Skip to main content

Advertisement

Log in

A Therapeutic Insight of Niacin and Coenzyme Q10 Against Diabetic Encephalopathy in Rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

An Erratum to this article was published on 20 March 2017

Abstract

Diabetes mellitus (DM) is characterized by hyperglycemia due to insulin inactivity or insufficiency with increasing risk of developing specific complications, including retinopathy, nephropathy, neuropathy, and atherosclerosis. The aim of the present study is to evaluate the efficacy of coenzyme Q10 (CoQ10), niacin, as well as their combination in ameliorating brain disorders associated with streptozotocin (STZ)-induced diabetes in rats. Glibenclamide, a reference diabetic drug, and donepezil, an acetylcholine inhibitor drug, were also evaluated. Diabetes was induced by single intraperitoneal injection of STZ (60 mg/kg body weight (b.wt)). One-month diabetic rats were treated with the selected drugs daily for another two consecutive weeks. The evaluation was done through the estimation of the levels of blood glucose, serum insulin, and oxidative stress markers: malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH); neurotransmitters: acetylcholine (Ach) and dopamine (DA); vasoconstrictor indices: intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1(VCAM-1), and angiotensin II (Ang II); and apoptosis markers: tumor necrosis factor-α (TNF-α) and caspase-3 as well as the histopathological picture of the cerebellum region of the brain. The results revealed that the combination of niacin and CoQ10 improved most of the measured parameters with variable degrees. In conclusion, niacin and CoQ10 are promising dietary supplements in the management of diabetic encephalopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Northam E, Rankins D, Cameron FJ (2006) Therapy insight: the impact of type 1 diabetes on brain development and function. Nat Clin Pract Neurol 2:78–86

    Article  PubMed  Google Scholar 

  2. Northam EA, Rankins D, Lin A, Wellard RM, Pell GS, Finch SJ (2009) Central nervous system functions in youth with type 1 diabetes 12 years after disease onset. Diabetes Care 32:445–450

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sima AAF, Kamiya H, Lia ZG (2004) Insulin C-peptide, hyperglycemia, and central nervous system complications in diabetes. Eur J Pharmacol 490:187–197

    Article  CAS  PubMed  Google Scholar 

  4. Strachan MWJ, Frier BM, Deary IJ (2003) Type 2 diabetes and cognitive impairment. Diabet Med 20:1–2

    Article  CAS  PubMed  Google Scholar 

  5. Cukierman T, Gerstein HC, Williamson JD (2005) Cognitive decline and dementia in diabetes—systematic overview of prospective observational studies. J Diabetes 48:12–19

    Google Scholar 

  6. Arvanitakis Z, Wilson RS, Bienias JL, Evans DA, Bennett DA (2004) Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Arch Neurol 61:661–666

    Article  PubMed  Google Scholar 

  7. McCall AL (2004) Cerebral glucose metabolism in diabetes mellitus. Eur J Pharmacol 490:147–158

    Article  CAS  PubMed  Google Scholar 

  8. Knopman DS, Boland LL, Mosley T, Howard G, Liao D, Szklo M (2001) Cardiovascular risk factors and cognitive decline in middle-aged adults. Neurology 56:42–48

    Article  CAS  PubMed  Google Scholar 

  9. Röosen P, Nawroth PP, King G, Möller W, Tritschler HJ, Packer L (2001) The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a congress series sponsored by UNESCO-MCBN, the American Diabetes Association, and the German Diabetes Society. Diabetes Metab Res Rev 17:189–212

    Article  Google Scholar 

  10. Vlassara H (1997) Recent progress in advanced glycation end products and diabetic complications. Diabetes 46:S19–S37

    Article  CAS  PubMed  Google Scholar 

  11. Hoyer S (1998) Is sporadic Alzheimer disease the brain type of non-insulin dependent diabetes mellitus? A challenging hypothesis. J Neural Transm 105:412–422

    Article  Google Scholar 

  12. Ashokkumar N, Mohan K, Ramkumar PL (2007) Modulatory effect of N-benzoyl-D-phenylalanine on cholinesterases in rat retinas of neonatal streptozotocin diabetic rats. World J Med Sci 2:39–45

