Skip to main content

Advertisement

Log in

Transcriptional Regulation of Human Transforming Growth Factor-α in Astrocytes

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Transforming growth factor-alpha (TGF-α) is known to play multifunctional roles in the central nervous system (CNS), including the provision of neurotropic properties that protect neurons against various neurotoxic insults. Previously, we reported that TGF-α mediates estrogen-induced enhancement of glutamate transporter GLT-1 function in astrocytes. However, the regulatory mechanism of TGF-α at the transcriptional level remains to be established. Our findings revealed that the human TGF-α promoter contains consensus sites for several transcription factors, such as NF-κB and yin yang 1 (YY1). NF-κB served as a positive regulator of TGF-α promoter activity, corroborated by observations that overexpression of NF-κB p65 increased, while mutation in the NF-κB binding sites in the TGF-α promoter reduced the promoter activity in rat primary astrocytes. Pharmacological inhibition of NF-κB with pyrrolidine dithiocarbamate (PDTC; 50 μM) or quinazoline (QNZ; 10 μM) also abolished TGF-α promoter activity, and NF-κB directly bound to its consensus site in the TGF-α promoter as evidenced by electrophoretic mobility shift assay (EMSA). Dexamethasone (DX) increased TGF-α promoter activity by activation of NF-κB. Treatment of astrocytes with 100 nM of DX for 24 h activated its glucocorticoid receptor and signaling proteins, including MAPK, PI3K/Akt, and PKA, via non-genomic pathways, to enhance TGF-α promoter activity and expression. YY1 served as a critical negative regulator of the TGF-α promoter as overexpression of YY1 decreased, while mutation of YY1 binding site in the promoter increased TGF-α promoter activity. Treatment for 3 h with 250 μM of manganese (Mn), an environmental neurotoxin, decreased astrocytic TGF-α expression by activation of YY1. Taken together, our results suggest that NF-κB is a critical positive regulator, whereas YY1 is a negative regulator of the TGF-α promoter. These findings identify potential molecular targets for neurotherapeutics that may modulate TGF-α regulation and afford neuroprotection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Marquardt H, Hunkapiller MW, Hood LE, Todaro GJ (1984) Rat transforming growth factor type 1: structure and relation to epidermal growth factor. Science 223:1079–1082

    Article  CAS  PubMed  Google Scholar 

  2. Junier MP (2000) What role(s) for TGFalpha in the central nervous system? Prog Neurobiol 62:443–473

    Article  CAS  PubMed  Google Scholar 

  3. Lee DC, Fenton SE, Berkowitz EA, Hissong MA (1995) Transforming growth factor alpha: expression, regulation, and biological activities. Pharmacol Rev 47:51–85

    CAS  PubMed  Google Scholar 

  4. Ciardiello F, Kim N, McGeady ML, Liscia DS, Saeki T, Bianco C, Salomon DS (1991) Expression of transforming growth factor alpha (TGF alpha) in breast cancer. Ann Oncol 2:169–182

    Article  CAS  PubMed  Google Scholar 

  5. Salomon DS, Brandt R, Ciardiello F, Normanno N (1995) Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 19:183–232

    Article  CAS  PubMed  Google Scholar 

  6. Ma YJ, Berg-von der Emde K, Moholt-Siebert M, Hill DF, Ojeda SR (1994) Region-specific regulation of transforming growth factor alpha (TGF alpha) gene expression in astrocytes of the neuroendocrine brain. J Neurosci 14:5644–5651

    CAS  PubMed  Google Scholar 

  7. Chalazonitis A, Kessler JA, Twardzik DR, Morrison RS (1992) Transforming growth factor alpha, but not epidermal growth factor, promotes the survival of sensory neurons in vitro. J Neurosci 12:583–594

    CAS  PubMed  Google Scholar 

  8. Kornblum HI, Zurcher SD, Werb Z, Derynck R, Seroogy KB (1999) Multiple trophic actions of heparin-binding epidermal growth factor (HB-EGF) in the central nervous system. Eur J Neurosci 11:3236–3246

    Article  CAS  PubMed  Google Scholar 

  9. Petegnief V, Friguls B, Sanfeliu C, Sunol C, Planas AM (2003) Transforming growth factor-alpha attenuates N-methyl-d-aspartic acid toxicity in cortical cultures by preventing protein synthesis inhibition through an Erk1/2-dependent mechanism. J Biol Chem 278:29552–29559

