Skip to main content

Effects of Acerola (Malpighia emarginata DC.) Juice Intake on Brain Energy Metabolism of Mice Fed a Cafeteria Diet

Abstract

Obesity is a multifactorial disease that comes from an imbalance between food intake and energy expenditure. Moreover, studies have shown a relationship between mitochondrial dysfunction and obesity. In the present study, we investigated the effect of acerola juices (unripe, ripe, and industrial) and its main pharmacologically active components (vitamin C and rutin) on the activity of enzymes of energy metabolism in the brain of mice fed a palatable cafeteria diet. Two groups of male Swiss mice were fed on a standard diet (STA) or a cafeteria diet (CAF) for 13 weeks. Afterwards, the CAF-fed animals were divided into six subgroups, each of which received a different supplement for one further month (water, unripe, ripe or industrial acerola juices, vitamin C, or rutin) by gavage. Our results demonstrated that CAF diet inhibited the activity of citrate synthase in the prefrontal cortex, hippocampus, and hypothalamus. Moreover, CAF diet decreased the complex I activity in the hypothalamus, complex II in the prefrontal cortex, complex II–III in the hypothalamus, and complex IV in the posterior cortex and striatum. The activity of succinate dehydrogenase and creatine kinase was not altered by the CAF diet. However, unripe acerola juice reversed the inhibition of the citrate synthase activity in the prefrontal cortex and hypothalamus. Ripe acerola juice reversed the inhibition of citrate synthase in the hypothalamus. The industrial acerola juice reversed the inhibition of complex I activity in the hypothalamus. The other changes were not reversed by any of the tested substances. In conclusion, we suggest that alterations in energy metabolism caused by obesity can be partially reversed by ripe, unripe, and industrial acerola juice.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. WHO (2015) WHO | Obesity and overweight. World Heal Organ

  2. Milanski M, Degasperi G, Coope A et al (2009) Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity. J Neurosci 29:359–370. doi:10.1523/JNEUROSCI.2760-08.2009

    CAS  Article  PubMed  Google Scholar 

  3. Moraes JC, Coope A, Morari J et al (2009) High-fat diet induces apoptosis of hypothalamic neurons. PLoS One 4:e5045. doi:10.1371/journal.pone.0005045

    Article  PubMed  PubMed Central  Google Scholar 

  4. Velloso LA, Schwartz MW (2011) Altered hypothalamic function in diet-induced obesity. Int J Obes 35:1455–1465. doi:10.1038/ijo.2011.56

    CAS  Article  Google Scholar 

  5. Thaler JP, Yi C-X, Schur EA et al (2012) Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest 122:153–162. doi:10.1172/JCI59660

    CAS  Article  PubMed  Google Scholar 

  6. van de Sande-Lee S, Velloso LA (2012) Disfunção hipotalâmica na obesidade. Arq Bras Endocrinol Metabol 56:341–350. doi:10.1590/S0004-27302012000600001

    Article  PubMed  Google Scholar 

  7. Williams LM (2012) Hypothalamic dysfunction in obesity. Proc Nutr Soc 71:521–533. doi:10.1017/S002966511200078X

    CAS  Article  PubMed  Google Scholar 

  8. Keaney JF, Larson MG, Vasan RS et al (2003) Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham Study. Arterioscler Thromb Vasc Biol 23:434–439. doi:10.1161/01.ATV.0000058402.34138.11

    CAS  Article  PubMed  Google Scholar 

  9. Furukawa S, Fujita T, Shimabukuro M et al (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114:1752–1761. doi:10.1172/JCI21625

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Noeman SA, Hamooda HE, Baalash AA (2011) Biochemical study of oxidative stress markers in the liver, kidney and heart of high fat diet induced obesity in rats. Diabetol Metab Syndr 3:17. doi:10.1186/1758-5996-3-17

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Barouch LA, Gao D, Chen L et al (2006) Cardiac myocyte apoptosis is associated with increased DNA damage and decreased survival in murine models of obesity. Circ Res 98:119–124. doi:10.1161/01.RES.0000199348.10580.1d

