Skip to main content

Advertisement

Log in

Rapamycin Effectively Impedes Melamine-Induced Impairments of Cognition and Synaptic Plasticity in Wistar Rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Our previous investigation demonstrated that autophagy significantly reduced melamine-induced cell death in PC12 cells via inhibiting the excessive generation of ROS. In the present study, we further examine if rapamycin, used as an autophagy activator, can play a significant role in protecting neurons and alleviating the impairment of spatial cognition and hippocampal synaptic plasticity in melamine-treated rats. Male Wistar rats were divided into three groups: control, melamine-treated, and melamine-treated + rapamycin. The animal model was established by administering melamine at a dose of 300 mg/kg/day for 4 weeks. Rapamycin was intraperitoneally given at a dose of 1 mg/kg/day for 28 consecutive days. The Morris water maze test showed that spatial learning and reversal learning in melamine-treated rats were considerably damaged, whereas rapamycin significantly impeded the cognitive function impairment. Rapamycin efficiently alleviated the melamine-induced impairments of both long-term potentiation (LTP) and depotentiation, which were damaged in melamine rats. Rapamycin further increased the expression level of autophagy markers, which were significantly enhanced in melamine rats. Moreover, rapamycin noticeably decreased the reactive oxygen species level, while the superoxide dismutase activity was remarkably increased by rapamycin in melamine rats. Malondialdehyde assay exhibited that rapamycin prominently reduced the malondialdehyde (MDA) level of hippocampal neurons in melamine-treated rats. In addition, rapamycin significantly decreased the caspase-3 activity, which was elevated by melamine. Consequently, our results suggest that regulating autophagy may become a new targeted therapy to relieve the damage induced by melamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Han YG, Liu SC, Zhang T, Yang Z (2011) Induction of apoptosis by melamine in differentiated PC12 cells. Cell Mol Neurobiol 31(1):65–71. doi:10.1007/s10571-010-9554-4

    Article  CAS  PubMed  Google Scholar 

  2. Wang Y, Liu F, Wei Y, Liu D (2011) The effect of exogenous melamine on rat hippocampal neurons. Toxicol Ind Health 27:571–576

    Article  PubMed  Google Scholar 

  3. Yang J, An L, Yao Y, Yang Z, Zhang T (2011) Melamine impairs spatial cognition and hippocampal synaptic plasticity by presynaptic inhibition of glutamatergic transmission in infant rats. Toxicology 289(2–3):167–174. doi:10.1016/j.tox.2011.08.011

    Article  CAS  PubMed  Google Scholar 

  4. Yang JJ, Tian YT, Yang Z, Zhang T (2010) Effect of melamine on potassium currents in rat hippocampal CA1 neurons. Toxicol in Vitro 24(2):397–403. doi:10.1016/j.tiv.2009.10.019

    Article  CAS  PubMed  Google Scholar 

  5. Yang JJ, Yang Z, Zhang T (2010) Action potential changes associated with impairment of functional properties of sodium channels in hippocampal neurons induced by melamine. Toxicol Lett 198(2):171–176

    Article  CAS  PubMed  Google Scholar 

  6. Wu YT, Huang CM, Lin CC, Ho WA, Lin LC, Chiu TF, Tarng DC, Lin CH et al (2009) Determination of melamine in rat plasma, liver, kidney, spleen, bladder and brain by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1216(44):7595–7601

    Article  CAS  PubMed  Google Scholar 

  7. An L, Li Z, Yang Z, Zhang T (2011) Cognitive deficits induced by melamine in rats. Toxicol Lett 206(3):276–280. doi:10.1016/j.toxlet.2011.08.009

    Article  CAS  PubMed  Google Scholar 

  8. An L, Yang Z, Zhang T (2013) Melamine induced spatial cognitive deficits associated with impairments of hippocampal long-term depression and cholinergic system in Wistar rats. Neurobiol Learn Mem 100:18–24. doi:10.1016/j.nlm.2012.12.003

    Article  CAS  PubMed  Google Scholar 

  9. Ma C, Kang H, Liu Q, Zhu R, Cao Z (2011) Insight into potential toxicity mechanisms of melamine: an in silico study. Toxicology 283(2–3):96–100. doi:10.1016/j.tox.2011.02.009

    Article  CAS  PubMed  Google Scholar 

  10. Guo C, He Z, Wen L, Zhu L, Lu Y, Deng S, Yang Y, Wei Q et al (2012) Cytoprotective effect of trolox against oxidative damage and apoptosis in the NRK-52e cells induced by melamine. Cell Biol Int 36(2):183–188. doi:10.1042/CBI20110036

