Skip to main content

Advertisement

Log in

Oxidative Stress Markers in Vitamin B12 Deficiency

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In this study, we report the status of oxidative stress markers in vitamin B12 deficiency and their relation to clinical, laboratory, and neurophysiological findings. Fifty-one subjects with serum vitamin B12 deficiency (<211 pg/ml) were included. Plasma glutathione (GSH), malondialdehyde (MDA) and serum total antioxidant capacity (TAC) were measured in the patients and 53 controls. These markers were also compared between subacute combined degeneration (SACD) and non-SACD vitamin B12 deficiency patients groups as well as with normal controls. In the patients, GSH, MDA and TAC were correlated with demographic, clinical, hematological, biochemical, nerve conduction study (NCS), visual evoked potential (VEP) and somatosensory-evoked potential (SEP) findings. In the study group, 20 (39.2 %) patients had SACD manifesting with myeloneuropathy, cognitive or behavioral abnormalities, and 31(60.8 %) patients had non-SACD neurological manifestations. The GSH (2.46 ± 0.32 vs. 2.70 ± 0.36 mg/dl; P = 0.002) and TAC (2.13 ± 0.38 vs. 2.33 ± 0.24 nmol Trolox eq/l, P = 0.005) levels were lower, and MDA levels (4.01 ± 0.69 vs. 3.00 ± 0.45 nmol/ml, P < 0.001) were higher in B12 deficiency group compared with controls. Similar trend was found in SACD and non-SACD vitamin B12 deficiency groups. GSH levels correlated with abnormal VEP (r = 0.54; P < 0.01), TAC with female gender (r = 0.43; P = 0.002) and joint position impairment (r = −0.34; P = 0.01), and MDA with LDH (r = 0.41; P = 0.01). Vitamin B12 deficiency was associated with reduction in GSH and TAC and increase in MDA levels which were more marked in SACD compared to non-SACD group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Misra UK, Kalita J (2007) Comparison of clinical and electrodiagnostic features in B12 deficiency neurological syndromes with and without antiparietal cell antibodies. Postgrad Med J 83(976):124–127. doi:10.1136/pgmj.2006.048132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Healton EB, Savage DG, Brust JC, Garrett TJ, Lindenbaum J (1991) Neurologic aspects of cobalamin deficiency. Medicine 70(4):229–245

    Article  CAS  PubMed  Google Scholar 

  3. Misra UK, Kalita J, Kumar G, Kapoor R (2008) Bladder dysfunction in subacute combined degeneration: a clinical, MRI and urodynamic study. J Neurol 255(12):1881–1888. doi:10.1007/s00415-009-0812-7

    Article  CAS  PubMed  Google Scholar 

  4. Kalita J, Agarwal R, Chandra S, Misra UK (2013) A study of neurobehavioral, clinical psychometric, and P3 changes in vitamin B12 deficiency neurological syndrome. Nutr Neurosci 16(1):39–46. doi:10.1179/1476830512Y.0000000028

    Article  CAS  PubMed  Google Scholar 

  5. Herrmann W, Schorr H, Purschwitz K, Rassoul F, Richter V (2001) Total homocysteine, vitamin B(12), and total antioxidant status in vegetarians. Clin Chem 47(6):1094–1101

    CAS  PubMed  Google Scholar 

  6. Scalabrino G (2005) Cobalamin (vitamin B(12)) in subacute combined degeneration and beyond: traditional interpretations and novel theories. Exp Neurol 192(2):463–479. doi:10.1016/j.expneurol.2004.12.020

    Article  CAS  PubMed  Google Scholar 

  7. Scalabrino G (2001) Subacute combined degeneration one century later. The neurotrophic action of cobalamin (vitamin B12) revisited. J Neuropathol Exp Neurol 60(2):109–120

    Article  CAS  PubMed  Google Scholar 

  8. Scalabrino G, Veber D, Mutti E (2008) Experimental and clinical evidence of the role of cytokines and growth factors in the pathogenesis of acquired cobalamin-deficient leukoneuropathy.Brainresearchreviews59(1):42-54. oi:10.1016/j.brainresrev.2008.05.001

  9. Selvi R, Angayarkanni N, Biswas J, Ramakrishnan S (2011) Total antioxidant capacity in Eales’ disease, uveitis & cataract. Indian J Med Res 134:83–90

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hadzovic-Dzuvo A, Lepara O, Valjevac A, Avdagic N, Hasic S, Kiseljakovic E, Ibragic S, Alajbegovic A (2011) Serum total antioxidant capacity in patients with multiple sclerosis. Bosnian journal of basic medical sciences / Udruzenje basicnih mediciniskih znanosti = Association of Basic Medical Sciences 11(1):33–36

