in regulating neuronal microtubule remodeling. Because the vast majority of the physiological substrates of Cdk5 are associated with the neuronal cytoskeleton, our emphasis is on the Cdk5 substrates, such as CRMP2, stathmin, drebrin, dixdc1, axin, MAP2, MAP1B, doublecortin, kinesin-5, and tau, that have allowed to unravel the molecular mechanisms through which Cdk5 exerts its divergent roles in regulating neuronal microtubule dynamics, both in healthy and disease states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dhavan R, Tsai LH (2001) A decade of CDK5. Nat Rev Mol Cell Biol 2(10):749–59. doi:10.1038/35096019

    Article  CAS  PubMed  Google Scholar 

  2. Shah K, Lahiri DK (2014) Cdk5 activity in the brain—multiple paths of regulation. J Cell Sci 127(Pt 11):2391–400. doi:10.1242/jcs.147553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chang KH, Vincent F, Shah K (2012) Deregulated Cdk5 triggers aberrant activation of cell cycle kinases and phosphatases inducing neuronal death. J Cell Sci 125(Pt 21):5124–37. doi:10.1242/jcs.108183

    Article  CAS  PubMed  Google Scholar 

  4. Tsai LH, Delalle I, Caviness VS Jr, Chae T, Harlow E (1994) p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. 371(6496):419–23. doi:10.1038/371419a0

  5. Tang D, Yeung J, Lee KY, Matsushita M, Matsui H, Tomizawa K, Hatase O, Wang JH. (1995) An isoform of the neuronal cyclin-dependent kinase 5 (Cdk5) activator. J Biol Chem. (45), 26897–903. doi:10.1074/jbc.270.45.26897

  6. Brinkkoetter PT, Pippin JW, Shankland SJ (2010) Cyclin I-Cdk5 governs survival in post-mitotic cells. Cell Cycle 9(9):1729–31. doi:10.4161/cc.9.9.11471

    Article  CAS  PubMed  Google Scholar 

  7. Sun KH, Chang KH, Clawson S, Ghosh S, Mirzaei H, Regnier F, Shah K (2011) Glutathione-S-transferase P1 is a critical regulator of Cdk5 kinase activity. J Neurochem 118(5):902–14. doi:10.1111/j.1471-4159.2011.07343.x

    Article  CAS  PubMed  Google Scholar 

  8. Modi PK, Komaravelli N, Singh N, Sharma P (2012) Interplay between MEK-ERK signaling, cyclin D1, and cyclin-dependent kinase 5 regulates cell cycle reentry and apoptosis of neurons. Mol Biol Cell 23(18):3722–30. doi:10.1091/mbc.E12-02-0125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Odajima J, Wills ZP, Ndassa YM, Terunuma M, Kretschmannova K, Deeb TZ, Geng Y, Gawrzak S et al (2011) Cyclin E constrains Cdk5 activity to regulate synaptic plasticity and memory formation. Dev Cell 21(4):655–68. doi:10.1016/j.devcel.2011.08.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fu WY, Chen Y, Sahin M, Zhao XS, Shi L, Bikoff JB, Lai KO, Yung WH et al (2007) Cdk5 regulates EphA4-mediated dendritic spine retraction through an ephexin1-dependent mechanism. Nat Neurosci 10(1):67–76. doi:10.1038/nn1811

    Article  CAS  PubMed  Google Scholar 

  11. Zukerberg LR, Patrick GN, Nikolic M, Humbert S, Wu CL, Lanier LM et al (2000) Cables links Cdk5 and c-Abl and facilitates Cdk5 tyrosine phosphorylation, kinase upregulation, and neurite outgrowth. Neuron 26(3):633–46. doi:10.1016/S0896-6273(00)81200-3

    Article  CAS  PubMed  Google Scholar 

  12. Kobayashi H, Saito T, Sato K, Furusawa K, Hosokawa T, Tsutsumi K, Asada A, Kamada S et al (2014) Phosphorylation of cyclin-dependent kinase 5 (Cdk5) at Tyr-15 is inhibited by Cdk5 activators and does not contribute to the activation of Cdk5. J Biol Chem 289(28):19627–36. doi:10.1074/jbc.M113.501148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Asada A, Yamamoto N, Gohda M, Saito T, Hayashi N, Hisanaga S (2008) Myristoylation of p39 and p35 is a determinant of cytoplasmic or nuclear localization of active cyclin-dependent kinase 5 complexes. J Neurochem 106(3):1325–36. doi:10.1111/j.1471-4159.2008.05500.x

    Article  CAS  PubMed  Google Scholar 

  14. McLinden KA, Trunova S, Giniger E (2012) At the fulcrum in health and disease: Cdk5 and the balancing acts of neuronal structure and physiology. Brain Disord Ther 2012(Suppl 1):001. doi:10.4172/2168-975X