    Article  CAS  PubMed  Google Scholar 

  11. An L, Li Z, Zhang T (2014) Reversible effects of vitamins C and E combination on oxidative stress-induced apoptosis in melamine-treated PC12 cells. Free Radic Res 48(2):239–250. doi:10.3109/10715762.2013.861598

    Article  CAS  PubMed  Google Scholar 

  12. Kemp A, Manahan-Vaughan D (2007) Hippocampal long-term depression: master or minion in declarative memory processes? Trends Neurosci 30(3):111–118. doi:10.1016/j.tins.2007.01.002

    Article  CAS  PubMed  Google Scholar 

  13. Kulla A, Reymann KG, Manahan-Vaughan D (1999) Time-dependent induction of depotentiation in the dentate gyrus of freely moving rats: involvement of group 2 metabotropic glutamate receptors. Eur J Neurosci 11(11):3864–3872. doi:10.1046/j.1460-9568.1999.00807.x

    Article  CAS  PubMed  Google Scholar 

  14. Huang YZ, Rothwell JC, Lu CS, Chuang WL, Lin WY, Chen RS (2010) Reversal of plasticity-like effects in the human motor cortex. J Physiol 588(Pt 19):3683–3693. doi:10.1113/jphysiol.2010.191361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Citri A, Malenka RC (2008) Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33(1):18–41. doi:10.1038/sj.npp.1301559

    Article  PubMed  Google Scholar 

  16. Ehrlich I, Klein M, Rumpel S, Malinow R (2007) PSD-95 is required for activity-driven synapse stabilization. Proc Natl Acad Sci U S A 104(10):4176–4181. doi:10.1073/pnas.0609307104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li J, Kim SG, Blenis J (2014) Rapamycin: one drug, many effects. Cell Metab 19(3):373–379. doi:10.1016/j.cmet.2014.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Martinez-Vicente M, Talloczy Z, Kaushik S, Massey AC, Mazzulli J, Mosharov EV, Hodara R, Fredenburg R et al (2008) Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J Clin Invest 118(2):777–788. doi:10.1172/JCI32806

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Caccamo A, Majumder S, Richardson A, Strong R, Oddo S (2010) Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta, and Tau: effects on cognitive impairments. J Biol Chem 285(17):13107–13120. doi:10.1074/jbc.M110.100420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lipton JO, Sahin M (2014) The neurology of mTOR. Neuron 84(2):275–291. doi:10.1016/j.neuron.2014.09.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Glick D, Barth S, Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221(1):3–12. doi:10.1002/path.2697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Levine B, Yuan J (2005) Autophagy in cell death: an innocent convict? J Clin Invest 115(10):2679–2688. doi:10.1172/JCI26390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Carloni S, Buonocore G, Balduini W (2008) Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neurobiol Dis 32(3):329–339. doi:10.1016/j.nbd.2008.07.022

    Article  CAS  PubMed  Google Scholar 

  24. Pimplikar SW, Nixon RA, Robakis NK, Shen J, Tsai LH (2010) Amyloid-independent mechanisms in Alzheimer’s disease pathogenesis. J Neurosci 30(45):14946–14954. doi:10.1523/JNEUROSCI.4305-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443(7113):787–795. doi:10.1038/nature05292

    Article  CAS  PubMed  Google Scholar 

  26. Knecht E, Criado-Garcia O, Aguado C, Gayarre J, Duran-Trio L, Garcia-Cabrero AM, Vernia S, San Millan B et al (2012) Malin knockout mice support a primary role of autophagy in the pathogenesis of Lafora disease. Autophagy 8(4):701–703. doi:10.4161/auto.19522

    Article  CAS  PubMed  Google Scholar 

  27. Li L, Ishdorj G, Gibson SB (2012) Reactive oxygen species regulation of autophagy in cancer: implications for cancer treatment. Free Radic Biol Med 53(7):1399–1410. doi:10.1016/j.freeradbiomed.2012.07.011

    Article  CAS  PubMed  Google Scholar 

  28. Azad MB, Chen Y, Gibson SB (2009) Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment. Antioxid Redox Signal 11(4):777–790. doi:10.1089/ARS.2008.2270

    Article  CAS  PubMed  Google Scholar 

  29. Wang H, Gao N, Li Z, Yang Z, Zhang T (2015) Autophagy alleviates melamine-induced cell death in PC12 cells via decreasing ROS level. Mol Neurobiol. doi:10.1007/s12035-014-9073-2

    Google Scholar 

  30. Han G, An L, Yang B, Si L, Zhang T (2014) Nicotine-induced impairments of spatial cognition and long-term potentiation in adolescent male rats. Hum Exp Toxicol 33(2):203–213. doi:10.1177/0960327113494902

