Skip to main content

Advertisement

Log in

Inhibition of the Receptor for Advanced Glycation End-Products (RAGE) Attenuates Neuroinflammation While Sensitizing Cortical Neurons Towards Death in Experimental Subarachnoid Hemorrhage

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Subarachnoid hemorrhage (SAH) is a threatening and devastating neurological insult with high mortality and morbidity rates. Despite considerable efforts, the underlying pathophysiological mechanisms are still poorly understood. The receptor for advanced glycation end products (RAGE) is a multiligand receptor that has been implicated in various pathological conditions. We previously showed that RAGE was upregulated and may be involved in pathophysiology of SAH. In the current study, we investigated its potential role in SAH. We found that the upregulation of RAGE after SAH was NF-κB-dependent positive feedback regulation. Further, pharmacological inhibition of RAGE attenuated neuroinflammation, indicating a possible contributive role of RAGE in inflammation-associated brain injury after SAH. Conversely, however, inhibition of RAGE sensitized neurons, exacerbating cell death, which correlated with augmented apoptosis and diminished autophagy, suggesting that activation of RAGE may protect against SAH-induced neuronal injury. Furthermore, we demonstrate that inhibition of RAGE significantly reduced brain edema and improved neurological function at day 1 but not at day 3 post-SAH. Taken together, these results suggest that RAGE exerts dual role after SAH. Our findings also suggest caution should be exercised in setting RAGE-targeted treatment for SAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Macdonald RL, Cusimano MD, Etminan N, Hanggi D, Hasan D, Ilodigwe D, Jaja B, Lantigua H et al (2013) Subarachnoid Hemorrhage International Trialists (SAHIT) data repository. World Neurosurg 79(3–4):418–422. doi:10.1016/j.wneu.2013.01.006

    Article  PubMed  Google Scholar 

  2. Hasegawa Y, Suzuki H, Sozen T, Altay O, Zhang JH (2011) Apoptotic mechanisms for neuronal cells in early brain injury after subarachnoid hemorrhage. Acta Neurochir Suppl 110(Pt 1):43–48. doi:10.1007/978-3-7091-0353-1_8

    PubMed  Google Scholar 

  3. Zhou ML, Shi JX, Hang CH, Cheng HL, Qi XP, Mao L, Chen KF, Yin HX (2007) Potential contribution of nuclear factor-kappaB to cerebral vasospasm after experimental subarachnoid hemorrhage in rabbits journal of cerebral blood flow and metabolism. Off J Int Soc Cereb Blood Flow Metab 27(9):1583–1592. doi:10.1038/sj.jcbfm.9600456

    Article  CAS  Google Scholar 

  4. Laszlo FA, Varga C, Doczi T (1995) Cerebral oedema after subarachnoid haemorrhage. Pathogenetic significance of vasopressin. Acta Neurochir 133(3–4):122–133

    Article  CAS  PubMed  Google Scholar 

  5. Li H, Wu W, Sun Q, Liu M, Li W, Zhang XS, Zhou ML, Hang CH (2014) Expression and cell distribution of receptor for advanced glycation end-products in the rat cortex following experimental subarachnoid hemorrhage. Brain Res 1543:315–323. doi:10.1016/j.brainres.2013.11.023

    Article  CAS  PubMed  Google Scholar 

  6. Xie J, Mendez JD, Mendez-Valenzuela V, Aguilar-Hernandez MM (2013) Cellular signalling of the receptor for advanced glycation end products (RAGE). Cell Signal 25(11):2185–2197. doi:10.1016/j.cellsig.2013.06.013

    Article  CAS  PubMed  Google Scholar 

  7. Fritz G (2011) RAGE: a single receptor fits multiple ligands. Trends Biochem Sci 36(12):625–632. doi:10.1016/j.tibs.2011.08.008

    Article  CAS  PubMed  Google Scholar 

  8. Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ (2010) HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol 28:367–388. doi:10.1146/annurev.immunol.021908.132603