    PubMed  PubMed Central  Google Scholar 

  15. Bibb JA, Chen J, Taylor JR, Svenningsson P, Nishi A, Snyder GL, Yan Z, Sagawa ZK et al (2001) Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5. Nature 410(6826):376–80. doi:10.4172/2168-975X

    Article  CAS  PubMed  Google Scholar 

  16. Fischer A, Sananbenesi F, Schrick C, Spiess J, Radulovic J (2002) Cyclin-dependent kinase 5 is required for associative learning. J Neurosci 22(9):3700–7. doi:10.3389/fnbeh.2013.00216

    CAS  PubMed  Google Scholar 

  17. Takahashi S, Ohshima T, Cho A, Sreenath T, Iadarola MJ, Pant HC, Kim Y, Nairn AC et al (2005) Increased activity of cyclin-dependent kinase 5 leads to attenuation of cocaine-mediated dopamine signaling. Proc Natl Acad Sci U S A 102(5):1737–42. doi:10.1073/pnas.0409456102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hawasli AH, Benavides DR, Nguyen C, Kansy JW, Hayashi K, Chambon P, Greengard P, Powell CM et al (2007) Cyclin-dependent kinase 5 governs learning and synaptic plasticity via control of NMDAR degradation. Nat Neurosci 10(7):880–6. doi:10.1038/nn1914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hisanaga S, Endo R (2010) Regulation and role of cyclin-dependent kinase activity in neuronal survival and death. J Neurochem 115(6):1309–21. doi:10.1111/j.1471-4159.2010.07050.x

    Article  CAS  PubMed  Google Scholar 

  20. Drerup JM, Hayashi K, Cui H, Mettlach GL, Long MA, Marvin M, Sun X, Goldberg MS et al (2010) Attention-deficit/hyperactivity phenotype in mice lacking the cyclin-dependent kinase 5 cofactor p35. Biol Psychiatry 68(12):1163–71. doi:10.1016/j.biopsych.2010.07.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Patel LS, Wenzel HJ, Schwartzkroin PA (2004) Physiological and morphological characterization of dentate granule cells in the p35 knock-out mouse hippocampus: evidence for an epileptic circuit. J Neurosci 24(41):9005–14. doi:10.1523/JNEUROSCI.2943-04.2004

    Article  CAS  PubMed  Google Scholar 

  22. Engmann O, Hortobágyi T, Pidsley R, Troakes C, Bernstein HG, Kreutz MR, Mill J, Nikolic M et al (2011) Schizophrenia is associated with dysregulation of a Cdk5 activator that regulates synaptic protein expression and cognition. Brain 134(Pt 8):2408–21. doi:10.1093/brain/awr155

    Article  PubMed  PubMed Central  Google Scholar 

  23. Fischer A, Sananbenesi F, Pang PT, Lu B, Tsai LH (2005) Opposing roles of transient and prolonged expression of p25 in synaptic plasticity and hippocampus-dependent memory. Neuron 48(5):825–38. doi:10.1016/j.neuron.2005.10.033

    Article  CAS  PubMed  Google Scholar 

  24. Su SC, Tsai LH (2011) Cyclin-dependent kinases in brain development and disease. Annu Rev Cell Dev Biol 27:465–91. doi:10.1146/annurev-cellbio-092910-154023

    Article  CAS  PubMed  Google Scholar 

  25. Shukla V, Skuntz S, Pant HC (2012) Deregulated Cdk5 activity is involved in inducing Alzheimer's disease. Arch Med Res 43(8):655–62. doi:10.1016/j.arcmed.2012.10.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Meyer DA, Torres-Altoro MI, Tan Z, Tozzi A, Di Filippo M, DiNapoli V, Plattner F, Kansy JW et al (2014) Ischemic stroke injury is mediated by aberrant Cdk5. J Neurosci 34(24):8259–67. doi:10.1523/JNEUROSCI.4368-13.2014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Sun KH, de Pablo Y, Vincent F, Johnson EO, Chavers AK, Shah K (2008) Novel genetic tools reveal Cdk5's major role in Golgi fragmentation in Alzheimer's disease. Mol Biol Cell 19(7):3052–69. doi:10.1091/mbc.E07-11-1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sun KH, de Pablo Y, Vincent F, Shah K (2008) Deregulated Cdk5 promotes oxidative stress and mitochondrial dysfunction. J Neurochem 10:265–278. doi:10.1111/j.1471-4159.2008.05616.x

