Skip to main content
Log in

Lanosterol Suppresses the Aggregation and Cytotoxicity of Misfolded Proteins Linked with Neurodegenerative Diseases

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Accumulation of misfolded or aberrant proteins in neuronal cells is linked with neurodegeneration and other pathologies. Which molecular mechanisms fail and cause inappropriate folding of proteins and what is their relationship to cellular toxicity is not well known. How does it happen and what are the probable therapeutic or molecular approaches to counter them are also not clear. Here, we demonstrate that treatment of lanosterol diminishes aberrant proteotoxic aggregation and mitigates their cytotoxicity via induced expression of co-chaperone CHIP and elevated autophagy. The addition of lanosterol not only reduces aggregation of mutant bonafide misfolded proteins but also effectively prevents accumulation of various mutant disease-prone proteotoxic proteins. Finally, we observed that lanosterol mitigates cytotoxicity in cells, mediated by different stress-inducing agents. Taken together, our present results suggest that upregulation of cellular molecular chaperones, primarily using small molecules, can probably offer an efficient therapeutic approach in the future against misfolding of different disease-causing proteins and neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Woerner AC, Frottin F, Hornburg D, Feng LR, Meissner F, Patra M, Tatzelt J, Mann M et al (2016) Cytoplasmic protein aggregates interfere with nucleocytoplasmic transport of protein and RNA. Science 351(6269):173–176. doi:10.1126/science.aad2033

    Article  CAS  PubMed  Google Scholar 

  2. Chhangani D, Mishra A (2013) Protein quality control system in neurodegeneration: a healing company hard to beat but failure is fatal. Mol Neurobiol 48(1):141–156. doi:10.1007/s12035-013-8411-0

    Article  CAS  PubMed  Google Scholar 

  3. Chhangani D, Mishra A (2013) Mahogunin ring finger-1 (MGRN1) suppresses chaperone-associated misfolded protein aggregation and toxicity. Sci Rep 3:1972. doi:10.1038/srep01972

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kaganovich D, Kopito R, Frydman J (2008) Misfolded proteins partition between two distinct quality control compartments. Nature 454(7208):1088–1095. doi:10.1038/nature07195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Olzscha H, Schermann SM, Woerner AC, Pinkert S, Hecht MH, Tartaglia GG, Vendruscolo M, Hayer-Hartl M et al (2011) Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 144(1):67–78. doi:10.1016/j.cell.2010.11.050

    Article  CAS  PubMed  Google Scholar 

  6. Ciechanover A, Kwon YT (2015) Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp Mol Med 47:e147. doi:10.1038/emm.2014.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bennett EJ, Bence NF, Jayakumar R, Kopito RR (2005) Global impairment of the ubiquitin-proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation. Mol Cell 17(3):351–365. doi:10.1016/j.molcel.2004.12.021

    Article  CAS  PubMed  Google Scholar 

  8. Cohen FE, Kelly JW (2003) Therapeutic approaches to protein-misfolding diseases. Nature 426(6968):905–909. doi:10.1038/nature02265

    Article  CAS  PubMed  Google Scholar 

  9. Chaudhuri TK, Paul S (2006) Protein-misfolding diseases and chaperone-based therapeutic approaches. FEBS J 273(7):1331–1349. doi:10.1111/j.1742-4658.2006.05181.x

    Article  CAS  PubMed  Google Scholar 

  10. Yang YP, Hu LF, Zheng HF, Mao CJ, Hu WD, Xiong KP, Wang F, Liu CF (2013) Application and interpretation of current autophagy inhibitors and activators. Acta Pharmacol Sin 34(5):625–635. doi:10.1038/aps.2013.5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sarkar N, Kumar M, Dubey VK (2011) Exploring possibility of promiscuity of amyloid inhibitor: studies on effect of selected compounds on folding and amyloid formation of proteins. Process Biochem 46(5):1179–1185. doi:10.1016/j.procbio.2011.02.010

    Article  CAS  Google Scholar 

  12. Parenti G (2009) Treating lysosomal storage diseases with pharmacological chaperones: from concept to clinics. EMBO Mol Med 1(5):268–279. doi:10.1002/emmm.200900036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Haynes CM, Titus EA, Cooper AA (2004) Degradation of misfolded proteins prevents ER-derived oxidative stress and cell death. Mol Cell 15(5):767–776. doi:10.1016/j.molcel.2004.08.025

