Advertisement

Molecular Neurobiology

, Volume 55, Issue 1, pp 851–858 | Cite as

MiR-29c/PRKCI Regulates Axonal Growth of Dorsal Root Ganglia Neurons Under Hyperglycemia

  • Longfei Jia
  • Lei Wang
  • Michael Chopp
  • Chao Li
  • Yi Zhang
  • Alexandra Szalad
  • Zheng Gang ZhangEmail author
Article

Abstract

Diabetes initially induces distal axonal damage of peripheral nerves, but molecular mechanisms that mediate axonal injury are not fully understood. MircoRNAs (miRNAs) regulate axonal growth. We found that diabetic db/db mice exhibited substantial upregulation of miR-29c in dorsal root ganglia (DRG) neurons, sciatic nerve, and foot pad tissues. Bioinformatic analysis revealed PRKCI, a gene that encodes a member of the protein kinase C (PKC) iota, as a putative target for miR-29c. Western blot analysis showed that diabetic mice exhibited a considerable reduction of PRKCI protein levels in sciatic nerve tissues and DRG neurons. Using dual-luciferase assay, we found that co-transfection of a plasmid containing miR-29c binding site at 3′ UTR of PRKCI gene and miR-29c mimics effectively reduced luminescence activity, which was abolished when miR-29c seed sequences at 3′ UTR of PRKCI gene were mutated. In vitro, high glucose substantially upregulated and reduced miR-29c and PRKCI protein levels, respectively, in DRG neurons, which were associated with significant reduction of axonal growth. Knockdown of endogenous miR-29c in DRG neurons by siRNAs overcame reduced PRKCI protein and axonal growth under high glucose condition. Moreover, knockdown of PRKCI in DRG neurons by siRNAs under regular glucose condition considerably inhibited axonal growth. Together, these findings suggest that miR-29c is a negative regulator of axonal growth of DRG neurons by targeting PRKCI under hyperglycemia.

Keywords

Peripheral neuropathy Diabetes Axonal growth miR-29c PRKCI MARCKS 

Notes

Acknowledgements

This work was supported by NINDS grants R01 NS075084 (LW) and RO1 NS075156 (ZGZ), and NIDDK RO1 DK097519 (LW).