    CAS  Google Scholar 

  13. O’Connor JC, Johnson DR, Freund GG (2006) Psychoneuroimmune implications of type 2 diabetes. Neurol Clin 24:539–559

    Article  PubMed  Google Scholar 

  14. Kierdorf K, Wang Y, Neumann H (2010) Immune-mediated CNS damage. Results Probl Cell Differ 51:173–196

    Article  CAS  PubMed  Google Scholar 

  15. Villalba JM, Parrado C, Santos-Gonzalez M, Alcain FJ (2010) Therapeutic use of coenzyme Q10 and coenzyme Q10-related compounds and formulations. Expert Opin Investig Drugs 19:535–554

    Article  CAS  PubMed  Google Scholar 

  16. Littarru GP, Tiano L, Belardinelli R, Watts GF (2011) Coenzyme Q (10), endothelial function, and cardiovascular disease. Biofactors 37:366–373

    Article  CAS  PubMed  Google Scholar 

  17. Vincent AM, Edwards JL, Sadidi M, Feldman EL (2008) The antioxidant response as a drug target in diabetic neuropathy. Curr Drug Targets 9:94–100

    Article  CAS  PubMed  Google Scholar 

  18. Elam MB (2000) Effect of niacin on lipid and lipoprotein levels and glycemic control in patients with diabetes and peripheral arterial disease: the ADMIT study: a randomized trial. Arterial Disease Multiple Intervention Trial. JAMA 284:1263–1270

    Article  CAS  PubMed  Google Scholar 

  19. Guyton JR (2007) Niacin in cardiovascular prevention: mechanisms, efficacy, and safety. Curr Opin Lipidol 18:415–420

    Article  CAS  PubMed  Google Scholar 

  20. Rosenson RS (2003) Antiatherothrombotic effects of nicotinic acid. Atherosclerosis 171:87–96

    Article  CAS  PubMed  Google Scholar 

  21. Chapman MJ (2004) Raising high-density lipoprotein cholesterol with reduction of cardiovascular risk: the role of nicotinic acid—a position paper developed by the European Consensus Panel on HDL-C. Curr Med Res Opin 20:1253–1268

    Article  CAS  PubMed  Google Scholar 

  22. Chen J (2007) Niaspan increases angiogenesis and improves functional recovery after stroke. Ann Neurol 62:49–58

    Article  CAS  PubMed  Google Scholar 

  23. Ye X, Chopp M, Cui X, Zacharek A, Cui Y, Yan T, Shehadah A, Roberts C et al (2011) Niaspan enhances vascular remodeling after stroke in type 1 diabetic rats. Exp Neurol 232:299–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Serrano-Martín X, Payares G, Mendoza-León A (2006) Glibenclamide, a blocker of K+(ATP) channels, shows antileishmanial activity in experimental murine cutaneous leishmaniasis. Antimicrob Agents Chemother 50:4214–4216

    Article  PubMed  PubMed Central  Google Scholar 

  25. Birks J, Harvey RJ (2006) Birks, Jacqueline (ed) Donepezil for dementia due to Alzheimer’s disease. Cochrane Database Syst Rev 1: CD001190

  26. Steele LS, Glazier RH (1999) Is donepezil effective for treating Alzheimer’s disease? Can Fam Physician 45:917–919

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Noetzli M, Eap CB (2013) Pharmacodynamic, pharmacokinetic and pharmacogenetic aspects of drugs used in the treatment of Alzheimer’s disease. Clin Pharmacokinet 52:225–241

    Article  CAS  PubMed  Google Scholar 

  28. Bhutada P, Mundhada Y, Bansod K, Bhutada C, Tawari S, Dixit P (2010) Ameliorative effect of quercetin on memory dysfunction in streptozotocin-induced diabetic rats. Neurobiol Learn Mem 94:293–302

    Article  CAS  PubMed  Google Scholar 

  29. Coldiron AD, Sanders RA, Watkins JB (2002) Effects of combined quercetin and coenzyme Q(10) treatment on oxidative stress in normal and diabetic rats. J Biochem Mol Toxicol 16:197–202