    Article  CAS  PubMed  Google Scholar 

  14. Pan JA, Ullman E, Dou Z, Zong WX (2011) Inhibition of protein degradation induces apoptosis through a microtubule-associated protein 1 light chain 3-mediated activation of caspase-8 at intracellular membranes. Mol Cell Biol 31(15):3158–3170. doi:10.1128/MCB.05460-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Upadhyay A, Amanullah A, Chhangani D, Joshi V, Mishra R, Mishra A (2015) Ibuprofen induces mitochondrial-mediated apoptosis through proteasomal dysfunction. Mol Neurobiol. doi:10.1007/s12035-015-9603-6

    Google Scholar 

  16. Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475(7356):324–332. doi:10.1038/nature10317

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Y, Ahn YH, Benjamin IJ, Honda T, Hicks RJ, Calabrese V, Cole PA, Dinkova-Kostova AT (2011) HSF1-dependent upregulation of Hsp70 by sulfhydryl-reactive inducers of the KEAP1/NRF2/ARE pathway. Chem Biol 18(11):1355–1361. doi:10.1016/j.chembiol.2011.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wright JM, Zeitlin PL, Cebotaru L, Guggino SE, Guggino WB (2004) Gene expression profile analysis of 4-phenylbutyrate treatment of IB3-1 bronchial epithelial cell line demonstrates a major influence on heat-shock proteins. Physiol Genomics 16(2):204–211. doi:10.1152/physiolgenomics.00160.2003

    Article  CAS  PubMed  Google Scholar 

  19. Jurivich DA, Sistonen L, Sarge KD, Morimoto RI (1994) Arachidonate is a potent modulator of human heat shock gene transcription. Proc Natl Acad Sci U S A 91(6):2280–2284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Teiten MH, Reuter S, Schmucker S, Dicato M, Diederich M (2009) Induction of heat shock response by curcumin in human leukemia cells. Cancer Lett 279(2):145–154. doi:10.1016/j.canlet.2009.01.031

    Article  CAS  PubMed  Google Scholar 

  21. Mori M, Li G, Abe I, Nakayama J, Guo Z, Sawashita J, Ugawa T, Nishizono S et al (2006) Lanosterol synthase mutations cause cholesterol deficiency-associated cataracts in the Shumiya cataract rat. J Clin Invest 116(2):395–404. doi:10.1172/JCI20797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Song BL, Javitt NB, DeBose-Boyd RA (2005) Insig-mediated degradation of HMG CoA reductase stimulated by lanosterol, an intermediate in the synthesis of cholesterol. Cell Metab 1(3):179–189. doi:10.1016/j.cmet.2005.01.001

    Article  CAS  PubMed  Google Scholar 

  23. Huff MW, Telford DE (2005) Lord of the rings—the mechanism for oxidosqualene:lanosterol cyclase becomes crystal clear. Trends Pharmacol Sci 26(7):335–340. doi:10.1016/j.tips.2005.05.004

    Article  CAS  PubMed  Google Scholar 

  24. Lim L, Jackson-Lewis V, Wong LC, Shui GH, Goh AX, Kesavapany S, Jenner AM, Fivaz M et al (2012) Lanosterol induces mitochondrial uncoupling and protects dopaminergic neurons from cell death in a model for Parkinson’s disease. Cell Death Differ 19(3):416–427. doi:10.1038/cdd.2011.105

    Article  CAS  PubMed  Google Scholar 

  25. Zhao L, Chen XJ, Zhu J, Xi YB, Yang X, Hu LD, Ouyang H, Patel SH et al (2015) Lanosterol reverses protein aggregation in cataracts. Nature 523(7562):607–611. doi:10.1038/nature14650

    Article  CAS  PubMed  Google Scholar 

  26. Chhangani D, Upadhyay A, Amanullah A, Joshi V, Mishra A (2014) Ubiquitin ligase ITCH recruitment suppresses the aggregation and cellular toxicity of cytoplasmic misfolded proteins. Sci Rep 4:5077. doi:10.1038/srep05077

