Molecular Neurobiology

, Volume 54, Issue 3, pp 1906–1918 | Cite as

Neuroprotective Effect of Nanodiamond in Alzheimer’s Disease Rat Model: a Pivotal Role for Modulating NF-κB and STAT3 Signaling

  • Shawqi H. AlawdiEmail author
  • Ezzeldin S. El-Denshary
  • Marwa M. Safar
  • Housam Eidi
  • Marie-Odile David
  • Mosaad A. Abdel-WahhabEmail author


Current therapeutic approaches of Alzheimer’s disease (AD) are symptomatic and of modest efficacy, and there is no available effective cure or prevention of AD; hence, the need arise to search for neuroprotective agents to combat AD. The current study aimed at investigating the neuroprotective effect of nanodiamond (ND), adamantine-based nanoparticles, in aluminum-induced cognitive impairment in rats, an experimental model of AD. AD was induced by aluminum chloride (17 mg/kg, p.o. for 6 weeks) and confirmed by Morris water maze and Y-maze behavioral tests. Biochemical and histological analyses of the hippocampus were also performed. Aluminum-treated rats showed behavioral, biochemical, and histological changes similar to those associated with AD. ND improved learning and memory and reversed histological alterations. At the molecular levels, ND mitigated the increase of hippocampal beta-amyloid (Aβ42) and beta-site amyloid precursor protein cleaving enzyme-1 (BACE1) together with down-regulation of phosphorylated tau protein. It also modulated the excitatory glutamate neurotransmitter level. Furthermore, ND boosted the brain-derived neurotrophic factor (BDNF) and mitochondrial transcription factor-A (TFAM), suppressed the proinflammatory cytokine tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), and curbed oxidative stress by hampering of inducible nitric oxide synthase (iNOS). Moreover, ND augmented the hippocampal levels of phosphorylated signal transducer and activator of transcription-3 (p-STAT3) and B cell leukemia/lymphoma-2 (Bcl-2) anti-apoptotic protein while diminished nuclear factor-kappaB (NF-κB) and caspase-3 (casp-3) expression. These findings indicate the protective effect of ND against memory deficits and AD-like pathological aberrations probably via modulating NF-kB and STAT3 signaling, effects mediated likely by modulating N-methyl-D-aspartate (NMDA) receptors.


Nanodiamond Alzheimer’s disease STAT3 Bcl2 NF-κB Aluminum 



Alzheimer’s disease


Amyloid beta 1–42


Aluminum chloride


Beta site amyloid precursor protein cleaving enzyme-1


Brain-derived neurotrophic factor


B cell leukemia/lymphoma 2


Bcl-2-associated X protein






Glycogen synthase kinase-3


Inducible nitric oxide synthase






Morris water maze




Nuclear factor kappa-B




Phosphorylated signal transducer and activator of transcription-3


Phosphorylated tau protein


Mitochondrial transcription factor A


Tumor necrosis factor alpha


Tyrosine receptor kinase B



The authors are grateful to Dr. Adel Kholoussy (Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Egypt) for his assistance in histopathology and Dr. Waleed Ali (Department of Biochemistry, Faculty of Medicine, Cairo University, Egypt) for his assistance in biochemical analysis. Author Shawqi Alawdi would also like to thank Thamar University, Yemen, for supporting his PhD study.

Compliance with Ethical Standards

All animal procedures were performed in accordance with the ethical procedures and policies approved by the Research Ethics Committee for Experimental and Clinical Studies of Faculty of Pharmacy, Cairo University, Egypt, and comply with the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH publication no. 85–23, revised 1996). All efforts were exerted to minimize animal suffering.

Conflict of Interest

The authors declare that there are no conflicts of interest in this work.