    Article  CAS  PubMed  Google Scholar 

  9. Lin L, Park S, Lakatta EG (2009) RAGE signaling in inflammation and arterial aging. Front Biosci 14:1403–1413. doi:10.2741/3315

    Article  CAS  Google Scholar 

  10. Chavakis T, Bierhaus A, Nawroth PP (2004) RAGE (receptor for advanced glycation end products): a central player in the inflammatory response. Microbes Infect 6(13):1219–1225. doi:10.1016/j.micinf.2004.08.004

    Article  CAS  PubMed  Google Scholar 

  11. Yan SD, Chen X, Fu J, Chen M, Zhu H, Roher A, Slattery T, Zhao L et al (1996) RAGE and amyloid-beta peptide neurotoxicity in Alzheimer's disease. Nature 382(6593):685–691. doi:10.1038/382685a0

    Article  CAS  PubMed  Google Scholar 

  12. Vincent AM, Perrone L, Sullivan KA, Backus C, Sastry AM, Lastoskie C, Feldman EL (2007) Receptor for advanced glycation end products activation injures primary sensory neurons via oxidative stress. Endocrinology 148(2):548–558. doi:10.1210/en.2006-0073

    Article  CAS  PubMed  Google Scholar 

  13. Huttunen HJ, Kuja-Panula J, Sorci G, Agneletti AL, Donato R, Rauvala H (2000) Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through receptor for advanced glycation end products (RAGE) activation. J Biol Chem 275(51):40096–40105. doi:10.1074/jbc.M006993200

    Article  CAS  PubMed  Google Scholar 

  14. Alikhani M, Alikhani Z, Boyd C, MacLellan CM, Raptis M, Liu R, Pischon N, Trackman PC et al (2007) Advanced glycation end products stimulate osteoblast apoptosis via the MAP kinase and cytosolic apoptotic pathways. Bone 40(2):345–353. doi:10.1016/j.bone.2006.09.011

    Article  CAS  PubMed  Google Scholar 

  15. Ishihara K, Tsutsumi K, Kawane S, Nakajima M, Kasaoka T (2003) The receptor for advanced glycation end-products (RAGE) directly binds to ERK by a D-domain-like docking site. FEBS Lett 550(1–3):107–113

    Article  CAS  PubMed  Google Scholar 

  16. Taguchi A, Blood DC, del Toro G, Canet A, Lee DC, Qu W, Tanji N, Lu Y et al (2000) Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature 405(6784):354–360. doi:10.1038/35012626

    Article  CAS  PubMed  Google Scholar 

  17. Brune M, Muller M, Melino G, Bierhaus A, Schilling T, Nawroth PP (2013) Depletion of the receptor for advanced glycation end products (RAGE) sensitizes towards apoptosis via p53 and p73 posttranslational regulation. Oncogene 32(11):1460–1468. doi:10.1038/onc.2012.150

    Article  CAS  PubMed  Google Scholar 

  18. Kang R, Tang D, Livesey KM, Schapiro NE, Lotze MT, Zeh HJ 3rd (2011) The Receptor for Advanced Glycation End-products (RAGE) protects pancreatic tumor cells against oxidative injury. Antioxid Redox Signal 15(8):2175–2184. doi:10.1089/ars.2010.3378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kang R, Tang D, Lotze MT, Zeh HJ 3rd (2011) RAGE regulates autophagy and apoptosis following oxidative injury. Autophagy 7(4):442–444

    Article  PubMed  Google Scholar 

  20. Pichiule P, Chavez JC, Schmidt AM, Vannucci SJ (2007) Hypoxia-inducible factor-1 mediates neuronal expression of the receptor for advanced glycation end products following hypoxia/ischemia. J Biol Chems 282(50):36330–36340. doi:10.1074/jbc.M706407200

    Article  CAS  Google Scholar 

  21. Muhammad S, Barakat W, Stoyanov S, Murikinati S, Yang H, Tracey KJ, Bendszus M, Rossetti G et al (2008) The HMGB1 receptor RAGE mediates ischemic brain damage. J Neurosci 28(46):12023–12031. doi:10.1523/jneurosci.2435-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang D, Li H, Li T, Zhou M, Hao S, Yan H, Yu Z, Li W et al (2014) TLR4 inhibitor resatorvid provides neuroprotection in experimental traumatic brain injury: implication in the treatment of human brain injury. Neurochem Int 75c:11–18. doi:10.1016/j.neuint.2014.05.003