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chhangani D, Endo F, Amanullah A, Upadhyay A, Watanabe S, Mishra R, Yamanaka K, Mishra A (2015) Mahogunin ring finger 1 confers cytoprotection against mutant SOD1 aggresomes and is defective in an ALS mouse model. Neurobiol Dis 86:16–28. doi:10.1016/j.nbd.2015.11.017

    Article  PubMed  Google Scholar 

  28. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461. doi:10.1002/jcc.21334

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. doi:10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  30. Stierand K, Maass PC, Rarey M (2006) Molecular complexes at a glance: automated generation of two-dimensional complex diagrams. Bioinformatics 22(14):1710–1716. doi:10.1093/bioinformatics/btl150

    Article  CAS  PubMed  Google Scholar 

  31. Bjørkøy G, Lamark T, Pankiv S, Øvervatn A, Brech A, Johansen T (2009) Chapter 12 Monitoring autophagic degradation of p62/SQSTM1. In: Methods in Enzymology, vol 452. Academic Press, New York, p 181–197. doi:10.1016/S0076-6879(08)03612-4

  32. Komatsu M, Ichimura Y (2010) Physiological significance of selective degradation of p62 by autophagy. FEBS Lett 584(7):1374–1378. doi:10.1016/j.febslet.2010.02.017

    Article  CAS  PubMed  Google Scholar 

  33. Arslan MA, Chikina M, Csermely P, Soti C (2012) Misfolded proteins inhibit proliferation and promote stress-induced death in SV40-transformed mammalian cells. FASEB journal: official publication of the Federation of American Societies for Experimental Biology 26(2):766–777. doi:10.1096/fj.11-186197

    Article  CAS  Google Scholar 

  34. Sisodia SS (1998) Nuclear inclusions in glutamine repeat disorders: are they pernicious, coincidental, or beneficial? Cell 95(1):1–4

    Article  CAS  PubMed  Google Scholar 

  35. Suzuki Y (2014) Emerging novel concept of chaperone therapies for protein misfolding diseases. Proceedings of the Japan Academy Series B, Physical and biological sciences 90(5):145–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Perlmutter DH (2002) Chemical chaperones: a pharmacological strategy for disorders of protein folding and trafficking. Pediatr Res 52(6):832–836. doi:10.1203/00006450-200212000-00004

    Article  PubMed  Google Scholar 

  37. Connell P, Ballinger CA, Jiang J, Wu Y, Thompson LJ, Hohfeld J, Patterson C (2001) The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat Cell Biol 3(1):93–96. doi:10.1038/35050618

    Article  CAS  PubMed  Google Scholar 

  38. Meacham GC, Patterson C, Zhang W, Younger JM, Cyr DM (2001) The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat Cell Biol 3(1):100–105. doi:10.1038/35050509

    Article  CAS  PubMed  Google Scholar 

  39. Xu W, Marcu M, Yuan X, Mimnaugh E, Patterson C, Neckers L (2002) Chaperone-dependent E3 ubiquitin ligase CHIP mediates a degradative pathway for c-ErbB2/Neu. Proc Natl Acad Sci U S A 99(20):12847–12852. doi:10.1073/pnas.202365899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. McDonough H, Patterson C (2003) CHIP: a link between the chaperone and proteasome systems. Cell Stress Chaperones 8(4):303–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kilpatrick K, Novoa JA, Hancock T, Guerriero CJ, Wipf P, Brodsky JL, Segatori L (2013) Chemical induction of Hsp70 reduces alpha-synuclein aggregation in neuroglioma cells. ACS Chem Biol 8(7):1460–1468. doi:10.1021/cb400017h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang AM, Miyata Y, Klinedinst S, Peng HM, Chua JP, Komiyama T, Li X, Morishima Y et al (2013) Activation of Hsp70 reduces neurotoxicity by promoting polyglutamine protein degradation. Nat Chem Biol 9(2):112–118. doi:10.1038/nchembio.1140