    Article  CAS  Google Scholar 

  29. Sun KH, Lee HG, Smith MA, Shah K (2009) Direct and indirect roles of Cdk5 as an upstream regulator in the JNK cascade: relevance to neurotoxic insults in Alzheimer’s disease. Mol Biol Cell 20(21):4611–9. doi:10.1091/mbc.E09-05-0433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chang KH, Pablo Y, Lee H, Lee H, Smith M, Shah K (2010) Cdk5 is a major regulator of p38 cascade: relevance to neurotoxicity in Alzheimer’s disease. J Neurochem 113(5):1221–9. doi:10.1111/j.1471-4159.2010.06687.x

    CAS  PubMed  Google Scholar 

  31. Chang KH, Multani PS, Sun KH, Vincent F, de Pablo Y, Ghosh S, Gupta R, Lee HP et al (2011) Nuclear envelope dispersion triggered by deregulated Cdk5 precedes neuronal death. Mol Biol Cell 22(9):1452–62. doi:10.1091/mbc.E10-07-0654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Alvarez A, Muñoz JP, Maccioni RB (2001) A Cdk5-p35 stable complex is involved in the beta-amyloid-induced deregulation of Cdk5 activity in hippocampal neurons. Exp Cell Res 264(2):266–74. doi:10.1006/excr.2001.5152

    Article  CAS  PubMed  Google Scholar 

  33. Luo L (2002) Actin cytoskeleton regulation in neuronal morphogenesis and structural plasticity. Annu Rev Cell Dev Biol 18:601–35. doi:10.1146/annurev.cellbio.18.031802.150501

    Article  CAS  PubMed  Google Scholar 

  34. Poulain FE, Sobel A (2010) The microtubule network and neuronal morphogenesis. Dynamic and coordinated orchestration through multiple players. Mol Cell Neurosci 43:15–32. doi:10.1016/j.mcn.2009.07.012

    Article  CAS  PubMed  Google Scholar 

  35. Yuan A, Rao MV, Nixon RA, Veeranna (2012) Neurofilaments at a glance. J Cell Sci 125(Pt 14):3257–63. doi:10.1242/jcs.104729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Paglini G, Pigino G, Kunda P, Morfini G, Maccioni R, Quiroga S, Ferreira A, Cáceres A (1998) Evidence for the participation of the neuron-specific CDK5 activator P35 during laminin-enhanced axonal growth. J Neurosci 18(23):9858–69. doi:10.1016/S0960-9822(00)00487-5

    CAS  PubMed  Google Scholar 

  37. Connell-Crowley L, Le Gall M, Vo DJ, Giniger E (2000) The cyclin-dependent kinase Cdk5 controls multiple aspects of axon patterning in vivo. Curr Biol 10(10):599–602. doi:10.1016/S0960-9822(00)00487-5

    Article  CAS  PubMed  Google Scholar 

  38. Zhang Y, Li N, Caron C, Matthias G, Hess D, Khochbin S, Matthias P (2003) HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J 22(5):1168–79. doi:10.1093/emboj/cdg115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. North BJ, Marshall BL, Borra MT, Denu JM, Verdin E (2003) The human Sir2 ortholog, SIRT2, is an NAD + −dependent tubulin deacetylase. Mol Cell 11(2):437–44. doi:10.1016/S1097-2765(03)00038-8

    Article  CAS  PubMed  Google Scholar 

  40. Ip JP, Shi L, Chen Y, Itoh Y, Fu WY, Betz A, Yung WH, Gotoh Y et al (2011) α2-chimaerin controls neuronal migration and functioning of the cerebral cortex through CRMP-2. Nat Neurosci 15(1):39–47. doi:10.1038/nn.2972

    Article  PubMed  CAS  Google Scholar 

  41. Uchida Y, Ohshima T, Sasaki Y, Suzuki H, Yanai S, Yamashita N, Nakamura F, Takei K et al (2005) Semaphorin3A signalling is mediated via sequential Cdk5 and GSK3beta phosphorylation of CRMP2: implication of common phosphorylating mechanism underlying axon guidance and Alzheimer's disease. Genes Cells 10(2):165–79. doi:10.1111/j.1365-2443.2005.00827.x

    Article  CAS  PubMed  Google Scholar 

  42. Yamashita N, Ohshima T, Nakamura F, Kolattukudy P, Honnorat J, Mikoshiba K, Goshima Y (2012) Phosphorylation of CRMP2 (collapsin response mediator protein 2) is involved in proper dendritic field organization. J Neurosci 32(4):1360–5. doi:10.1523/JNEUROSCI.5563-11.2012