  1. 1.
    Querfurth HW, Laferla FM (2010) Alzheimer’s disease. N Engl J Med 362:329–344CrossRefPubMedGoogle Scholar
  2. 2.
    Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766PubMedGoogle Scholar
  3. 3.
    Braak H, Braak E, Bohl J (1993) Staging of Alzheimer-related cortical destruction. Eur Neurol 33:403–408CrossRefPubMedGoogle Scholar
  4. 4.
    Mu Y, Gage FH (2011) Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol Neurodegener 6:85CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hampel H, Prvulovic D, Teipel S, Jessen F, Luckhaus C, Frolich L, Riepe MW, Dodel R, Leyhe T, Bertram L, Hoffmann W, Faltraco F (2011) The future of Alzheimer’s disease: the next 10 years. Prog Neurobiol 95(4):718–728CrossRefPubMedGoogle Scholar
  6. 6.
    Nazem A, Mansoori GA (2008) Nanotechnology solutions for Alzheimer’s disease: advances in research tools, diagnostic methods and therapeutic agents. J Alzheimers Dis 13(2):199–223CrossRefPubMedGoogle Scholar
  7. 7.
    Kaur R, Badea I (2013) Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems. Int J Nanomedicine 8:203–220CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zhang XY, Fu CK, Feng L, Ji Y, Tao L, Huang Q, Li SX, Wei Y (2012) PEGylation and polyPEGylation of nanodiamond. Polymer 53(15):3178CrossRefGoogle Scholar
  9. 9.
    Mansoori GA (2007) Diamondoid molecules. Adv Chem Phys 136:207–258Google Scholar
  10. 10.
    Reisberg B, Doody R, Stoffler A, Schmitt F, Ferris S, Mobius HJ (2003) Memantine in moderate-to-severe Alzheimer’s disease. N Engl J Med 348(14):1333–1341CrossRefPubMedGoogle Scholar
  11. 11.
    Lipton SA (2004) Paradigm shift in NMDA receptor antagonist drug development: molecular mechanism of uncompetitive inhibition by memantine in the treatment of Alzheimer’s disease and other neurologic disorders. J Alzheimers Dis 6(6):S61–S74PubMedGoogle Scholar
  12. 12.
    Shuchang H, Qiao N, Piye N, Mingwei H, Xiaoshu S, Feng S, Sheng W, Opler M (2008) Protective effects of gastrodia elata on aluminium-chloride-induced learning impairments and alterations of amino acid neurotransmitter release in adult rats. Restor Neurol Neurosci 26(6):467–473PubMedPubMedCentralGoogle Scholar
  13. 13.
    Eidi H, David MO, Crépeaux G, Henry L, Joshi V, Berger MH, Sennour M, Cadusseau J, Gherardi RK, Curmi PA (2015) Fluorescent nanodiamonds as a relevant tag for the assessment of alum adjuvant particle biodisposition. BMC Med 13:144CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Huang YA, Kao CW, Liu KK, Huang HS, Chiang MH, Soo CR, Chang HC, Chiu TW, Chao JI, Hwang E (2014) The effect of fluorescent nanodiamonds on neuronal survival and morphogenesis. Sci Rep 4:6919CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Chen YC, Lee DC, Hsiao CY, Chung YF, Chen HC, Thomas JP, Pong WF, Tai NH, Lin IN, Chiu IM (2009) The effect of ultra-nanocrystalline diamond films on the proliferation and differentiation of neural stem cells. Biomaterials 30(20):3428–3435CrossRefPubMedGoogle Scholar
  16. 16.
    Thalhammer A, Edgington RJ, Cingolani LA, Schoepfer R, Jackman RB (2010) The use of nanodiamond monolayer coatings to promote the formation of functional neuronal networks. Biomaterials 31(8):2097–2104CrossRefPubMedGoogle Scholar
  17. 17.
    Wu MS, Sun DS, Lin YC, Cheng CL, Hung SC, Chen PK, Yang JH, Chang HH (2015) Nanodiamonds protect skin from ultraviolet B-induced damage in mice. J Nanobiotechnol 13:35CrossRefGoogle Scholar
  18. 18.
    Walton JR (2014) Chronic aluminum intake causes Alzheimer’s disease: applying Sir Austin Bradford Hill’s causality criteria. J Alzheimers Dis 40(4):765–838PubMedGoogle Scholar
  19. 19.
    Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11(1):47–60CrossRefPubMedGoogle Scholar
  20. 20.
    Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1(2):848–858CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Nunez J (2008) Morris water maze experiment. J Vis Exp 19:897Google Scholar