    Article  CAS  PubMed  Google Scholar 

  43. Makley LN, McMenimen KA, DeVree BT, Goldman JW, McGlasson BN, Rajagopal P, Dunyak BM, McQuade TJ et al (2015) Pharmacological chaperone for alpha-crystallin partially restores transparency in cataract models. Science 350(6261):674–677. doi:10.1126/science.aac9145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Urushitani M, Kurisu J, Tateno M, Hatakeyama S, Nakayama K, Kato S, Takahashi R (2004) CHIP promotes proteasomal degradation of familial ALS-linked mutant SOD1 by ubiquitinating Hsp/Hsc70. J Neurochem 90(1):231–244. doi:10.1111/j.1471-4159.2004.02486.x

    Article  CAS  PubMed  Google Scholar 

  45. Shin Y, Klucken J, Patterson C, Hyman BT, McLean PJ (2005) The co-chaperone carboxyl terminus of Hsp70-interacting protein (CHIP) mediates alpha-synuclein degradation decisions between proteasomal and lysosomal pathways. J Biol Chem 280(25):23727–23734. doi:10.1074/jbc.M503326200

    Article  CAS  PubMed  Google Scholar 

  46. Miller VM, Nelson RF, Gouvion CM, Williams A, Rodriguez-Lebron E, Harper SQ, Davidson BL, Rebagliati MR et al (2005) CHIP suppresses polyglutamine aggregation and toxicity in vitro and in vivo. J Neurosci 25(40):9152–9161. doi:10.1523/JNEUROSCI.3001-05.2005

    Article  CAS  PubMed  Google Scholar 

  47. Jana NR, Dikshit P, Goswami A, Kotliarova S, Murata S, Tanaka K, Nukina N (2005) Co-chaperone CHIP associates with expanded polyglutamine protein and promotes their degradation by proteasomes. J Biol Chem 280(12):11635–11640. doi:10.1074/jbc.M412042200

    Article  CAS  PubMed  Google Scholar 

  48. Arndt V, Dick N, Tawo R, Dreiseidler M, Wenzel D, Hesse M, Furst DO, Saftig P et al (2010) Chaperone-assisted selective autophagy is essential for muscle maintenance. Curr Biol 20(2):143–148. doi:10.1016/j.cub.2009.11.022

    Article  CAS  PubMed  Google Scholar 

  49. Tanaka M, Machida Y, Niu S, Ikeda T, Jana NR, Doi H, Kurosawa M, Nekooki M et al (2004) Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat Med 10(2):148–154. doi:10.1038/nm985

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Biotechnology, Government of India. AM was supported by Ramalinganswami Fellowship (BT/RLF/Reentry/11/2010) and Extra Mural Research Funding (Individual Centric): Science and Engineering Research Board (SERB) EMR/2016/000716, Department of Science and Technology, Government of India. AU was supported by a research fellowship from University Grants Commission, Council of Scientific and Industrial Research, Government of India. The authors would like to thank Mr. Bharat Pareek for his technical assistance and entire lab management during the manuscript preparation. We also thank to all for gifted plasmids: Dr. Csaba soti (Department of Medical Chemistry, Semmelweis University, Budapest, Hungary) for GFP-wtCAT and GFP-Δ9CAT constructs, Dr. Hilal Lashuel (Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, School of Life Sciences, for α-Synuclein and α-Synuclein-S87A plasmids, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland), Dr. A Tunnacliffe (Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK) for EGFP-HDQ23 and EGFP-HDQ74 constructs, Dr. Elizabeth Fisher (UCL Institute of Neurology, Queen Square, London) for pF141 pAcGFP1 SOD1WT and pF148 pSOD1G37RAcGFP1 plasmids, Dr. Henry L. Paulson (The University of Michigan Health System, Department of Neurology, Ann Arbor, MI) for pEGFP-C1-Ataxin3Q28 and pEGFP-C1-Ataxin3Q84 constructs, and Dr. William Kaelin from Dana Farber Cancer Institute and the Howard Hughes Medical Institute for luciferase-pcDNA3 plasmid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Mishra.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interests.

Additional information

Arun Upadhyay and Ayeman Amanullah contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhyay, A., Amanullah, A., Mishra, R. et al. Lanosterol Suppresses the Aggregation and Cytotoxicity of Misfolded Proteins Linked with Neurodegenerative Diseases. Mol Neurobiol 55, 1169–1182 (2018). https://doi.org/10.1007/s12035-016-0377-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0377-2

Keywords

Navigation