    Article  CAS  PubMed  Google Scholar 

  43. Brittain JM, Piekarz AD, Wang Y, Kondo T, Cummins TR, Khanna R (2009) An atypical role for ollapsing response mediator protein 2 (CRMP-2) in neurotransmitter release via interaction with presynaptic voltage-gated calcium channels. J Biol Chem 284(45):31375–90. doi:10.1074/jbc.M109.009951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Brown M, Jacobs T, Eickholt B, Ferrari G, Teo M, Monfries C, Qi RZ, Leung T et al (2004) Alpha2-chimaerin, cyclin-dependent Kinase 5/p35, and its target collapsin response mediator protein-2 are essential components in semaphorin 3A-induced growth-cone collapse. J Neurosci 24(41):8994–9004. doi:10.1523/JNEUROSCI.3184-04.2004

    Article  CAS  PubMed  Google Scholar 

  45. Niisato E, Nagai J, Yamashita N, Nakamura F, Goshima Y, Ohshima T (2013) Phosphorylation of CRMP2 is involved in proper bifurcation of the apical dendrite of hippocampal CA1 pyramidal neurons. Dev Neurobiol 73(2):142–51. doi:10.1002/dneu.22048

    Article  CAS  PubMed  Google Scholar 

  46. Fang WQ, Ip JP, Li R, Ng YP, Lin SC, Chen Y, Fu AK, Ip NY (2011) Cdk5-mediated phosphorylation of Axin directs axon formation during cerebral cortex development. J Neurosci 31(38):13613–24. doi:10.1523/JNEUROSCI.3120-11.2011

    Article  CAS  PubMed  Google Scholar 

  47. Morfini G, Szebenyi G, Brown H, Pant HC, Pigino G, DeBoer S, Beffert U, Brady ST (2004) A novel CDK5-dependent pathway for regulating GSK3 activity and kinesin-driven motility in neurons. EMBO J 23(11):2235–45. doi:10.1038/sj.emboj.7600237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jiang H, Guo W, Liang X, Rao Y (2005) Both the establishment and the maintenance of neuronal polarity require active mechanisms: critical roles of GSK-3beta and its upstream regulators. Cell. (1), 123–35. DOI 10.1016/j.cell.2004.12.033.

  49. Chow HM, Guo D, Zhou JC, Zhang GY, Li HF, Herrup K, Zhang J (2014) CDK5 activator protein p25 preferentially binds and activates GSK3β. Proc Natl Acad Sci U S A 111(45):E4887–95. doi:10.1073/pnas.1402627111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tanaka T, Serneo FF, Tseng HC, Kulkarni AB, Tsai LH, Gleeson JG (2004) Cdk5 phosphorylation of doublecortin ser297 regulates its effect on neuronal migration. Neuron 41(2):215–27. doi:10.1016/S0896-6273(03)00852-3

    Article  CAS  PubMed  Google Scholar 

  51. Hlavanda E, Klement E, Kókai E, Kovács J, Vincze O, Tökési N, Orosz F, Medzihradszky KF et al (2007) Phosphorylation blocks the activity of tubulin polymerization-promoting protein (TPPP): identification of sites targeted by different kinases. J Biol Chem 282(40):29531–9. doi:10.1074/jbc.M703466200

    Article  CAS  PubMed  Google Scholar 

  52. Kovács GG, László L, Kovács J, Jensen PH, Lindersson E, Botond G, Molnár T, Perczel A et al (2004) Natively unfolded tubulin polymerization promoting protein TPPP/p25 is a common marker of alpha-synucleinopathies. Neurobiol Dis 17(2):155–62. doi:10.1016/j.nbd.2004.06.006

    Article  PubMed  CAS  Google Scholar 

  53. Takahashi S, Saito T, Hisanaga S, Pant HC, Kulkarni AB (2003) Tau phosphorylation by cyclin-dependent kinase 5/p39 during brain development reduces its affinity for microtubules. J Biol Chem 278(12):10506–15. doi:10.1074/jbc.M211964200

    Article  CAS  PubMed  Google Scholar 

  54. Brion JP, Octave JN, Couck AM (1994) Distribution of the phosphorylated microtubule-associated protein tau in developing cortical neurons. Neuroscience 63(3):895–909. doi:10.1016/0306-4522(94)90533-9

    Article  CAS  PubMed  Google Scholar 

  55. Hayashi K, Pan Y, Shu H, Ohshima T, Kansy JW, White CL 3rd, Tamminga CA, Sobel A et al (2006) Phosphorylation of the tubulin-binding protein, stathmin, by Cdk5 and MAP kinases in the brain. J Neurochem 99(1):237–50. doi:10.1111/j.1471-4159.2006.04113.x