    Article  Google Scholar 

  23. Sugawara T, Ayer R, Jadhav V, Zhang JH (2008) A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. J Neurosci Methods 167(2):327–334. doi:10.1016/j.jneumeth.2007.08.004

    Article  PubMed  Google Scholar 

  24. Schmued LC, Hopkins KJ (2000) Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res 874(2):123–130

    Article  CAS  PubMed  Google Scholar 

  25. Zhang D, Hu Y, Sun Q, Zhao J, Cong Z, Liu H, Zhou M, Li K et al (2013) Inhibition of transforming growth factor beta-activated kinase 1 confers neuroprotection after traumatic brain injury in rats. Neuroscience 238:209–217. doi:10.1016/j.neuroscience.2013.02.022

    Article  CAS  PubMed  Google Scholar 

  26. Deane R, Singh I, Sagare AP, Bell RD, Ross NT, LaRue B, Love R, Perry S et al (2012) A multimodal RAGE-specific inhibitor reduces amyloid beta-mediated brain disorder in a mouse model of Alzheimer disease. J Clin Investig 122(4):1377–1392. doi:10.1172/jci58642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. You WC, Li W, Zhuang Z, Tang Y, Lu HC, Ji XJ, Shen W, Shi JX et al (2012) Biphasic activation of nuclear factor-kappa B in experimental models of subarachnoid hemorrhage in vivo and in vitro. Mediat Inflamm 2012:786242. doi:10.1155/2012/786242

    Article  Google Scholar 

  28. Bierhaus A, Schiekofer S, Schwaninger M, Andrassy M, Humpert PM, Chen J, Hong M, Luther T et al (2001) Diabetes-associated sustained activation of the transcription factor nuclear factor-kappaB. Diabetes 50(12):2792–2808

    Article  CAS  PubMed  Google Scholar 

  29. Claassen J, Carhuapoma JR, Kreiter KT, Du EY, Connolly ES, Mayer SA (2002) Global cerebral edema after subarachnoid hemorrhage: frequency, predictors, and impact on outcome stroke. J Cereb Circulation 33(5):1225–1232

    Article  Google Scholar 

  30. Li JF, Schmidt AM (1997) Characterization and functional analysis of the promoter of RAGE, the receptor for advanced glycation end products. J Biol Chem 272(26):16498–16506. doi:10.1074/jbc.272.26.16498

    Article  CAS  PubMed  Google Scholar 

  31. Lefranc F, Decaestecker C, Brotchi J, Heizmann CW, Dewitte O, Kiss R, Mijatovic T (2005) Co-expression/co-location of S100 proteins (S100B, S100A1 and S100A2) and protein kinase C (PKC-beta, -eta and -zeta) in a rat model of cerebral basilar artery vasospasm. Neuropathol Appl Neurobiol 31(6):649–660. doi:10.1111/j.1365-2990.2005.00682.x

    Article  CAS  PubMed  Google Scholar 

  32. Pradilla G, Wang PP, Legnani FG, Ogata L, Dietsch GN, Tamargo RJ (2004) Prevention of vasospasm by anti-CD11/CD18 monoclonal antibody therapy following subarachnoid hemorrhage in rabbits. J Neurosurg 101(1):88–92. doi:10.3171/jns.2004.101.1.0088

    Article  CAS  PubMed  Google Scholar 

  33. Kay A, Petzold A, Kerr M, Keir G, Thompson E, Nicoll J (2003) Temporal alterations in cerebrospinal fluid amyloid beta-protein and apolipoprotein E after subarachnoid hemorrhage stroke. J Cereb Circulation 34(12):e240–243. doi:10.1161/01.str.0000100157.88508.2f

