Skip to main content
Log in

The Sleep in Caenorhabditis elegans: What We Know Until Now

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Sleep, as one of the most important requirements of our brain, has a mystical nature. Despite long-standing studies, the molecular mechanisms and physiological properties of sleep have not been defined well as the complexity of the mammals’ brain make it difficult to investigate the mechanisms and properties of sleep. Although some features of sleep have changed during evolution, its existence in such a simple animal, Caenorhabditis elegans, not only signifies the importance of sleep in even simple animals, but also allows the scientist to assess the core mechanism and biological events in an uncomplicated organism. This article reviews the information which exists about the characteristics of sleep in C. elegans, its circadian rhythm, the neurons and neurotransmitters responsible for each state, and the signaling molecules involved. Although much still remains to be resolved about the sleep of C. elegans, the available knowledge helps the scientists to recognize the properties better of this mysterious function of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benington JH, Heller HC (1995) Restoration of brain energy metabolism as the function of sleep. Prog Neurobiol 45(4):347–360

    Article  CAS  PubMed  Google Scholar 

  2. Scharf MT, Naidoo N, Zimmerman JE, Pack AI (2008) The energy hypothesis of sleep revisited. Prog Neurobiol 86(3):264–280. doi:10.1016/j.pneurobio.2008.08.003

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tu BP, McKnight SL (2006) Metabolic cycles as an underlying basis of biological oscillations. Nat Rev Mol Cell Biol 7(9):696–701. doi:10.1038/nrm1980

    Article  CAS  PubMed  Google Scholar 

  4. Tononi G, Cirelli C (2006) Sleep function and synaptic homeostasis. Sleep Med Rev 10(1):49–62. doi:10.1016/j.smrv.2005.05.002

    Article  PubMed  Google Scholar 

  5. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ et al (2013) Sleep drives metabolite clearance from the adult brain. Science (New York, NY) 342(6156):373–377. doi:10.1126/science.1241224

    Article  CAS  Google Scholar 

  6. Mignot E (2008) Why we sleep: the temporal organization of recovery. PLoS Biol 6(4):e106. doi:10.1371/journal.pbio.0060106

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rechtschaffen A (1998) Current perspectives on the function of sleep. Perspect Biol Med 41(3):359–390

    Article  CAS  PubMed  Google Scholar 

  8. Schmidt MH (2014) The energy allocation function of sleep: a unifying theory of sleep, torpor, and continuous wakefulness. Neurosci Biobehav Rev 47:122–153. doi:10.1016/j.neubiorev.2014.08.001

    Article  PubMed  Google Scholar 

  9. Mahowald MW, Schenck CH (2005) Insights from studying human sleep disorders. Nature 437(7063):1279–1285. doi:10.1038/nature04287

    Article  CAS  PubMed  Google Scholar 

  10. Owens J (2014) Insufficient sleep in adolescents and young adults: an update on causes and consequences. Pediatrics 134(3):e921–e932. doi:10.1542/peds.2014-1696

    Article  PubMed  Google Scholar 

  11. Corsi AK (2006) A biochemist’s guide to Caenorhabditis elegans. Anal Biochem 359(1):1–17. doi:10.1016/j.ab.2006.07.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fry AL, Laboy JT, Huang H, Hart AC, Norman KR (2016) A conserved GEF for rho-family GTPases acts in an EGF signaling pathway to promote sleep-like quiescence in Caenorhabditis elegans. Genetics 202(3):1153–1166. doi:10.1534/genetics.115.183038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sammut M, Cook SJ, Nguyen KC, Felton T, Hall DH, Emmons SW, Poole RJ, Barrios A (2015) Glia-derived neurons are required for sex-specific learning in C. elegans. Nature 526(7573):385–390. doi:10.1038/nature15700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Siegel JM (2008) Do all animals sleep? Trends Neurosci 31(4):208–213. doi:10.1016/j.tins.2008.02.001

    Article  CAS  PubMed  Google Scholar 

  15. Trojanowski NF, Raizen DM (2016) Call it worm sleep. Trends Neurosci 39(2):54–62. doi:10.1016/j.tins.2015.12.005

    Article  CAS  PubMed  Google Scholar 

  16. Cassada RC, Russell RL (1975) The dauerlarva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. Dev Biol 46(2):326–342