  22. 22.
    Van der Borght K, Havekes R, Bos T, Eggen BJ, Van der Zee EA (2007) Exercise improves memory acquisition and retrieval in the Y-maze task: relationship with hippocampal neurogenesis. Behav Neurosci 121(2):324–334CrossRefPubMedGoogle Scholar
  23. 23.
    Hidaka N, Suemaru K, Takechi K, Li B, Araki H (2011) Inhibitory effects of valproate on impairment of Y-maze alternation behavior induced by repeated electroconvulsive seizures and c-Fos protein levels in rat brains. Acta Med Okayama 65(4):269–277PubMedGoogle Scholar
  24. 24.
    Llansola M, Minana MD, Montoliu C, Saez R, Corbalan R, Manzo L, Felipo V (1999) Prenatal exposure to aluminum reduces expression of neuronal nitric oxide synthase and of soluble guanylate cyclase and impairs glutamatergic neuro-transmission in rat cerebellum. J Neurochem 73:712–718CrossRefPubMedGoogle Scholar
  25. 25.
    Zhao Y, Hill JM, Bhattacharjee S, Percy ME, Pogue AI, Lukiw WJ (2014) Aluminum-induced amyloidogenesis and impairment in the clearance of amyloid peptides from the central nervous system in Alzheimer’s disease. Front Neurol 5:167CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Karin M (2009) NF-kappaB as a critical link between inflammation and cancer. Cold Spring Harb Perspect Biol 1:a000141CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Brasier AR (2010) The nuclear factor-kappaB-interleukin-6 signalling pathway mediating vascular inflammation. Cardiovasc Res 86(2):211–118CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    McFarland BC, Gray GK, Nozell SE, Hong SW, Benveniste EN (2013) Activation of the NF-κB pathway by the STAT3 inhibitor JSI-124 in human glioblastoma cells. Mol Cancer Res 11(5):494–505CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Tamagno E, Guglielmotto M, Monteleone D, Vercelli A, Tabaton M (2012) Transcriptional and post-transcriptional regulation of β-secretase. IUBMB Life 64(12):943–950CrossRefPubMedGoogle Scholar
  30. 30.
    Shen W, Zhang C, Zhang G (2002) Nuclear factor kappaB activation is mediated by NMDA and non-NMDA receptor and L-type voltage-gated Ca(2+) channel following severe global ischemia in rat hippocampus. Brain Res 933(1):23–30CrossRefPubMedGoogle Scholar
  31. 31.
    Guo Z, Jiang H, Xu X, Duan W, Mattson MP (2008) Leptin-mediated cell survival signaling in hippocampal neurons mediated by JAK STAT3 and mitochondrial stabilization. J Biol Chem 283:1754–1763CrossRefPubMedGoogle Scholar
  32. 32.
    Park KW, Nozell SE, Benveniste EN (2012) Protective role of STAT3 in NMDA and glutamate-induced neuronal death: negative regulatory effect of SOCS3. PLoS One 7(11), e50874CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Marrero MB, Lucas R, Salet C, Hauser TA, Mazurov A, Lippiello PM, Bencherif M (2010) An alpha7 nicotinic acetylcholine receptor selective agonist reduces weight gain and metabolic changes in a mouse model of diabetes. J Pharmacol Exp Ther 332:173–180CrossRefPubMedGoogle Scholar
  34. 34.
    Ghribi O, Herman MM, Forbes MS, DeWitt DA, Savory J (2001) GDNF protects against aluminum-induced apoptosis in rabbits by upregulating Bcl-2 and Bcl-XL and inhibiting mitochondrial Bax translocation. Neurobiol Dis 8(5):764–773CrossRefPubMedGoogle Scholar
  35. 35.
    Fiandalo MV, Kyprianou N (2012) Caspase control: protagonists of cancer cell apoptosis. Exp Oncol 34(3):165–175PubMedPubMedCentralGoogle Scholar
  36. 36.
    Cheng EH, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T, Korsmeyer SJ (2001) Bcl-2, Bcl-X(L) sequester BH3 domain-only molecules preventing Bax- and Bak-mediated mitochondrial apoptosis. Mol Cell 8:705–711CrossRefPubMedGoogle Scholar
  37. 37.
    Zou H, Li Y, Liu X, Wang X (1999) An APAF-1 cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 274:11549–11556CrossRefPubMedGoogle Scholar
  38. 38.
    Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB, Korsmeyer SJ (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292:727–730CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ohtsuka T, Buchsbaum D, Oliver P, Makhija S, Kimberly R, Zhou T (2003) Synergistic induction of tumor cell apoptosis by death receptor antibody and chemotherapy agent through JNK/p38 and mitochondrial death pathway. Oncogene 22:2034–2044CrossRefPubMedGoogle Scholar
  40. 40.
    Shaw S, Bencherif M, Marrero MB (2002) Janus kinase 2, an early target of alpha 7 nicotinic acetylcholine receptor-mediated neuroprotection against abeta-(1–42) amyloid. J Biol Chem 277:44920–44924CrossRefPubMedGoogle Scholar
  41. 41.
    Vardy ER, Catto AJ, Hooper NM (2005) Proteolytic mechanisms in amyloid-beta metabolism: therapeutic implications for Alzheimer’s disease. Trends Mol Med 11:464–472CrossRefPubMedGoogle Scholar
  42. 42.
    Li R, Lindholm K, Yang LB, Yue X, Citron M, Yan R, Beach T, Sue L, Sabbagh M, Cai H, Wong P, Price D, Shen Y (2004) Amyloid beta peptide load is correlated with increased beta-secretase activity in sporadic Alzheimer’s disease patients. Proc Natl Acad Sci U S A 101:3632–3637CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Harada H, Tamaoka A, Ishii K, Shoji S, Kametaka S, Kametani F, Saito Y, Murayama S (2006) Beta-site APP cleaving enzyme 1 (BACE1) is increased in remaining neurons in Alzheimer’s disease brains. Neurosci Res 54:24–29CrossRefPubMedGoogle Scholar
  44. 44.
    Zhao J, Fu Y, Yasvoina M, Shao P, Hitt B, O’Connor T, Logan S, Maus E, Citron M, Berry R, Binder L, Vassar R (2007) Beta-site amyloid precursor protein cleaving enzyme 1 levels become elevated in neurons around amyloid plaques: implications for Alzheimer’s disease pathogenesis. J Neurosci 27:3639–3649CrossRefPubMedGoogle Scholar
  45. 45.
    Alexandrov PN, Zhao Y, Jones BM, Bhattacharjee S, Lukiw WJ (2013) Expression of the phagocytosis-essential protein TREM2 is down-regulated by an aluminum-induced miRNA-34a in a murine microglial cell line. J Inorg Biochem 128:267–269CrossRefPubMedGoogle Scholar
  46. 46.
    Patrick GN, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, Tsai LH (1999) Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402(6762):615–622CrossRefPubMedGoogle Scholar
  47. 47.
    Park SY, Ferreira A (2005) The generation of a 17 kDa neurotoxic fragment: an alternative mechanism by which tau mediates beta amyloid-induced neurodegeneration. J Neurosci 25(22):5365–5375CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Reifert J, Hartung-Cranston D, Feinstein SC (2011) Amyloid beta-mediated cell death of cultured hippocampal neurons reveals extensive tau fragmentation without increased full-length tau phosphorylation. J Biol Chem 286(23):20797–20811CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Kawahara M (2010) Neurotoxicity of β-amyloid protein: oligomerization, channel formation, and calcium dyshomeostasis. Curr Pharm Des 16(25):2779–2789CrossRefPubMedGoogle Scholar
  50. 50.
    Kawahara M, Kato-Negishi M (2011) Link between aluminum and the pathogenesis of Alzheimer’s disease: the integration of the aluminum and amyloid cascade hypotheses. Int J Alzheimers Dis: 276393Google Scholar
  51. 51.
    Revett TJ, Baker GB, Jhamandas J, Kar S (2013) Glutamate system, amyloid ss peptides and tau protein: functional interrelationships and relevance to Alzheimer disease pathology. J Psychiatry Neurosci 38(1):6–23CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Tsunoda M, Sharma RP (1999) Modulation of tumor necrosis factor alpha expression in mouse brain after exposure to aluminum in drinking water. Arch Toxicol 73(8–9):419–426CrossRefPubMedGoogle Scholar
  53. 53.
    Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R, Sonobe Y, Mizuno T, Suzumura A (2006) Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem 281(30):21362–21368CrossRefPubMedGoogle Scholar
  54. 54.
    Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140(6):918–934CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Rubio-Perez JM, Morillas-Ruiz JM (2012) A review: inflammatory process in Alzheimer’s disease, role of cytokines. Sci World J. 756357Google Scholar