    Article  CAS  PubMed  Google Scholar 

  31. An L, Yang Z, Zhang T (2013) Imbalanced synaptic plasticity induced spatial cognition impairment in male offspring rats treated with chronic prenatal ethanol exposure. Alcohol Clin Exp Res 37(5):763–770

    Article  CAS  PubMed  Google Scholar 

  32. Tang G, Gudsnuk K, Kuo SH, Cotrina ML, Rosoklija G, Sosunov A, Sonders MS, Kanter E et al (2014) Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 83(5):1131–1143. doi:10.1016/j.neuron.2014.07.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. An L, Zhang T (2014) Vitamins C and E reverse melamine-induced deficits in spatial cognition and hippocampal synaptic plasticity in rats. Neurotoxicology 44:132–139. doi:10.1016/j.neuro.2014.06.009

    Article  CAS  PubMed  Google Scholar 

  34. Yu M, Zhang Y, Chen X, Zhang T (2015) Antidepressant-like effects and possible mechanisms of amantadine on cognitive and synaptic deficits in depression rats. Stress. doi:10.3109/10253890.2015.1108302

    Google Scholar 

  35. Liu C, Xu X, Gao J, Zhang T, Yang Z (2015) Hydrogen sulfide prevents synaptic plasticity from VD-induced damage via Akt/GSK-3beta pathway and notch signaling pathway in rats. Mol Neurobiol. doi:10.1007/s12035-015-9324-x

    Google Scholar 

  36. Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1(2):848–858. doi:10.1038/nprot.2006.116

    Article  PubMed  PubMed Central  Google Scholar 

  37. An L, Li Z, Yang Z, Zhang T (2012) Melamine induced cognitive impairment associated with oxidative damage in rat’s hippocampus. Pharmacol Biochem Behav 102(2):196–202. doi:10.1016/j.pbb.2012.04.009

    Article  CAS  PubMed  Google Scholar 

  38. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39. doi:10.1038/361031a0

    Article  CAS  PubMed  Google Scholar 

  39. Qi Y, Hu NW, Rowan MJ (2013) Switching off LTP: mGlu and NMDA receptor-dependent novelty exploration-induced depotentiation in the rat hippocampus. Cereb Cortex 23(4):932–939. doi:10.1093/cercor/bhs086

    Article  PubMed  Google Scholar 

  40. Li B, Otsu Y, Murphy TH, Raymond LA (2003) Developmental decrease in NMDA receptor desensitization associated with shift to synapse and interaction with postsynaptic density-95. J Neurosci 23(35):11244–11254

    CAS  PubMed  Google Scholar 

  41. Yao H, Zhao D, Khan SH, Yang L (2013) Role of autophagy in prion protein-induced neurodegenerative diseases. Acta Biochim Biophys Sin 45(6):494–502. doi:10.1093/abbs/gmt022

    Article  CAS  PubMed  Google Scholar 

  42. Mizushima N (2007) Autophagy: process and function. Genes Dev 21(22):2861–2873. doi:10.1101/gad.1599207

    Article  CAS  PubMed  Google Scholar 

  43. McCormack FX, Inoue Y, Moss J, Singer LG, Strange C, Nakata K, Barker AF, Chapman JT et al (2011) Efficacy and safety of sirolimus in lymphangioleiomyomatosis. N Engl J Med 364(17):1595–1606. doi:10.1056/NEJMoa1100391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sahin M (2012) Targeted treatment trials for tuberous sclerosis and autism: no longer a dream. Curr Opin Neurobiol 22(5):895–901. doi:10.1016/j.conb.2012.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Franz DN (2013) Everolimus in the treatment of subependymal giant cell astrocytomas, angiomyolipomas, and pulmonary and skin lesions associated with tuberous sclerosis complex. Biologics : targets & therapy 7:211–221. doi:10.2147/BTT.S25095

    CAS  Google Scholar 

  46. Ehninger D, Han S, Shilyansky C, Zhou Y, Li W, Kwiatkowski DJ, Ramesh V, Silva AJ (2008) Reversal of learning deficits in a Tsc2+/− mouse model of tuberous sclerosis. Nat Med 14(8):843–848. doi:10.1038/nm1788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Caccamo A, De Pinto V, Messina A, Branca C, Oddo S (2014) Genetic reduction of mammalian target of rapamycin ameliorates Alzheimer’s disease-like cognitive and pathological deficits by restoring hippocampal gene expression signature. J Neurosci 34(23):7988–7998. doi:10.1523/JNEUROSCI.0777-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pryor WM, Biagioli M, Shahani N, Swarnkar S, Huang WC, Page DT, MacDonald ME, Subramaniam S (2014) Huntingtin promotes mTORC1 signaling in the pathogenesis of Huntington’s disease. Sci Signal 7(349), ra103. doi:10.1126/scisignal.2005633