    Article  CAS  PubMed  Google Scholar 

  10. Leker RR, Toth ZE, Shahar T, Cassiani-Ingoni R, Szalayova I, Key S, Bratincsak A, Mezey E (2009) Transforming growth factor alpha induces angiogenesis and neurogenesis following stroke. Neuroscience 163:233–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. White RE, Rao M, Gensel JC, McTigue DM, Kaspar BK, Jakeman LB (2011) Transforming growth factor alpha transforms astrocytes to a growth-supportive phenotype after spinal cord injury. J Neurosci 31:15173–15187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cameron HA, Hazel TG, McKay RD (1998) Regulation of neurogenesis by growth factors and neurotransmitters. J Neurobiol 36:287–306

    Article  CAS  PubMed  Google Scholar 

  13. Cooper O, Isacson O (2004) Intrastriatal transforming growth factor alpha delivery to a model of Parkinson's disease induces proliferation and migration of endogenous adult neural progenitor cells without differentiation into dopaminergic neurons. J Neurosci 24:8924–8931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Junier MP, Ma YJ, Costa ME, Hoffman G, Hill DF, Ojeda SR (1991) Transforming growth factor alpha contributes to the mechanism by which hypothalamic injury induces precocious puberty. Proc Natl Acad Sci U S A 88:9743–9747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yuen EC, Mobley WC (1996) Therapeutic potential of neurotrophic factors for neurological disorders. Ann Neurol 40:346–354

    Article  CAS  PubMed  Google Scholar 

  16. Nelson KG, Takahashi T, Lee DC, Luetteke NC, Bossert NL, Ross K, Eitzman BE, McLachlan JA (1992) Transforming growth factor-alpha is a potential mediator of estrogen action in the mouse uterus. Endocrinology 131:1657–1664

    CAS  PubMed  Google Scholar 

  17. Lee E, Sidoryk-Wegrzynowicz M, Yin Z, Webb A, Son DS, Aschner M (2012) Transforming growth factor-alpha mediates estrogen-induced upregulation of glutamate transporter GLT-1 in rat primary astrocytes. Glia 60:1024–1036

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bjorge JD, Paterson AJ, Kudlow JE (1989) Phorbol ester or epidermal growth factor (EGF) stimulates the concurrent accumulation of mRNA for the EGF receptor and its ligand transforming growth factor-alpha in a breast cancer cell line. J Biol Chem 264:4021–4027

    CAS  PubMed  Google Scholar 

  19. Muller HW, Seifert W (1982) A neurotrophic factor (NTF) released from primary glial cultures supports survival and fiber outgrowth of cultured hippocampal neurons. J Neurosci Res 8:195–204

    Article  CAS  PubMed  Google Scholar 

  20. Raymond VW, Lee DC, Grisham JW, Earp HS (1989) Regulation of transforming growth factor alpha messenger RNA expression in a chemically transformed rat hepatic epithelial cell line by phorbol ester and hormones. Cancer Res 49:3608–3612

    CAS  PubMed  Google Scholar 

  21. Raja RH, Paterson AJ, Shin TH, Kudlow JE (1991) Transcriptional regulation of the human transforming growth factor-alpha gene. Mol Endocrinol 5:514–520

    Article  CAS  PubMed  Google Scholar 

  22. Chen X, Wright KL, Berkowitz EA, Azizkhan JC, Ting JP, Lee DC (1994) Protein interactions at Sp1-like sites in the TGF alpha promoter as visualized by in vivo genomic footprinting. Oncogene 9:3179–3187

    CAS  PubMed  Google Scholar 

  23. Shin TH, Paterson AJ, Kudlow JE (1995) p53 stimulates transcription from the human transforming growth factor alpha promoter: a potential growth-stimulatory role for p53. Mol Cell Biol 15:4694–4701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang D, Shin TH, Kudlow JE (1997) Transcription factor AP-2 controls transcription of the human transforming growth factor-alpha gene. J Biol Chem 272:14244–14250

    Article  CAS  PubMed  Google Scholar 

  25. De Kloet ER, Vreugdenhil E, Oitzl MS, Joels M (1998) Brain corticosteroid receptor balance in health and disease. Endocr Rev 19:269–301