    Article  CAS  PubMed  Google Scholar 

  17. You YJ, Kim J, Raizen DM, Avery L (2008) Insulin, cGMP, and TGF-beta signals regulate food intake and quiescence in C. elegans: a model for satiety. Cell Metab 7(3):249–257. doi:10.1016/j.cmet.2008.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gallagher T, Kim J, Oldenbroek M, Kerr R, You YJ (2013) ASI regulates satiety quiescence in C. elegans. The Journal of neuroscience : the official journal of the Society for Neuroscience 33(23):9716–9724. doi:10.1523/jneurosci.4493-12.2013

    Article  CAS  Google Scholar 

  19. Pan CL, Peng CY, Chen CH, McIntire S (2011) Genetic analysis of age-dependent defects of the Caenorhabditis elegans touch receptor neurons. Proc Natl Acad Sci U S A 108(22):9274–9279. doi:10.1073/pnas.1011711108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Raizen DM, Zimmerman JE, Maycock MH, Ta UD, You YJ, Sundaram MV, Pack AI (2008) Lethargus is a Caenorhabditis elegans sleep-like state. Nature 451(7178):569–572. doi:10.1038/nature06535

    Article  CAS  PubMed  Google Scholar 

  21. Iwanir S, Tramm N, Nagy S, Wright C, Ish D, Biron D (2013) The microarchitecture of C. elegans behavior during lethargus: homeostatic bout dynamics, a typical body posture, and regulation by a central neuron. Sleep 36(3):385–395. doi:10.5665/sleep.2456

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tramm N, Oppenheimer N, Nagy S, Efrati E, Biron D (2014) Why do sleeping nematodes adopt a hockey-stick-like posture? PLoS One 9(7):e101162. doi:10.1371/journal.pone.0101162

    Article  PubMed  PubMed Central  Google Scholar 

  23. Schwarz J, Spies JP, Bringmann H (2012) Reduced muscle contraction and a relaxed posture during sleep-like lethargus. Worm 1(1):12–14. doi:10.4161/worm.19499

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gray JM, Hill JJ, Bargmann CI (2005) A circuit for navigation in Caenorhabditis elegans. Proc Natl Acad Sci U S A 102(9):3184–3191. doi:10.1073/pnas.0409009101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Von Stetina SE, Treinin M, Miller DM 3rd (2006) The motor circuit. Int Rev Neurobiol 69:125–167. doi:10.1016/s0074-7742(05)69005-8

    Article  CAS  PubMed  Google Scholar 

  26. Gjorgjieva J, Biron D, Haspel G (2014) Neurobiology of locomotion: where do We stand? Bioscience 64(6):476–486. doi:10.1093/biosci/biu058

    Article  PubMed  PubMed Central  Google Scholar 

  27. Driver RJ, Lamb AL, Wyner AJ, Raizen DM (2013) DAF-16/FOXO regulates homeostasis of essential sleep-like behavior during larval transitions in C. elegans. Current biology : CB 23(6):501–506. doi:10.1016/j.cub.2013.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hill AJ, Mansfield R, Lopez JM, Raizen DM, Van Buskirk C (2014) Cellular stress induces a protective sleep-like state in C. elegans. Current biology : CB 24(20):2399–2405. doi:10.1016/j.cub.2014.08.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jones D, Candido EP (1999) Feeding is inhibited by sublethal concentrations of toxicants and by heat stress in the nematode Caenorhabditis elegans: relationship to the cellular stress response. J Exp Zool 284(2):147–157

    Article  CAS  PubMed  Google Scholar 

  30. Morgan PG, Cascorbi HF (1985) Effect of anesthetics and a convulsant on normal and mutant Caenorhabditis elegans. Anesthesiology 62(6):738–744

    Article  CAS  PubMed  Google Scholar 

  31. Los FC, Ha C, Aroian RV (2013) Neuronal Goalpha and CAPS regulate behavioral and immune responses to bacterial pore-forming toxins. PLoS One 8(1):e54528. doi:10.1371/journal.pone.0054528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ghosh R, Emmons SW (2008) Episodic swimming behavior in the nematode C. elegans. J Exp Biol 211(Pt 23):3703–3711. doi:10.1242/jeb.023606

    Article  PubMed  Google Scholar 

  33. Kuo TH, Williams JA (2014) Acute sleep deprivation enhances post-infection sleep and promotes survival during bacterial infection in drosophila. Sleep 37(5):859–869. doi:10.5665/sleep.3648