    CAS  Article  PubMed  Google Scholar 

  12. Al-Aubaidy HA, Jelinek HF (2011) Oxidative DNA damage and obesity in type 2 diabetes mellitus. Eur J Endocrinol 164:899–904. doi:10.1530/EJE-11-0053

    CAS  Article  PubMed  Google Scholar 

  13. Freeman LR, Zhang L, Nair A et al (2013) Obesity increases cerebrocortical reactive oxygen species and impairs brain function. Free Radic Biol Med 56:226–233. doi:10.1016/j.freeradbiomed.2012.08.577

    CAS  Article  PubMed  Google Scholar 

  14. Matsuda M, Shimomura I (2013) Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes Res Clin Pract 7:e330–e341

    Article  PubMed  Google Scholar 

  15. Ma W, Yuan L, Yu H et al (2014) Mitochondrial dysfunction and oxidative damage in the brain of diet-induced obese rats but not in diet-resistant rats. Life Sci 110:53–60. doi:10.1016/j.lfs.2014.07.018

    CAS  Article  PubMed  Google Scholar 

  16. Ritov VB, Menshikova EV, He J et al (2005) Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes 54:8–14

    CAS  Article  PubMed  Google Scholar 

  17. Sparks LM, Xie H, Koza RA et al (2005) A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle. Diabetes 54:1926–1933

    CAS  Article  PubMed  Google Scholar 

  18. Rong JX, Qiu Y, Hansen MK et al (2007) Adipose mitochondrial biogenesis is suppressed in db/db and high-fat diet-fed mice and improved by rosiglitazone. Diabetes 56:1751–1760. doi:10.2337/db06-1135

    CAS  Article  PubMed  Google Scholar 

  19. Navarro A, Boveris A (2007) The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol 292:C670–C686. doi:10.1152/ajpcell.00213.2006

    CAS  Article  PubMed  Google Scholar 

  20. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658. doi:10.1111/j.1471-4159.2006.03907.x

    CAS  Article  PubMed  Google Scholar 

  21. Mazza M, Pomponi M, Janiri L et al (2007) Omega-3 fatty acids and antioxidants in neurological and psychiatric diseases: an overview. Prog Neuropsychopharmacol Biol Psychiatry 31:12–26. doi:10.1016/j.pnpbp.2006.07.010

    CAS  Article  PubMed  Google Scholar 

  22. Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142:231–255. doi:10.1038/sj.bjp.0705776

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Birben E, Sahiner UM, Sackesen C et al (2012) Oxidative stress and antioxidant defense. World Allergy Org J 5:9–19. doi:10.1097/WOX.0b013e3182439613

    CAS  Article  Google Scholar 

  24. Avignon A, Hokayem M, Bisbal C, Lambert K (2012) Dietary antioxidants: do they have a role to play in the ongoing fight against abnormal glucose metabolism? Nutrition 28:715–721. doi:10.1016/j.nut.2012.01.001

    CAS  Article  PubMed  Google Scholar 

  25. Valdecantos MP, Pérez-Matute P, Martínez JA (2009) Obesity and oxidative stress: role of antioxidant supplementation. Rev Invest Clin 61:127–139

    CAS  PubMed  Google Scholar 

  26. Alfadda AA, Sallam RM (2012) Reactive oxygen species in health and disease. J Biomed Biotechnol 2012:936486. doi:10.1155/2012/936486

    Article  PubMed  PubMed Central  Google Scholar 

  27. Oliveira LDS, Moura CFH, De Brito ES et al (2012) Antioxidant metabolism during fruit development of different acerola (Malpighia emarginata D.C) clones. J Agric Food Chem 60:7957–7964. doi:10.1021/jf3005614

    CAS  Article  Google Scholar 

  28. Mezadri T, Fernández-Pachón MS, Villaño D et al (2006) The acerola fruit: composition, productive characteristics and economic importance. Arch Latinoam Nutr 56:101–109