  56. 56.
    de Jonge WJ, van der Zanden EP, The FO, Bijlsma MF, van Westerloo DJ, Bennink RJ, Berthoud HR, Uematsu S, Akira S, van den Wijngaard RM, Boeckxstaens GE (2005) Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat Immunol 6(8):844–851CrossRefPubMedGoogle Scholar
  57. 57.
    Jones E, Adcock IM, Ahmed BY, Punchard NA (2007) Modulation of LPS stimulated NF-kappaB mediated nitric oxide production by PKCε and JAK2 in RAW macrophages. J Inflamm (Lond) 4:23CrossRefGoogle Scholar
  58. 58.
    Parathath SR, Parathath S, Tsirka SE (2005) Nitric oxide mediates neurodegeneration and breakdown of the blood–brain barrier in tPA-dependent excitotoxic injury in mice. J Cell Sci 119:339–349CrossRefGoogle Scholar
  59. 59.
    Poderoso JJ (2009) The formation of peroxynitrite in the applied physiology of mitochondrial nitric oxide. Arch Biochem Biophys 484(2):214–220CrossRefPubMedGoogle Scholar
  60. 60.
    Diniz BS, Teixeira AL (2011) Brain-derived neurotrophic factor and Alzheimer’s disease: physiopathology and beyond. Neuromol Med 13(4):217–222CrossRefGoogle Scholar
  61. 61.
    Miranda C, Fumagalli T, Anania MC, Vizioli MG, Pagliardini S, Pierotti MA, Greco A (2010) Role of STAT3 in in vitro transformation triggered by TRK oncogenes. PLoS One 5(3), e9446CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Park SJ, Shin EJ, Min SS, An J, Li Z, Hee Chung Y, Hoon Jeong J, Bach JH, Nah SY, Kim WK, Jang CG, Kim YS, Nabeshima Y, Nabeshima T, Kim HC (2013) Inactivation of JAK2/STAT3 signaling axis and downregulation of M1 mAChR cause cognitive impairment in klotho mutant mice, a genetic model of aging. Neuropsychopharmacology 38(8):1426–1437CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Chen TJ, Cheng HM, Wang DC, Hung HS (2011) Nonlethal aluminum maltolate can reduce brain-derived neurotrophic factor-induced Arc expression through interrupting the ERK signaling in SH-SY5Y neuroblastoma cells. Toxicol Lett 200(1–2):67–76CrossRefPubMedGoogle Scholar
  64. 64.
    Kang D, Kim SH, Hamasaki N (2007) Mitochondrial transcription factor A (TFAM): roles in maintenance of mtDNA and cellular functions. Mitochondrion 7:39–44CrossRefPubMedGoogle Scholar
  65. 65.
    Xu S, Zhong M, Zhang L, Wang Y, Zhou Z, Hao Y, Zhang W, Yang X, Wei A, Pei L, Yu Z (2009) Overexpression of Tfam protects mitochondria against β-amyloid-induced oxidative damage in SH-SY5Y cells. FEBS J 276:3800–3809CrossRefPubMedGoogle Scholar
  66. 66.
    Ikeuchi M, Matsusaka H, Kang D, Matsushima S, Ide T, Kubota T, Fujiwara T, Hamasaki N, Takeshita A, Sunagawa K, Tsutsui H (2005) Overexpression of mitochondrial transcription factor A ameliorates mitochondrial deficiencies and cardiac failure after myocardial infarction. Circulation 112:683–690CrossRefPubMedGoogle Scholar
  67. 67.
    Hayashi Y, Yoshida M, Yamato M, Ide T, Wu Z, Ochi-Shindou M, Kanki T, Kang D, Sunagawa K, Tsutsui H, Nakanishi H (2008) Reverse of age-dependent memory impairment and mitochondrial DNA damage in microglia by an overexpression of human mitochondrial transcription factor a in mice. J Neurosci 28:8624–8634CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Shawqi H. Alawdi
    • 1
    • 2
    Email author
  • Ezzeldin S. El-Denshary
    • 2
  • Marwa M. Safar
    • 2
  • Housam Eidi
    • 3
  • Marie-Odile David
    • 3
  • Mosaad A. Abdel-Wahhab
    • 4
    Email author
  1. 1.Department of Pharmacy, Faculty of Medicine and Health SciencesThamar UniversityDhamarYemen
  2. 2.Department of Pharmacology and Toxicology, Faculty of PharmacyCairo UniversityCairoEgypt
  3. 3.Laboratory of Structure and Activity of Normal and Pathological Biomolecules (SABNP), INSERM U1204Evry-Val d’Essonne UniversityEvryFrance
  4. 4.Department of Food Toxicology and ContaminantsNational Research CenterCairoEgypt

Personalised recommendations