    Article  CAS  PubMed  Google Scholar 

  30. Yan T, Chopp M, Ye X, Liu Z, Zacharek A, Cui Y, Roberts C, Buller B et al (2012) Niaspan increases axonal remodeling after stroke in type 1 diabetes rats. Neurobiol Dis 46:157–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cheng D, Liang B, Li Y (2013) Antihyperglycemic effect of Ginkgo biloba extract in streptozotocin-induced diabetes in rats. Biomed Res Int 2013:162724

    PubMed  Google Scholar 

  32. Sonkusare S, Srinivasan K, Kaul C, Ramarao P (2005) Effect of donepezil and lercanidipine on memory impairment induced by intracerebroventricular streptozotocin in rats. Life Sci 77:1–14

    Article  CAS  PubMed  Google Scholar 

  33. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  CAS  PubMed  Google Scholar 

  34. Nishikimi M, Rae NA, Yagi K (1972) The occurrence of superoxide anion in the action of reduced phenazine methosulphate and molecular oxygen. Biochem Biophys Res Commun 46:849–853

    Article  CAS  PubMed  Google Scholar 

  35. Moron MS, Depierre JW, Mannervik B (1979) Level of glutathione, glutathione reductase and glutathione-S-transferase activities in rat lung and liver. Biochim Biophys Acta 582:67–78

    Article  CAS  PubMed  Google Scholar 

  36. Bancroft J, Stevens A (1996) Theory and practice of histological techniques, 4th edn. Churchil Livingstone, Edinburgh

    Google Scholar 

  37. Akbarzadeh A, Norouzian D, Mehrabi MR, Jamshidi SH, Farhangi A, Allah Verdi A, Mofidian SMA, Lame Rad B (2007) Induction of diabetes by streptozotocin in rats. Indian J Clin Biochem 22:60–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hussein J, Abo El-Matty D, El-Khayat Z, Abd El-Latif Y (2012) Brain neurotransmitters in diabetic rats treated with coenzyme Q10. Int J Pharm Pharm Sci 4:554–556

    Google Scholar 

  39. Modi KP, Vishwakarma SL, Goyal RK, Bhatt PA (2006) Beneficial effects of coenzyme Q10 in streptozotocin-induced type I diabetic rats. Iran J Pharmacol Ther 5:61–65

    Google Scholar 

  40. Maiese K, Chong ZZ, Hou J, Shang YC (2009) The vitamin nicotinamide: translating nutrition into clinical care. Molecules 14:3446–3485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Olmos PR, Hodgson MI, Maiz A, Manrique M, De Valdes MD, Foncea R, Acosta AM, Emmerich MV et al (2006) Nicotinamide protected first-phase insulin response (FPIR) and prevented clinical disease in first-degree relatives of type-1 diabetics. Diabetes Res Clin Pract 71:320–333

    Article  CAS  PubMed  Google Scholar 

  42. Cutuli D, De Bartolo P, Caporali P, Tartaglione AM, Oddi D, D’Amato FR, Nobili A, D’Amelio M et al (2013) Neuroprotective effects of donepezil against cholinergic depletion. Alzheimers Res Ther 5:50

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gallego M, Setién R, Izquierdo MJ, Casis O, Casis E (2003) Diabetes-induced biochemical changes in central and peripheral catecholaminergic systems. Physiol Res 52:735–741

    CAS  PubMed  Google Scholar 

  44. Ezzeldin E, Souror WAH, El-Nahhas T, Soudi ANMM, Shahat AA (2014) Biochemical and neurotransmitters changes associated with tramadol in streptozotocin-induced diabetes in rats. Bio Med Res Internat 2014

  45. Wadsworth TL, Bishop JA, Pappu AS, Woltjer RL, Quinn JF (2010) Evaluation of coenzyme Q as an antioxidant strategy for Alzheimer’s disease. J Alzheimers Dis 14:225–234

    Article  Google Scholar 

  46. Abdel-Salam OM, Salem NA, Hussein JS (2011) Effect of aspartame on oxidative stress and monoamine neurotransmitter levels in lipopolysaccharide-treated mice. Neurotoxicology 11:9264–9269