    Article  CAS  PubMed  Google Scholar 

  56. Uchida S, Martel G, Pavlowsky A, Takizawa S, Hevi C, Watanabe Y, Kandel ER, Alarcon JM et al (2014) Learning-induced and stathmin-dependent changes in microtubule stability are critical for memory and disrupted in ageing. Nat Commun 5:4389. doi:10.1038/ncomms5389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hou Z, Li Q, He L, Lim HY, Fu X, Cheung NS, Qi DX, Qi RZ (2007) Microtubule association of the neuronal p35 activator of Cdk5. J Biol Chem 282(26):18666–70. doi:10.1074/jbc.C700052200

    Article  CAS  PubMed  Google Scholar 

  58. He L, Hou Z, Qi RZ (2008) Calmodulin binding and Cdk5 phosphorylation of p35 regulate its effect on microtubules. Biol Chem 283(19):13252–6. doi:10.1074/jbc.M706937200

    Article  CAS  Google Scholar 

  59. Xie Z, Sanada K, Samuels BA, Shih H, Tsai LH (2003) Serine 732 phosphorylation of FAK by Cdk5 is important for microtubule organization, nuclear movement, and neuronal migration. Cell 114(4):469–82. doi:10.1016/S0092-8674(03)00605-6

    Article  CAS  PubMed  Google Scholar 

  60. Wang Q, Brandon NJ (2011) Regulation of the cytoskeleton by disrupted-in-schizophrenia 1 (DISC1). Mol Cell Neurosci 48(4):359–64. doi:10.1016/j.mcn.2011.06.004

    Article  CAS  PubMed  Google Scholar 

  61. Ishizuka K, Kamiya A, Oh EC, Kanki H, Seshadri S, Robinson JF, Murdoch H, Dunlop AJ et al (2011) DISC1-dependent switch from progenitor proliferation to migration in the developing cortex. Nature 473(7345):92–6. doi:10.1038/nature09859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sasaki S, Mori D, Toyo-oka K, Chen A, Garrett-Beal L, Muramatsu M, Miyagawa S, Hiraiwa N et al (2005) Complete loss of Ndel1 results in neuronal migration defects and early embryonic lethality. Mol Cell Biol 25:7812–7827. doi:10.1128/MCB.25.17.7812-7827.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Singh KK, Ge X, Mao Y, Drane L, Meletis K, Samuels BA, Tsai LH (2010) Dixdc1 is a critical regulator of DISC1 and embryonic cortical development. Neuron 67(1):33–48. doi:10.1016/j.neuron.2010.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Takitoh T, Kumamoto K, Wang CC, Sato M, Toba S, Wynshaw-Boris A, Hirotsune S (2012) Activation of Aurora-A is essential for neuronal migration via modulation of microtubule organization. J Neurosci 32(32):11050–66. doi:10.1523/JNEUROSCI.5664-11.2012

    Article  CAS  PubMed  Google Scholar 

  65. Bond J, Woods CG (2006) Cytoskeletal genes regulating brain size. Curr Opin Cell Biol 18(1):95–101. doi:10.1016/j.ceb.2005.11.004

    Article  CAS  PubMed  Google Scholar 

  66. Rakic S, Kanatani S, Hunt D, Faux C, Cariboni A, Chiara F, Khan S, Wansbury O et al (2015) Cdk5 phosphorylation of ErbB4 is required for tangential migration of cortical interneurons. Cereb Cortex 25(4):991–1003. doi:10.1093/cercor/bht290

    Article  PubMed  Google Scholar 

  67. Bourne JN, Harris KM (2008) Balancing structure and function at hippocampal dendritic spines. Annu Rev Neurosci 31:47–67. doi:10.1146/annurev.neuro.31.060407.125646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429:761–766. doi:10.1038/nature02617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Okamoto K, Nagai T, Miyawaki A, Hayashi Y (2004) Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional Plasticity. Nat Neurosci 7:1104–1112. doi:10.1038/nn1311

    Article  CAS  PubMed  Google Scholar 

  70. Mitsuyama F, Niimi G, Kato K, Hirosawa K, Mikoshiba K, Okuya M, Karagiozov K, Kato Y et al (2008) Redistribution of microtubules in dendrites of hippocampal CA1 neurons after tetanic stimulation during long-term potentiation. Ital J Anat Embryol 113:17–27. doi:10.1523/JNEUROSCI.2583-12.2013

    PubMed  Google Scholar 

  71. Jaworski J, Kapitein LC, Gouveia SM, Dortland BR, Wulf PS, Grigoriev I, Camera P, Spangler SA et al (2009) Dynamic microtubules regulate dendritic spine morphology and synaptic plasticity. Neuron 61:85–100. doi:10.1016/j.neuron.2008.11.013