    Article  PubMed  Google Scholar 

  49. Nikoletopoulou V, Papandreou ME, Tavernarakis N (2015) Autophagy in the physiology and pathology of the central nervous system. Cell Death Differ 22(3):398–407. doi:10.1038/cdd.2014.204

    Article  CAS  PubMed  Google Scholar 

  50. Li L, Zhang Q, Tan J, Fang Y, An X, Chen B (2014) Autophagy and hippocampal neuronal injury. Sleep Breath = Schlaf & Atmung 18(2):243–249. doi:10.1007/s11325-013-0930-4

    Article  Google Scholar 

  51. Chen Q, Niu Y, Zhang R, Guo H, Gao Y, Li Y, Liu R (2010) The toxic influence of paraquat on hippocampus of mice: involvement of oxidative stress. Neurotoxicology 31(3):310–316. doi:10.1016/j.neuro.2010.02.006

    Article  CAS  PubMed  Google Scholar 

  52. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441(7095):880–884. doi:10.1038/nature04723

    Article  CAS  PubMed  Google Scholar 

  53. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF et al (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36(6):585–595. doi:10.1038/ng1362

    Article  CAS  PubMed  Google Scholar 

  54. Milisav I, Suput D, Ribaric S (2015) Unfolded protein response and macroautophagy in Alzheimer’s, Parkinson’s and prion diseases. Molecules 20(12):22718–22756. doi:10.3390/molecules201219865

    Article  CAS  PubMed  Google Scholar 

  55. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147(4):728–741. doi:10.1016/j.cell.2011.10.026

    Article  CAS  PubMed  Google Scholar 

  56. Sarkar S, Ravikumar B, Floto RA, Rubinsztein DC (2009) Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies. Cell Death Differ 16(1):46–56. doi:10.1038/cdd.2008.110

    Article  CAS  PubMed  Google Scholar 

  57. Fagundes LS, Fleck AD, Zanchi AC, Saldiva PH, Rhoden CR (2015) Direct contact with particulate matter increases oxidative stress in different brain structures. Inhalation toxicology. 1–6. doi:10.3109/08958378.2015.1060278

  58. Haorah J, Ramirez SH, Floreani N, Gorantla S, Morsey B, Persidsky Y (2008) Mechanism of alcohol-induced oxidative stress and neuronal injury. Free Radic Biol Med 45(11):1542–1550. doi:10.1016/j.freeradbiomed.2008.08.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lemasters JJ (2005) Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res 8(1):3–5. doi:10.1089/rej.2005.8.3

    Article  CAS  PubMed  Google Scholar 

  60. Yuan Y, Zhang X, Zheng Y, Chen Z (2015) Regulation of mitophagy in ischemic brain injury. Neurosci Bull 31(4):395–406. doi:10.1007/s12264-015-1544-6

    Article  CAS  PubMed  Google Scholar 

  61. Thanan R, Oikawa S, Hiraku Y, Ohnishi S, Ma N, Pinlaor S, Yongvanit P, Kawanishi S et al (2015) Oxidative stress and its significant roles in neurodegenerative diseases and cancer. Int J Mol Sci 16(1):193–217. doi:10.3390/ijms16010193

    Article  Google Scholar 

  62. Kamalinia G, Khodagholi F, Atyabi F, Amini M, Shaerzadeh F, Sharifzadeh M, Dinarvand R (2013) Enhanced brain delivery of deferasirox-lactoferrin conjugates for iron chelation therapy in neurodegenerative disorders: in vitro and in vivo studies. Mol Pharm 10(12):4418–4431. doi:10.1021/mp4002014

    Article  CAS  PubMed  Google Scholar 

  63. Riedl SJ, Shi Y (2004) Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 5(11):897–907. doi:10.1038/nrm1496

    Article  CAS  PubMed  Google Scholar 

  64. Tang SJ, Reis G, Kang H, Gingras AC, Sonenberg N, Schuman EM (2002) A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus. Proc Natl Acad Sci U S A 99(1):467–472. doi:10.1073/pnas.012605299

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (11232005, 31171053), and 111 Project (B08011).

Authors’ Contributions

JF, HW, and TZ conceived and designed the experiment, JF, HW, JG, MY, RW, and ZY performed the experiments and analyzed the data; and JF and TZ wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they no competing interests.

Additional information

Jingxuan Fu and Hui Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, J., Wang, H., Gao, J. et al. Rapamycin Effectively Impedes Melamine-Induced Impairments of Cognition and Synaptic Plasticity in Wistar Rats. Mol Neurobiol 54, 819–832 (2017). https://doi.org/10.1007/s12035-016-9687-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9687-7

Keywords

Navigation