    Article  CAS  Google Scholar 

  34. Zhu XD, Chen JS, Zhou F, Liu QC, Chen G, Zhang JM (2012) Relationship between plasma high mobility group box-1 protein levels and clinical outcomes of aneurysmal subarachnoid hemorrhage. J Neuroinflammation 9:194. doi:10.1186/1742-2094-9-194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nakahara T, Tsuruta R, Kaneko T, Yamashita S, Fujita M, Kasaoka S, Hashiguchi T, Suzuki M et al (2009) High-mobility group box 1 protein in CSF of patients with subarachnoid hemorrhage. Neurocrit Care 11(3):362–368. doi:10.1007/s12028-009-9276-y

    Article  CAS  PubMed  Google Scholar 

  36. Bierhaus A, Humpert PM, Morcos M, Wendt T, Chavakis T, Arnold B, Stern DM, Nawroth PP (2005) Understanding RAGE, the receptor for advanced glycation end products. J Mol Med-Jmm 83(11):876–886. doi:10.1007/s00109-005-0688-7

    Article  CAS  Google Scholar 

  37. Chou SH, Feske SK, Atherton J, Konigsberg RG, De Jager PL, Du R, Ogilvy CS, Lo EH, Ning M (2012) Early elevation of serum tumor necrosis factor-alpha is associated with poor outcome in subarachnoid hemorrhage. Journal of investigative medicine : the official publication of the American Federation for Clinical Research 60 (7):1054–1058. doi:10.231/JIM.0b013e3182686932

  38. Sozen T, Tsuchiyama R, Hasegawa Y, Suzuki H, Jadhav V, Nishizawa S, Zhang JH (2009) Role of interleukin-1beta in early brain injury after subarachnoid hemorrhage in mice stroke. J Cereb Circulation 40(7):2519–2525. doi:10.1161/STROKEAHA.109.549592

    Article  CAS  Google Scholar 

  39. Chavakis T, Bierhaus A, Al-Fakhri N, Schneider D, Witte S, Linn T, Nagashima M, Morser J et al (2003) The pattern recognition receptor (RAGE) is a counterreceptor for leukocyte integrins: a novel pathway for inflammatory cell recruitment. J Exp Med 198(10):1507–1515. doi:10.1084/jem.20030800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Graeber MB, Li W, Rodriguez ML (2011) Role of microglia in CNS inflammation. FEBS Lett 585(23):3798–3805. doi:10.1016/j.febslet.2011.08.033

    Article  CAS  PubMed  Google Scholar 

  41. Elangovan I, Thirugnanam S, Chen A, Zheng G, Bosland MC, Kajdacsy-Balla A, Gnanasekar M (2012) Targeting receptor for advanced glycation end products (RAGE) expression induces apoptosis and inhibits prostate tumor growth. Biochem Biophys Res Commun 417(4):1133–1138. doi:10.1016/j.bbrc.2011.12.060

    Article  CAS  PubMed  Google Scholar 

  42. Wang Z, Shi XY, Yin J, Zuo G, Zhang J, Chen G (2012) Role of autophagy in early brain injury after experimental subarachnoid hemorrhage. J Mol Neurosci MN 46(1):192–202. doi:10.1007/s12031-011-9575-6

    Article  CAS  PubMed  Google Scholar 

  43. Sabri M, Kawashima A, Ai J, Macdonald RL (2008) Neuronal and astrocytic apoptosis after subarachnoid hemorrhage: a possible cause for poor prognosis. Brain Res 1238:163–171. doi:10.1016/j.brainres.2008.08.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Natural Science Foundation of China (No. 81371294) and the Natural Science Foundation of Jiangsu Province (No. BK20141375).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Hua Hang.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Yu, JS., Zhang, DD. et al. Inhibition of the Receptor for Advanced Glycation End-Products (RAGE) Attenuates Neuroinflammation While Sensitizing Cortical Neurons Towards Death in Experimental Subarachnoid Hemorrhage. Mol Neurobiol 54, 755–767 (2017). https://doi.org/10.1007/s12035-016-9703-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9703-y

Keywords

Navigation