    Article  CAS  PubMed  Google Scholar 

  72. Hu X, Ballo L, Pietila L, Viesselmann C, Ballweg J, Lumbard D, Stevenson M, Merriam E et al (2011) BDNF-induced increase of PSD-95 in dendritic spines requires dynamic microtubule invasions. J Neurosci 31(43):15597–603. doi:10.1523/JNEUROSCI.2445-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Merriam EB, Millette M, Lumbard DC, Saengsawang W, Fothergill T, Hu X, Ferhat L, Dent EW (2013) Synaptic regulation of microtubule dynamics in dendritic spines by calcium, F-actin, and drebrin. J Neurosci 33(42):16471–82. doi:10.1523/JNEUROSCI.0661-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Worth DC, Daly CN, Geraldo S, Oozeer F, Gordon-Weeks PR (2013) Drebrin contains a cryptic F-actin-bundling activity regulated by Cdk5 phosphorylation. J Cell Biol 202(5):793–806. doi:10.1083/jcb.201303005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dun XP, Bandeira de Lima T, Allen J, Geraldo S, Gordon-Weeks P, Chilton JK (2012) Drebrin controls neuronal migration through the formation and alignment of the leading process. Mol Cell Neurosci 49(3):341–50. doi:10.1016/j.mcn.2012.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ivanov A, Esclapez M, Ferhat L (2009) Role of drebrin A in dendritic spine plasticity and synaptic function: implications in neurological disorders. Commun Integr Biol 2(3):268–70. doi:10.1155/2012/474351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shim KS, Lubec G (2002) Drebrin, a dendritic spine protein, is manifold decreased in brains of patients with Alzheimer's disease and Down syndrome. Neurosci Lett 324(3):209–12. doi:10.1016/S0304-3940(02)00210-0

    Article  CAS  PubMed  Google Scholar 

  78. Geraldo S, Khanzada UK, Parsons M, Chilton JK, Gordon-Weeks PR (2008) Targeting of the F-actin-binding protein drebrin by the microtubule plus-tip protein EB3 is required for neuritogenesis. Nat Cell Biol 10(10):1181–9. doi:10.1038/ncb1778

    Article  CAS  PubMed  Google Scholar 

  79. Tanabe K, Yamazaki H, Inaguma Y, Asada A, Kimura T, Takahashi J, Taoka M, Ohshima T et al (2014) Phosphorylation of drebrin by cyclin-dependent kinase 5 and its role in neuronal migration. PLoS One 9(3):e92291. doi:10.1371/journal.pone.0092291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Hirokawa N, Niwa S, Tanaka Y (2010) Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68(4):610–38. doi:10.1016/j.neuron.2010.09.039

    Article  CAS  PubMed  Google Scholar 

  81. Xing BM, Yang YR, Du JX, Chen HJ, Qi C, Huang ZH, Zhang Y, Wang Y (2012) Cyclin-dependent kinase 5 controls TRPV1 membrane trafficking and the heat sensitivity of nociceptors through KIF13B. J Neurosci 32(42):14709–21. doi:10.1523/JNEUROSCI.1634-12.2012

    Article  CAS  PubMed  Google Scholar 

  82. Liu J, Du J, Yang Y, Wang Y. (2015) Phosphorylation of TRPV1 by cyclin-dependent kinase 5 promotes TRPV1 surface localization, leading to inflammatory thermal hyperalgesia. Exp Neurol. 273, 253--62. doi:10.1016/j.expneurol.2015.09.005

  83. Kahn OI, Sharma V, González-Billault C, Baas PW (2015) Effects of kinesin-5 inhibition on dendritic architecture and microtubule organization. Mol Biol Cell 226(1):66–77. doi:10.1091/mbc.E14-08-1313

    Article  CAS  Google Scholar 

  84. Myers KA, Baas PW (2007) Kinesin-5 regulates the growth of the axon by acting as a brake on its microtubule array. J Cell Biol 178(6):1081–91. doi:10.1083/jcb.200702074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sasaki S, Shionoya A, Ishida M, Gambello MJ, Yingling J, Wynshaw-Boris A, Hirotsune S (2000) A LIS1/NUDEL/cytoplasmic dynein heavy chain complex in the developing and adult nervous system. Neuron 28(3):681–96. doi:10.1016/S0896-6273(00)00146-X

    Article  CAS  PubMed  Google Scholar 

  86. Toyo-oka K, Shionoya A, Gambello MJ, Cardoso C, Leventer R, Ward HL, Ayala R, Tsai LH et al (2003) 14-3-3epsilon is important for neuronal migration by binding to NUDEL: a molecular explanation for Miller-Dieker syndrome. Nat Genet 34(3):274–85. doi:10.1038/ng1169