Compliance with Ethical Standards

Conflicts of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Peltier A, Goutman SA, Callaghan BC (2014) Painful diabetic neuropathy. BMJ 348:g1799. doi: 10.1136/bmj.g1799 CrossRefPubMedGoogle Scholar
  2. 2.
    England JD, Gronseth GS, Franklin G, Miller RG, Asbury AK, Carter GT, Cohen JA, Fisher MA et al (2005) Distal symmetrical polyneuropathy: a definition for clinical research. A report of the American Academy of Neurology, the American Association of Electrodiagnostic Medicine, and the American Academy of Physical Medicine and Rehabilitation. Arch Phys Med Rehabil 86(1):167–174CrossRefPubMedGoogle Scholar
  3. 3.
    Cameron NE, Eaton SE, Cotter MA, Tesfaye S (2001) Vascular factors and metabolic interactions in the pathogenesis of diabetic neuropathy. Diabetologia 44(11):1973–1988. doi: 10.1007/s001250100001 CrossRefPubMedGoogle Scholar
  4. 4.
    Obrosova IG (2009) Diabetes and the peripheral nerve. Biochim Biophys Acta 1792(10):931–940. doi: 10.1016/j.bbadis.2008.11.005 CrossRefPubMedGoogle Scholar
  5. 5.
    Doupis J, Lyons TE, Wu S, Gnardellis C, Dinh T, Veves A (2009) Microvascular reactivity and inflammatory cytokines in painful and painless peripheral diabetic neuropathy. J Clin Endocrinol Metab 94(6):2157–2163. doi: 10.1210/jc.2008-2385 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kantharidis P, Wang B, Carew RM, Lan HY (2011) Diabetes complications: the microRNA perspective. Diabetes 60(7):1832–1837. doi: 10.2337/db11-0082 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Natera-Naranjo O, Aschrafi A, Gioio AE, Kaplan BB (2010) Identification and quantitative analyses of microRNAs located in the distal axons of sympathetic neurons. RNA 16(8):1516–1529. doi: 10.1261/rna.1833310 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hancock ML, Preitner N, Quan J, Flanagan JG (2014) MicroRNA-132 is enriched in developing axons, locally regulates Rasa1 mRNA, and promotes axon extension. The Journal of neuroscience : the official journal of the Society for Neuroscience 34(1):66–78. doi: 10.1523/JNEUROSCI.3371-13.2014 CrossRefGoogle Scholar
  9. 9.
    Sasaki Y, Gross C, Xing L, Goshima Y, Bassell GJ (2014) Identification of axon-enriched MicroRNAs localized to growth cones of cortical neurons. Dev Neurobiol 74(3):397–406. doi: 10.1002/dneu.22113 CrossRefPubMedGoogle Scholar
  10. 10.
    Kim HH, Kim P, Phay M, Yoo S (2015) Identification of precursor microRNAs within distal axons of sensory neuron. J Neurochem 134(2):193–199. doi: 10.1111/jnc.13140 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Jia L, Wang L, Chopp M, Zhang Y, Szalad A, Zhang ZG (2016) MicroRNA 146a locally mediates distal axonal growth of dorsal root ganglia neurons under high glucose and sildenafil conditions. Neuroscience 329:43–53. doi: 10.1016/j.neuroscience.2016.05.005 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Zhang Y, Chopp M, Liu XS, Kassis H, Wang X, Li C, An G, Zhang ZG (2015) MicroRNAs in the axon locally mediate the effects of chondroitin sulfate proteoglycans and cGMP on axonal growth. Dev Neurobiol 75(12):1402–1419. doi: 10.1002/dneu.22292 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, Lakey ND, Culpepper J et al (1996) Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 84(3):491–495CrossRefPubMedGoogle Scholar
  14. 14.
    Okada-Iwabu M, Yamauchi T, Iwabu M, Honma T, Hamagami K, Matsuda K, Yamaguchi M, Tanabe H et al (2013) A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity. Nature 503(7477):493–499. doi: 10.1038/nature12656 CrossRefPubMedGoogle Scholar
  15. 15.
    Hur EM, Yang IH, Kim DH, Byun J, Saijilafu XWL, Nicovich PR, Cheong R, Levchenko A et al (2011) Engineering neuronal growth cones to promote axon regeneration over inhibitory molecules. Proc Natl Acad Sci U S A 108(12):5057–5062. doi: 10.1073/pnas.1011258108 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Uehara K, Yamagishi S, Otsuki S, Chin S, Yagihashi S (2004) Effects of polyol pathway hyperactivity on protein kinase C activity, nociceptive peptide expression, and neuronal structure in dorsal root ganglia in diabetic mice. Diabetes 53(12):3239–3247CrossRefPubMedGoogle Scholar
  17. 17.