    CAS  PubMed  Google Scholar 

  29. Franke SI, Pra D, da Silva J et al (2005) Possible repair action of vitamin C on DNA damage induced by methyl methanesulfonate, cyclophosphamide, FeSO4 and CuSO4 in mouse blood cells in vivo. Mutat Res 583:75–84. doi:10.1016/j.mrgentox.2005.03.001

    CAS  Article  PubMed  Google Scholar 

  30. La Casa C, Villegas I, Alarcon de la Lastra C et al (2000) Evidence for protective and antioxidant properties of rutin, a natural flavone, against ethanol induced gastric lesions. J Ethnopharmacol 71:45–53

    Article  PubMed  Google Scholar 

  31. Leffa DD, da Silva J, Daumann F et al (2014) Corrective effects of acerola (Malpighia emarginata DC.) juice intake on biochemical and genotoxical parameters in mice fed on a high-fat diet. Mutat Res Mol Mech Mutagen 770:144–152. doi:10.1016/j.mrfmmm.2013.11.005

    CAS  Article  Google Scholar 

  32. Shafat A, Murray B, Rumsey D (2009) Energy density in cafeteria diet induced hyperphagia in the rat. Appetite 52:34–38. doi:10.1016/j.appet.2008.07.004

    Article  PubMed  Google Scholar 

  33. Dias FM, Leffa DD, Daumann F et al (2014) Acerola (Malpighia emarginata DC.) juice intake protects against alterations to proteins involved in inflammatory and lipolysis pathways in the adipose tissue of obese mice fed a cafeteria diet. Lipids Health Dis 13:24. doi:10.1186/1476-511X-13-24

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  35. Srere PA (1969) Citrate synthase. Methods Enzymol 13:3–11

    CAS  Article  Google Scholar 

  36. Fischer JC, Ruitenbeek W, Berden JA et al (1985) Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin Chim Acta 153:23–36

    CAS  Article  PubMed  Google Scholar 

  37. Cassina A, Radi R (1996) Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys 328:309–316. doi:10.1006/abbi.1996.0178

    CAS  Article  PubMed  Google Scholar 

  38. Rustin P, Chretien D, Bourgeron T et al (1994) Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta 228:35–51

    CAS  Article  PubMed  Google Scholar 

  39. Hughes BP (1962) A method for the estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activity in normal and pathological sera. Clin Chim Acta 7:597–603

    CAS  Article  PubMed  Google Scholar 

  40. Schwartz MW, Woods SC, Porte D et al (2000) Central nervous system control of food intake. Nature 404:661–671. doi:10.1038/35007534

    CAS  PubMed  Google Scholar 

  41. Moullé VS, Picard A, Cansell C et al (2015) Role of brain lipid sensing in nervous regulation of energy balance. Méd Sci 31:397–403. doi:10.1051/medsci/20153104014

    Google Scholar 

  42. Camer D, Yu Y, Szabo A et al (2015) Bardoxolone methyl prevents high-fat diet-induced alterations in prefrontal cortex signalling molecules involved in recognition memory. Prog Neuropsychopharmacol Biol Psychiatry 59:68–75. doi:10.1016/j.pnpbp.2015.01.004

    CAS  Article  PubMed  Google Scholar 

  43. Pratchayasakul W, Sa-nguanmoo P, Sivasinprasasn S et al (2015) Obesity accelerates cognitive decline by aggravating mitochondrial dysfunction, insulin resistance and synaptic dysfunction under estrogen-deprived conditions. Horm Behav 72:68–77. doi:10.1016/j.yhbeh.2015.04.023

    CAS  Article  PubMed  Google Scholar 

  44. Nunes Rda S, Kahl VF, Sarmento Mda S et al (2011) Antigenotoxicity and antioxidant activity of acerola fruit (Malpighia glabra L.) at two stages of ripeness. Plant Foods Hum Nutr 66:129–135. doi:10.1007/s11130-011-0223-7

    Article  PubMed  Google Scholar 

  45. Puchau B, Zulet MA, de Echávarri AG et al (2010) Dietary total antioxidant capacity is negatively associated with some metabolic syndrome features in healthy young adults. Nutrition 26:534–541. doi:10.1016/j.nut.2009.06.017