    Article  CAS  PubMed  Google Scholar 

  87. Niethammer M, Smith DS, Ayala R, Peng J, Ko J, Lee MS, Morabito M, Tsai LH (2000) NUDEL is a novel Cdk5 substrate that associates with LIS1 and cytoplasmic dynein. Neuron 28(3):697–711. doi:10.1016/S0896-6273(00)00147-1

    Article  CAS  PubMed  Google Scholar 

  88. Pandey JP, Smith DS (2011) A Cdk5-dependent switch regulates Lis1/Ndel1/dynein-driven organelle transport in adult axons. J Neurosci 31(47):17207–19. doi:10.1523/JNEUROSCI.4108-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Benitez-King G, Ramírez-Rodríguez G, Ortíz L, Meza I (2004) The neuronal cytoskeleton as a potential therapeutical target in neurodegenerative diseases and schizophrenia. Curr Drug Targets CNS Neurol Disord 3(6):515–33. doi:10.2174/1568007043336761

    Article  CAS  PubMed  Google Scholar 

  90. Newey SE, Velamoor V, Govek EE, Van Aelst L (2005) Rho GTPases, dendritic structure, and mental retardation. J Neurobiol 64(1):58–74. doi:10.1002/neu.20153

    Article  CAS  PubMed  Google Scholar 

  91. Venturin M, Guarnieri P, Natacci F, Stabile M, Tenconi R, Clementi M, Hernandez C, Thompson P et al (2004) Mental retardation and cardiovascular malformations in NF1 microdeleted patients point to candidate genes in 17q11.2. J Med Genet 41:35–41. doi:10.1111/j.1529-8817.2005.00203.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Luo S, Vacher C, Davies JE, Rubinsztein DC (2005) Cdk5 phosphorylation of huntingtin reduces its cleavage by caspases: implications for mutant huntingtin toxicity. J Cell Biol 169(4):647–56. doi:10.1083/jcb.200412071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Paoletti P, Vila I, Rifé M, Lizcano JM, Alberch J, Ginés S (2008) Dopaminergic and glutamatergic signaling crosstalk in Huntington's disease neurodegeneration: the role of p25/cyclin-dependent kinase 5. J Neurosci 28(40):10090–101. doi:10.1523/JNEUROSCI.3237-08.2008

    Article  CAS  PubMed  Google Scholar 

  94. Kaminosono S, Saito T, Oyama F, Ohshima T, Asada A, Nagai Y, Nukina N, Hisanaga S (2008) Suppression of mutant Huntingtin aggregate formation by Cdk5/p35 through the effect on microtubule stability. J Neurosci 28(35):8747–55. doi:10.1523/JNEUROSCI.0973-08.2008

    Article  CAS  PubMed  Google Scholar 

  95. Muchowski PJ, Ning K, D'Souza-Schorey C, Fields S (2002) Requirement of an intact microtubule cytoskeleton for aggregation and inclusion body formation by a mutant huntingtin fragment. Proc Natl Acad Sci U S A 99(2):727–32. doi:10.1073/pnas.022628699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Anne SL, Saudou F, Humbert S (2007) Phosphorylation of huntingtin by cyclin-dependent kinase 5 is induced by DNA damage and regulates wild-type and mutant huntingtin toxicity in neurons. J Neurosci 27(27):7318–28. doi:10.1523/JNEUROSCI.1831-07.2007

    Article  CAS  PubMed  Google Scholar 

  97. Cruz JC, Tseng HC, Goldman JA, Shih H, Tsai LH (2003) Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron 40(3):471–83. doi:10.1016/S0896-6273(03)00627-5

    Article  CAS  PubMed  Google Scholar 

  98. Ahlijanian MK, Barrezueta NX, Williams RD, Jakowski A, Kowsz KP, McCarthy S, Coskran T, Carlo A et al (2000) Hyperphosphorylated tau and neurofilament and cytoskeletal disruptions in mice overexpressing human p25, an activator of cdk5. Proc Natl Acad Sci U S A 97(6):2910–5. doi:10.1073/pnas.040577797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Qu J, Nakamura T, Cao G, Holland EA, McKercher SR, Lipton SA (2011) S-Nitrosylation activates Cdk5 and contributes to synaptic spine loss induced by beta-amyloid peptide. Proc Natl Acad Sci U S A 108(34):14330–5. doi:10.1073/pnas.1105172108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Meyer DA, Richer E, Benkovic SA, Hayashi K, Kansy JW, Hale CF, Moy LY, Kim Y et al (2008) Striatal dysregulation of Cdk5 alters locomotor responses to cocaine, motor learning, and dendritic morphology. Proc Natl Acad Sci U S A 105(47):18561–6. doi:10.1073/pnas.0806078105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Shahpasand K, Uemura I, Saito T, Asano T, Hata K, Shibata K, Toyoshima Y, Hasegawa M et al (2012) Regulation of mitochondrial transport and inter-microtubule spacing by tau phosphorylation at the sites hyperphosphorylated in Alzheimer's disease. J Neurosci 32(7):2430–41. doi:10.1523/JNEUROSCI.5927-11.2012