    Mochly-Rosen D, Das K, Grimes KV (2012) Protein kinase C, an elusive therapeutic target? Nat Rev Drug Discov 11(12):937–957. doi: 10.1038/nrd3871 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Shi SH, Cheng T, Jan LY, Jan YN (2004) APC and GSK-3beta are involved in mPar3 targeting to the nascent axon and establishment of neuronal polarity. Curr Biol 14(22):2025–2032. doi: 10.1016/j.cub.2004.11.009 CrossRefPubMedGoogle Scholar
  19. 19.
    Shi SH, Jan LY, Jan YN (2003) Hippocampal neuronal polarity specified by spatially localized mPar3/mPar6 and PI 3-kinase activity. Cell 112(1):63–75CrossRefPubMedGoogle Scholar
  20. 20.
    Ren SQ, Yan JZ, Zhang XY, Bu YF, Pan WW, Yao W, Tian T, Lu W (2013) PKClambda is critical in AMPA receptor phosphorylation and synaptic incorporation during LTP. EMBO J 32(10):1365–1380. doi: 10.1038/emboj.2013.60 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Tanabe K, Kani S, Shimizu T, Bae YK, Abe T, Hibi M (2010) Atypical protein kinase C regulates primary dendrite specification of cerebellar Purkinje cells by localizing Golgi apparatus. J Neurosci 30(50):16983–16992. doi: 10.1523/JNEUROSCI.3352-10.2010 CrossRefPubMedGoogle Scholar
  22. 22.
    Taylor AM, Blurton-Jones M, Rhee SW, Cribbs DH, Cotman CW, Jeon NL (2005) A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat Methods 2(8):599–605. doi: 10.1038/nmeth777 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Russell JW, Sullivan KA, Windebank AJ, Herrmann DN, Feldman EL (1999) Neurons undergo apoptosis in animal and cell culture models of diabetes. Neurobiol Dis 6(5):347–363. doi: 10.1006/nbdi.1999.0254 CrossRefPubMedGoogle Scholar
  24. 24.
    Cnop M, Welsh N, Jonas JC, Jorns A, Lenzen S, Eizirik DL (2005) Mechanisms of pancreatic beta-cell death in Type 1 and Type 2 diabetes: many differences, few similarities. Diabetes 54(Suppl 2):S97–107CrossRefPubMedGoogle Scholar
  25. 25.
    Wang L, Chopp M, Szalad A, Zhang Y, Wang X, Zhang RL, Liu XS, Jia L et al (2014) The role of miR-146a in dorsal root ganglia neurons of experimental diabetic peripheral neuropathy. Neuroscience 259:155–163. doi: 10.1016/j.neuroscience.2013.11.057 CrossRefPubMedGoogle Scholar
  26. 26.
    Zhang Y, Ueno Y, Liu XS, Buller B, Wang X, Chopp M, Zhang ZG (2013) The MicroRNA-17-92 cluster enhances axonal outgrowth in embryonic cortical neurons. J Neurosci 33(16):6885–6894. doi: 10.1523/JNEUROSCI.5180-12.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25(4):402–408. doi: 10.1006/meth.2001.1262 CrossRefPubMedGoogle Scholar
  28. 28.
    van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, Hill JA, Olson EN (2008) Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A 105(35):13027–13032. doi: 10.1073/pnas.0805038105 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Long J, Wang Y, Wang W, Chang BH, Danesh FR (2011) MicroRNA-29c is a signature microRNA under high glucose conditions that targets Sprouty homolog 1, and its in vivo knockdown prevents progression of diabetic nephropathy. J Biol Chem 286(13):11837–11848. doi: 10.1074/jbc.M110.194969 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Steinberg SF (2008) Structural basis of protein kinase C isoform function. Physiol Rev 88(4):1341–1378. doi: 10.1152/physrev.00034.2007 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Nakamura J, Kato K, Hamada Y, Nakayama M, Chaya S, Nakashima E, Naruse K, Kasuya Y et al (1999) A protein kinase C-beta-selective inhibitor ameliorates neural dysfunction in streptozotocin-induced diabetic rats. Diabetes 48(10):2090–2095CrossRefPubMedGoogle Scholar
  32. 32.
    Xu XH, Deng CY, Liu Y, He M, Peng J, Wang T, Yuan L, Zheng ZS et al (2014) MARCKS regulates membrane targeting of Rab10 vesicles to promote axon development. Cell Res 24(5):576–594. doi: 10.1038/cr.2014.33 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Longfei Jia
    • 1
  • Lei Wang
    • 1
  • Michael Chopp
    • 1
    • 2
  • Chao Li
    • 1
  • Yi Zhang
    • 1
  • Alexandra Szalad
    • 1
  • Zheng Gang Zhang
    • 1
    Email author
  1. 1.Department of NeurologyHenry Ford HospitalDetroitUSA
  2. 2.Department of Physics Oakland UniversityRochesterUSA

Personalised recommendations