    PubMed  Google Scholar 

  26. Reul JM, de Kloet ER (1985) Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology 117:2505–2511

    Article  CAS  PubMed  Google Scholar 

  27. Newton R (2000) Molecular mechanisms of glucocorticoid action: what is important? Thorax 55:603–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zschocke J, Bayatti N, Clement AM, Witan H, Figiel M, Engele J, Behl C (2005) Differential promotion of glutamate transporter expression and function by glucocorticoids in astrocytes from various brain regions. J Biol Chem 280:34924–34932

    Article  CAS  PubMed  Google Scholar 

  29. Lee ES, Sidoryk M, Jiang H, Yin Z, Aschner M (2009) Estrogen and tamoxifen reverse manganese-induced glutamate transporter impairment in astrocytes. J Neurochem 110:530–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Aschner M, Erikson KM, Herrero Hernandez E, Tjalkens R (2009) Manganese and its role in Parkinson's disease: from transport to neuropathology. Neuromolecular Med 11:252–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jeanneteau F, Garabedian MJ, Chao MV (2008) Activation of Trk neurotrophin receptors by glucocorticoids provides a neuroprotective effect. Proc Natl Acad Sci U S A 105:4862–4867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zelenaia O, Schlag BD, Gochenauer GE, Ganel R, Song W, Beesley JS, Grinspan JB, Rothstein JD et al (2000) Epidermal growth factor receptor agonists increase expression of glutamate transporter GLT-1 in astrocytes through pathways dependent on phosphatidylinositol 3-kinase and transcription factor NF-kappaB. Mol Pharmacol 57:667–678

    CAS  PubMed  Google Scholar 

  33. Aschner M, Gannon M, Kimelberg HK (1992) Interactions of trimethyl tin (TMT) with rat primary astrocyte cultures: altered uptake and efflux of rubidium, l-glutamate and d-aspartate. Brain Res 582:181–185

    Article  CAS  PubMed  Google Scholar 

  34. Karki P, Webb A, Smith K, Lee K, Son DS, Aschner M, Lee E (2013) cAMP response element-binding protein (CREB) and nuclear factor kappaB mediate the tamoxifen-induced up-regulation of glutamate transporter 1 (GLT-1) in rat astrocytes. J Biol Chem 288:28975–28986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Khan S, Lopez-Dee Z, Kumar R, Ling J (2013) Activation of NFkB is a novel mechanism of pro-survival activity of glucocorticoids in breast cancer cells. Cancer Lett 337:90–95

    Article  CAS  PubMed  Google Scholar 

  36. Chen X, Azizkhan JC, Lee DC (1992) The binding of transcription factor Sp1 to multiple sites is required for maximal expression from the rat transforming growth factor alpha promoter. Oncogene 7:1805–1815

    CAS  PubMed  Google Scholar 

  37. Hyde-DeRuyscher RP, Jennings E, Shenk T (1995) DNA binding sites for the transcriptional activator/repressor YY1. Nucleic Acids Res 23:4457–4465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Karki P, Webb A, Smith K, Johnson J Jr, Lee K, Son DS, Aschner M, Lee E (2014) Yin Yang 1 is a repressor of glutamate transporter EAAT2, and it mediates manganese-induced decrease of EAAT2 expression in astrocytes. Mol Cell Biol 34:1280–1289

    Article  PubMed  PubMed Central  Google Scholar 

  39. Karki P, Kim C, Smith K, Son DS, Aschner M, Lee E (2015) Transcriptional regulation of the astrocytic excitatory amino acid transporter 1 (EAAT1) via NF-kappaB and Yin Yang 1 (YY1). J Biol Chem 290:23725–23737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lowenberg M, Stahn C, Hommes DW, Buttgereit F (2008) Novel insights into mechanisms of glucocorticoid action and the development of new glucocorticoid receptor ligands. Steroids 73:1025–1029

    Article  PubMed  Google Scholar 

  41. Kaltschmidt B, Widera D, Kaltschmidt C (2005) Signaling via NF-kappaB in the nervous system. Biochim Biophys Acta 1745:287–299