    CAS  Article  PubMed  Google Scholar 

  46. Leffa DD, da Silva J, Petronilho FC et al (2015) Acerola (Malpighia emarginata DC.) juice intake protects against oxidative damage in mice fed by cafeteria diet. Food Res Int 77:649–656. doi:10.1016/j.foodres.2015.10.006

    CAS  Article  Google Scholar 

  47. Dandona P, Ghanim H, Bandyopadhyay A et al (2010) Insulin suppresses endotoxin-induced oxidative, nitrosative, and inflammatory stress in humans. Diabetes Care 33:2416–2423. doi:10.2337/dc10-0929

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Carbonell T, Rama R (2007) Iron, oxidative stress and early neurological deterioration in ischemic stroke. Curr Med Chem 14:857–874

    CAS  Article  PubMed  Google Scholar 

  49. Adam-Vizi V (2005) Production of reactive oxygen species in brain mitochondria: contribution by electron transport chain and non-electron transport chain sources. Antioxid Redox Signal 7:1140–1149. doi:10.1089/ars.2005.7.1140

    CAS  Article  PubMed  Google Scholar 

  50. García-Cazorla A, Wolf NI, Serrano M et al (2009) Mental retardation and inborn errors of metabolism. J Inherit Metab Dis 32:597–608. doi:10.1007/s10545-009-0922-5

    Article  PubMed  Google Scholar 

  51. Schreckinger ME, Lotton J, Lila MA, de Mejia EG (2010) Berries from South America: a comprehensive review on chemistry, health potential, and commercialization. J Med Food 13:233–246. doi:10.1089/jmf.2009.0233

    CAS  Article  PubMed  Google Scholar 

  52. Nunes RDS, Kahl VFS, Sarmento MDS et al (2013) Genotoxic and antigenotoxic activity of acerola (Malpighia glabra L.) extract in relation to the geographic origin. Phytother Res 27:1495–1501. doi:10.1002/ptr.4896

    Google Scholar 

  53. Kurzawa-Zegota M, Najafzadeh M, Baumgartner A, Anderson D (2012) The protective effect of the flavonoids on food-mutagen-induced DNA damage in peripheral blood lymphocytes from colon cancer patients. Food Chem Toxicol 50:124–129. doi:10.1016/j.fct.2011.08.020

    CAS  Article  PubMed  Google Scholar 

  54. Kamalakkannan N, Stanely Mainzen Prince P (2006) Rutin improves the antioxidant status in streptozotocin-induced diabetic rat tissues. Mol Cell Biochem 293:211–219. doi:10.1007/s11010-006-9244-1

    CAS  Article  PubMed  Google Scholar 

  55. Guo R, Wei P, Liu W (2007) Combined antioxidant effects of rutin and vitamin C in Triton X-100 micelles. J Pharm Biomed Anal 43:1580–1586. doi:10.1016/j.jpba.2006.11.029

    CAS  Article  PubMed  Google Scholar 

  56. Charradi K, Elkahoui S, Karkouch I et al (2012) Grape seed and skin extract prevents high-fat diet-induced brain lipotoxicity in rat. Neurochem Res 37:2004–2013. doi:10.1007/s11064-012-0821-2

    CAS  Article  PubMed  Google Scholar 

  57. Leffa DD, Dos Santos CEI, Daumann F et al (2015) Effects of supplemental acerola juice on the mineral concentrations in liver and kidney tissue samples of mice fed with cafeteria diet. Biol Trace Elem Res. doi:10.1007/s12011-015-0276-9

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank UNESC, CAPES, and CNPq for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Dimer Leffa.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Leffa, D.D., Rezin, G.T., Daumann, F. et al. Effects of Acerola (Malpighia emarginata DC.) Juice Intake on Brain Energy Metabolism of Mice Fed a Cafeteria Diet. Mol Neurobiol 54, 954–963 (2017). https://doi.org/10.1007/s12035-016-9691-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9691-y

Keywords

  • Acerola
  • Obesity
  • Krebs cycle
  • Respiratory mitochondrial chain
  • Energy metabolism