    Google Scholar 

  47. Xu R, Yang R, Hu H, Xi Q, Hui Wan H, Wu Y (2013) Diabetes alters the expression of partial vasoactivators in cerebral vascular disease susceptible regions of the diabetic rat. Diabetol Metab Syndr 5:63

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pastore L, Tessitore A, Martinotti S, Toniato E, Alesse E, Bravi MC, Ferri C, Desideri G et al (1999) Angiotensin II stimulates intercellular adhesion molecule-1 (ICAM-1) expression by human vascular endothelial cells and increases soluble ICAM-1 release in vivo. Circulation 100:1646–1652

    Article  CAS  PubMed  Google Scholar 

  49. Tummala PD, Chen XL, Sundell CL, Laursen JB, Hammes CP, Alexander RW, Harrison DG, Medford RM (1999) Angiotensin II induces vascular cell adhesion molecule-1 expression in rat vasculature. A potential link between the renin-angiotensin system and atherosclerosis. Circulation 100:1223–1229

    Article  CAS  PubMed  Google Scholar 

  50. Jing L, Wang JG, Zhang JZ, Cao CX, Chang Y, Dong JD, Guo FY, Li PA (2014) Upregulation of ICAM-1 in diabetic rats after transient forebrain ischemia and reperfusion injury. J Inflamm 11:35

    Article  Google Scholar 

  51. Liang B, Wang X, Zhang N, Yang H, Bai R, Liu M, Bian Y, Xiao C et al (2015) Angiotensin-(1–7) attenuates angiotensin II-induced ICAM-1, VCAM-1, and MCP-1 expression via the MAS receptor through suppression of P38 and NF-κB pathways in HUVECs. Cell Physiol Biochem 35:2472–2482

    Article  CAS  PubMed  Google Scholar 

  52. Tsuneki H, Tokai E, Suzuki T, Seki T, Okubo K, Wada T, Okamoto T, Koya S et al (2013) Protective effects of coenzyme Q10 against angiotensin II-induced oxidative stress in human umbilical vein endothelial cells. Eur J Pharmacol 701:218–227

    Article  CAS  PubMed  Google Scholar 

  53. Yamashita K, Takahashi A, Kobayashi S, Hirata H, Mesner PW Jr, Kaufmann SH, Yonehara S, Yamamoto K et al (1999) Caspases mediate tumor necrosis factor-α–induced neutrophil apoptosis and downregulation of reactive oxygen production. Blood 93:674–685

    CAS  PubMed  Google Scholar 

  54. Hassan AI, Ghoneim MAM (2013) A possible inhibitory effect of Physalis (Physalis pubescens L.) on diabetes in male rats. World Appl Sci J 21:681–688

    CAS  Google Scholar 

  55. Sanoobar M, Eghtesadi S, Azimi A, Mohammad K (2013) Coenzyme Q10 supplementation reduces oxidative stress and increases antioxidant enzyme activity in patients with relapsing–remitting multiple sclerosis. Int J Neurosci 123:776–782

    Article  CAS  PubMed  Google Scholar 

  56. Si Y, Zhang Y, Zhao J, Guo S, Zhai L, Yao S, Sang H, Yang N et al (2014) Niacin inhibits vascular inflammation via downregulating nuclear transcription factor-κB signaling pathway. Mediators Inflamm 2014:1–12

    Article  Google Scholar 

  57. Hashish HA (2015) Alteration of glial fibrillary acidic protein immunoreactivity in astrocytes of the cerebellum of diabetic rats and potential effect of insulin and ginger. Anat Physiol 5:1

    Google Scholar 

  58. Francés DE, Ronco MT, Monti JA, Ingaramo PI, Pisani GB et al (2010) Hyperglycemia induces apoptosis in rat liver through the increase of hydroxyl radical: new insights into the insulin effect. J Endocrinol 205:187–200

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manal A. Hamed.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s12035-017-0488-4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motawi, T.K., Darwish, H.A., Hamed, M.A. et al. A Therapeutic Insight of Niacin and Coenzyme Q10 Against Diabetic Encephalopathy in Rats. Mol Neurobiol 54, 1601–1611 (2017). https://doi.org/10.1007/s12035-016-9765-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9765-x

Keywords

Navigation