    Article  CAS  PubMed  Google Scholar 

  42. Ahn HJ, Hernandez CM, Levenson JM, Lubin FD, Liou HC, Sweatt JD (2008) c-Rel, an NF-kappaB family transcription factor, is required for hippocampal long-term synaptic plasticity and memory formation. Learn Mem 15:539–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Denis-Donini S, Dellarole A, Crociara P, Francese MT, Bortolotto V, Quadrato G, Canonico PL, Orsetti M et al (2008) Impaired adult neurogenesis associated with short-term memory defects in NF-kappaB p50-deficient mice. J Neurosci 28:3911–3919

    Article  CAS  PubMed  Google Scholar 

  44. Tchoghandjian A, Jennewein C, Eckhardt I, Momma S, Figarella-Branger D, Fulda S (2014) Smac mimetic promotes glioblastoma cancer stem-like cell differentiation by activating NF-kappaB. Cell Death Differ 21:735–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dvoriantchikova G, Barakat D, Brambilla R, Agudelo C, Hernandez E, Bethea JR, Shestopalov VI, Ivanov D (2009) Inactivation of astroglial NF-kappa B promotes survival of retinal neurons following ischemic injury. Eur J Neurosci 30:175–185

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bhakar AL, Tannis LL, Zeindler C, Russo MP, Jobin C, Park DS, MacPherson S, Barker PA (2002) Constitutive nuclear factor-kappa B activity is required for central neuron survival. J Neurosci 22:8466–8475

    CAS  PubMed  Google Scholar 

  47. Middleton G, Hamanoue M, Enokido Y, Wyatt S, Pennica D, Jaffray E, Hay RT, Davies AM (2000) Cytokine-induced nuclear factor kappa B activation promotes the survival of developing neurons. J Cell Biol 148:325–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sarnico I, Lanzillotta A, Benarese M, Alghisi M, Baiguera C, Battistin L, Spano P, Pizzi M (2009) NF-kappaB dimers in the regulation of neuronal survival. Int Rev Neurobiol 85:351–362

    Article  CAS  PubMed  Google Scholar 

  49. Banker GA (1980) Trophic interactions between astroglial cells and hippocampal neurons in culture. Science 209:809–810

    Article  CAS  PubMed  Google Scholar 

  50. De Nicola AF, Ferrini M, Gonzalez SL, Gonzalez Deniselle MC, Grillo CA, Piroli G, Saravia F, de Kloet ER (1998) Regulation of gene expression by corticoid hormones in the brain and spinal cord. J Steroid Biochem Mol Biol 65:253–272

    Article  PubMed  Google Scholar 

  51. Mocchetti I, Spiga G, Hayes VY, Isackson PJ, Colangelo A (1996) Glucocorticoids differentially increase nerve growth factor and basic fibroblast growth factor expression in the rat brain. J Neurosci 16:2141–2148

    CAS  PubMed  Google Scholar 

  52. Abraham I, Harkany T, Horvath KM, Veenema AH, Penke B, Nyakas C, Luiten PG (2000) Chronic corticosterone administration dose-dependently modulates Abeta(1-42)- and NMDA-induced neurodegeneration in rat magnocellular nucleus basalis. J Neuroendocrinol 12:486–494

    Article  CAS  PubMed  Google Scholar 

  53. Abraham I, Veenema AH, Nyakas C, Harkany T, Bohus BG, Luiten PG (1997) Effect of corticosterone and adrenalectomy on NMDA-induced cholinergic cell death in rat magnocellular nucleus basalis. J Neuroendocrinol 9:713–720

    Article  CAS  PubMed  Google Scholar 

  54. Golde S, Coles A, Lindquist JA, Compston A (2003) Decreased iNOS synthesis mediates dexamethasone-induced protection of neurons from inflammatory injury in vitro. Eur J Neurosci 18:2527–2537

    Article  PubMed  Google Scholar 

  55. Chou YC, Luttge WG, Sumners C (1991) Expression of mineralocorticoid type I and glucocorticoid type II receptors in astrocyte glia as a function of time in culture. Brain Res Dev Brain Res 61:55–61

    Article  CAS  PubMed  Google Scholar 

  56. Vielkind U, Walencewicz A, Levine JM, Bohn MC (1990) Type II glucocorticoid receptors are expressed in oligodendrocytes and astrocytes. J Neurosci Res 27:360–373