    Article  CAS  PubMed  Google Scholar 

  102. Shea TB, Yabe JT, Ortiz D, Pimenta A, Loomis P, Goldman RD, Amin N, Pant HC (2004) Cdk5 regulates axonal transport and phosphorylation of neurofilaments in cultured neurons. J Cell Sci 117(Pt 6):933–41. doi:10.1242/jcs.00785

    Article  CAS  PubMed  Google Scholar 

  103. Cole AR, Noble W, van Aalten L, Plattner F, Meimaridou R, Hogan D, Taylor M, LaFrancois J et al (2007) Collapsin response mediator protein-2 hyperphosphorylation is an early event in Alzheimer’s disease progression. J Neurochem 103(3):1132–44. doi:10.1111/j.1471-4159.2007.04829.x

    Article  CAS  PubMed  Google Scholar 

  104. Bu B, Li J, Davies P, Vincent I (2002) Deregulation of cdk5, hyperphosphorylation, and cytoskeletal pathology in the Niemann-Pick type C murine model. J Neurosci 22(15):6515–25. doi:10.1007/s11596-009-0312-0

    CAS  PubMed  Google Scholar 

  105. Bihaqi SW, Bahmani A, Adem A, Zawia NH (2014) Infantile postnatal exposure to lead (Pb) enhances tau expression in the cerebral cortex of aged mice: relevance to AD. Neurotoxicology 44:114–20. doi:10.1016/j.neuro.2014.06.008

    Article  CAS  PubMed  Google Scholar 

  106. Lahiri DK, Maloney B, Zawia NH (2009) The LEARn model: an epigenetic explanation for idiopathic neurobiological diseases. Mol Psychiatry 14(11):992–1003. doi:10.1038/mp.2009.82

    Article  CAS  PubMed  Google Scholar 

  107. El-Kadi AM, Soura V, Hafezparast M (2007) Defective axonal transport in motor neuron disease. J Neurosci Res 85(12):2557–66. doi:10.1002/jnr.21188

    Article  CAS  PubMed  Google Scholar 

  108. Vicario-Orri E, Opazo CM, Muñoz FJ (2015) The pathophysiology of axonal transport in Alzheimer's disease. J Alzheimers Dis 43(4):1097–113. doi:10.3233/JAD-141080

    CAS  PubMed  Google Scholar 

  109. Stokin GB, Lillo C, Falzone TL, Brusch RG, Rockenstein E, Mount SL, Raman R, Davies P et al (2005) Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science 307(5713):1282–8. doi:10.1093/hmg/ddt313

    Article  CAS  PubMed  Google Scholar 

  110. Hensley K, Venkova K, Christov A, Gunning W, Park J (2011) Collapsin response mediator protein-2: an emerging pathologic feature and therapeutic target for neurodisease indications. Mol Neurobiol 43(3):180–91. doi:10.1007/s12035-011-8166-4

    Article  CAS  PubMed  Google Scholar 

  111. Morel M, Authelet M, Dedecker R, Brion JP (2010) Glycogen synthase kinase-3beta and the p25 activator of cyclin dependent kinase 5 increase pausing of mitochondria in neurons. Neuroscience 167(4):1044–56. doi:10.1016/j.neuroscience.2010.02.077

    Article  CAS  PubMed  Google Scholar 

  112. Whiteman IT, Gervasio OL, Cullen KM, Guillemin GJ, Jeong EV, Witting PK, Antao ST, Minamide LS et al (2009) Activated actin-depolymerizing factor/cofilin sequesters phosphorylated microtubule-associated protein during the assembly of alzheimer-like neuritic cytoskeletal striations. J Neurosci 29(41):12994–3005. doi:10.1523/JNEUROSCI.3531-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ari C, Borysov SI, Wu J, Padmanabhan J, Potter H (2014) Alzheimer amyloid beta inhibition of Eg5/kinesin 5 reduces neurotrophin and/or transmitter receptor function. Neurobiol Aging 35:1839–49. doi:10.1016/j.neurobiolaging.2014.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grant from the National Institutes of Health (NIAR21AG 47447) to KS and DKL. The authors sincerely thank Bryan Maloney (IUPUI) for his critical reading and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kavita Shah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, K., Lahiri, D.K. A Tale of the Good and Bad: Remodeling of the Microtubule Network in the Brain by Cdk5. Mol Neurobiol 54, 2255–2268 (2017). https://doi.org/10.1007/s12035-016-9792-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9792-7

Keywords

Navigation