    CAS  Google Scholar 

  11. Naderi M, Hashemi M, Mehdizadeh A, Mehrabifar H, Kouhpayeh HR, Ansari H, Moazeni-Roudi A, Bahari G et al (2010) Serum adenosine deaminase activity and the total antioxidant capacity of plasma in pulmonary tuberculosis and non-tuberculosis pulmonary disease. Turk J Med Sci 40(5):701–706

    CAS  Google Scholar 

  12. Pierre V, George B (1968) The Handbook of Clinical Neurology, volume 1. Elsiver, New York

    Google Scholar 

  13. Haider L, Fischer MT, Frischer JM, Bauer J, Hoftberger R, Botond G, Esterbauer H, Binder CJ et al (2011) Oxidative damage in multiple sclerosis lesions. Brain 134(Pt 7):1914–1924. doi:10.1093/brain/awr128

    Article  PubMed  PubMed Central  Google Scholar 

  14. Crum RM, Anthony JC, Bassett SS, Folstein MF (1993) Population-based norms for the mini-mental state examination by age and educational level. JAMA 269(18):2386–2391

    Article  CAS  PubMed  Google Scholar 

  15. Pandey S, Kalita J, Misra UK (2004) A sequential study of visual evoked potential in patients with vitamin B12 deficiency neurological syndrome. Clin Neurophysiol 115(4):914–918. doi:10.1016/j.clinph.2003.11.013

    Article  CAS  PubMed  Google Scholar 

  16. Kalita J, Chandra S, Bhoi SK, Agarwal R, Misra UK, Shankar SK, Mahadevan A (2014) Clinical, nerve conduction and nerve biopsy study in vitamin B12 deficiency neurological syndrome with a short-term follow-up. Nutr Neurosci 17(4):156–163. doi:10.1179/1476830513Y.0000000073

    Article  CAS  PubMed  Google Scholar 

  17. Tietze F (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 27(3):502–522

    Article  CAS  PubMed  Google Scholar 

  18. Koracevic D, Koracevic G, Djordjevic V, Andrejevic S, Cosic V (2001) Method for the measurement of antioxidant activity in human fluids. J Clin Pathol 54(5):356–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Janero DR (1990) Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med 9(6):515–540

    Article  CAS  PubMed  Google Scholar 

  20. Solomon LR (2015) Functional cobalamin (vitamin B12) deficiency: role of advanced age and disorders associated with increased oxidative stress. European journal of clinical nutrition. doi:10.1038/ejcn.2014.272

  21. Werder SF (2010) Cobalamin deficiency, hyperhomocysteinemia, and dementia. Neuropsychiatr Dis Treat 6:159–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shujin Wu XG, ShehuaYang, Min Meng, Xiaolai Yang, Bin Ge (2015) The role of endoplasmic reticulum stress in endothelial dysfunction induced by homocysteine thiolactone. Fundamental & Clinical Pharmacology

  23. Konukoglu D, Serin O, Turhan MS (2005) Plasma total homocysteine concentrations in obese and non-obese female patients with type 2 diabetes mellitus; its relations with plasma oxidative stress and nitric oxide levels. Clin Hemorheol Microcirc 33(1):41–46

    CAS  PubMed  Google Scholar 

  24. Singh SK, Misra UK, Kalita J, Bora HK, Murthy RC (2015) Nitrous oxide related behavioral and histopathological changes may be related to oxidative stress. Neurotoxicology. doi:10.1016/j.neuro.2015.03.003

  25. Rodrigo R, Libuy M, Feliu F, Hasson D (2013) Oxidative stress-related biomarkers in essential hypertension and ischemia-reperfusion myocardial damage. Dis Markers 35(6):773–790. doi:10.1155/2013/974358

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wickramasinghe SN (1999) The wide spectrum and unresolved issues of megaloblastic anemia. Semin Hematol 36(1):3–18

    CAS  PubMed  Google Scholar 

  27. Misra UK, Kalita J, Vajpayee A, Phadke RV, Hadique A, Savlani V (2007) Effect of single mannitol bolus in intracerebral hemorrhage. Eur J Neurol 14(10):1118–1123. doi:10.1111/j.1468-1331.2007.01918.x

    Article  CAS  PubMed  Google Scholar 

  28. Massudi H, Grant R, Braidy N, Guest J, Farnsworth B, Guillemin GJ (2012) Age-associated changes in oxidative stress and NAD+ metabolism in human tissue. PloS One 7(7):e42357. doi:10.1371/journal.pone.0042357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We acknowledge the Indian Council of Medical Research, Government of India, for supporting senior research fellowship to Mr. Sandeep Kumar Singh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Usha Kant Misra.

Ethics declarations

Ethics Approval

The study was approved by the Institution Ethics Committee, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India (IEC code 2014-49-IP-75).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misra, U.K., Kalita, J., Singh, S.K. et al. Oxidative Stress Markers in Vitamin B12 Deficiency. Mol Neurobiol 54, 1278–1284 (2017). https://doi.org/10.1007/s12035-016-9736-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9736-2

Keywords

Navigation