    Article  CAS  PubMed  Google Scholar 

  57. Simard M, Couldwell WT, Zhang W, Song H, Liu S, Cotrina ML, Goldman S, Nedergaard M (1999) Glucocorticoids-potent modulators of astrocytic calcium signaling. Glia 28:1–12

    Article  CAS  PubMed  Google Scholar 

  58. Laping NJ, Nichols NR, Day JR, Johnson SA, Finch CE (1994) Transcriptional control of glial fibrillary acidic protein and glutamine synthetase in vivo shows opposite responses to corticosterone in the hippocampus. Endocrinology 135:1928–1933

    CAS  PubMed  Google Scholar 

  59. Vardimon L, Ben-Dror I, Avisar N, Oren A, Shiftan L (1999) Glucocorticoid control of glial gene expression. J Neurobiol 40:513–527

    Article  CAS  PubMed  Google Scholar 

  60. Yao YL, Yang WM, Seto E (2001) Regulation of transcription factor YY1 by acetylation and deacetylation. Mol Cell Biol 21:5979–5991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gordon S, Akopyan G, Garban H, Bonavida B (2006) Transcription factor YY1: structure, function, and therapeutic implications in cancer biology. Oncogene 25:1125–1142

    Article  CAS  PubMed  Google Scholar 

  62. Huerta-Yepez S, Vega M, Garban H, Bonavida B (2006) Involvement of the TNF-alpha autocrine-paracrine loop, via NF-kappaB and YY1, in the regulation of tumor cell resistance to Fas-induced apoptosis. Clin Immunol 120:297–309

    Article  CAS  PubMed  Google Scholar 

  63. Lin X, Sime PJ, Xu H, Williams MA, LaRussa L, Georas SN, Guo J (2011) Yin yang 1 is a novel regulator of pulmonary fibrosis. Am J Respir Crit Care Med 183:1689–1697

    Article  CAS  PubMed  Google Scholar 

  64. He Y, Casaccia-Bonnefil P (2008) The Yin and Yang of YY1 in the nervous system. J Neurochem 106:1493–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Stahn C, Buttgereit F (2008) Genomic and nongenomic effects of glucocorticoids. Nat Clin Pract Rheumatol 4:525–533

    Article  CAS  PubMed  Google Scholar 

  66. Solito E, Mulla A, Morris JF, Christian HC, Flower RJ, Buckingham JC (2003) Dexamethasone induces rapid serine-phosphorylation and membrane translocation of annexin 1 in a human folliculostellate cell line via a novel nongenomic mechanism involving the glucocorticoid receptor, protein kinase C, phosphatidylinositol 3-kinase, and mitogen-activated protein kinase. Endocrinology 144:1164–1174

    Article  CAS  PubMed  Google Scholar 

  67. Baulieu EE, Robel P, Schumacher M (2001) Neurosteroids: beginning of the story. Int Rev Neurobiol 46:1–32

    Article  CAS  PubMed  Google Scholar 

  68. Lambert JJ, Harney SC, Belelli D, Peters JA (2001) Neurosteroid modulation of recombinant and synaptic GABAA receptors. Int Rev Neurobiol 46:177–205

    Article  CAS  PubMed  Google Scholar 

  69. Gametchu B (1987) Glucocorticoid receptor-like antigen in lymphoma cell membranes: correlation to cell lysis. Science 236:456–461

    Article  CAS  PubMed  Google Scholar 

  70. Chen YZ, Qiu J (1999) Pleiotropic signaling pathways in rapid, nongenomic action of glucocorticoid. Mol Cell Biol Res Commun 2:145–149

    Article  CAS  PubMed  Google Scholar 

  71. Croxtall JD, Choudhury Q, Flower RJ (2000) Glucocorticoids act within minutes to inhibit recruitment of signalling factors to activated EGF receptors through a receptor-dependent, transcription-independent mechanism. Br J Pharmacol 130:289–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported in part by grants SC1 GM089630 (EL), R01 ES024756 (EL), UL1 TR000445 (EL), SC1 CA200519 (DS) R01 ES10563 (MA), and R01 ES07331 (MA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eunsook Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karki, P., Johnson, J., Son, DS. et al. Transcriptional Regulation of Human Transforming Growth Factor-α in Astrocytes. Mol Neurobiol 54, 964–976 (2017). https://doi.org/10.1007/s12035-016-9705-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9705-9

Keywords

Navigation