    Article  PubMed  PubMed Central  Google Scholar 

  34. Allada R, Emery P, Takahashi JS, Rosbash M (2001) Stopping time: the genetics of fly and mouse circadian clocks. Annu Rev Neurosci 24:1091–1119. doi:10.1146/annurev.neuro.24.1.1091

    Article  CAS  PubMed  Google Scholar 

  35. Konopka RJ, Benzer S (1971) Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci U S A 68(9):2112–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jeon M, Gardner HF, Miller EA, Deshler J, Rougvie AE (1999) Similarity of the C. elegans developmental timing protein LIN-42 to circadian rhythm proteins. Science (New York, NY) 286(5442):1141–1146

    Article  CAS  Google Scholar 

  37. Tennessen JM, Gardner HF, Volk ML, Rougvie AE (2006) Novel heterochronic functions of the Caenorhabditis elegans period-related protein LIN-42. Dev Biol 289(1):30–43. doi:10.1016/j.ydbio.2005.09.044

    Article  CAS  PubMed  Google Scholar 

  38. Abrahante JE, Miller EA, Rougvie AE (1998) Identification of heterochronic mutants in Caenorhabditis elegans. Temporal misexpression of a collagen::green fluorescent protein fusion gene. Genetics 149(3):1335–1351

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Monsalve GC, Van Buskirk C, Frand AR (2011) LIN-42/PERIOD controls cyclical and developmental progression of C. elegans molts. Current biology : CB 21(24):2033–2045. doi:10.1016/j.cub.2011.10.054

    Article  CAS  PubMed  Google Scholar 

  40. Nelson MD, Raizen DM (2013) A sleep state during C. elegans development. Curr Opin Neurobiol 23(5):824–830. doi:10.1016/j.conb.2013.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Saigusa T, Ishizaki S, Watabiki S, Ishii N, Tanakadate A, Tamai Y, Hasegawa K (2002) Circadian behavioural rhythm in Caenorhabditis elegans. Current biology : CB 12(2):R46–R47

    Article  CAS  PubMed  Google Scholar 

  42. Migliori ML, Simonetta SH, Romanowski A, Golombek DA (2011) Circadian rhythms in metabolic variables in Caenorhabditis elegans. Physiol Behav 103(3–4):315–320. doi:10.1016/j.physbeh.2011.01.026

    Article  CAS  PubMed  Google Scholar 

  43. van der Linden AM, Beverly M, Kadener S, Rodriguez J, Wasserman S, Rosbash M, Sengupta P (2010) Genome-wide analysis of light- and temperature-entrained circadian transcripts in Caenorhabditis elegans. PLoS Biol 8(10):e1000503. doi:10.1371/journal.pbio.1000503

    Article  PubMed  PubMed Central  Google Scholar 

  44. Olmedo M, O’Neill JS, Edgar RS, Valekunja UK, Reddy AB, Merrow M (2012) Circadian regulation of olfaction and an evolutionarily conserved, nontranscriptional marker in Caenorhabditis elegans. Proc Natl Acad Sci U S A 109(50):20479–20484. doi:10.1073/pnas.1211705109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Turek M, Lewandrowski I, Bringmann H (2013) An AP2 transcription factor is required for a sleep-active neuron to induce sleep-like quiescence in C. elegans. Current biology : CB 23(22):2215–2223. doi:10.1016/j.cub.2013.09.028

    Article  CAS  PubMed  Google Scholar 

  46. Nelson MD, Trojanowski NF, George-Raizen JB, Smith CJ, Yu CC, Fang-Yen C, Raizen DM (2013) The neuropeptide NLP-22 regulates a sleep-like state in Caenorhabditis elegans. Nat Commun 4:2846. doi:10.1038/ncomms3846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Turek M, Besseling J, Spies JP, Konig S, Bringmann H (2016) Sleep-active neuron specification and sleep induction require FLP-11 neuropeptides to systemically induce sleep. Elife 5. doi:10.7554/eLife.12499

  48. Gvilia I (2010) Underlying brain mechanisms that regulate sleep-wakefulness cycles. Int Rev Neurobiol 93:1–21. doi:10.1016/s0074-7742(10)93001-8

    Article  PubMed  Google Scholar 

  49. Choi S, Chatzigeorgiou M, Taylor KP, Schafer WR, Kaplan JM (2013) Analysis of NPR-1 reveals a circuit mechanism for behavioral quiescence in C. elegans. Neuron 78(5):869–880. doi:10.1016/j.neuron.2013.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schwarz J, Lewandrowski I, Bringmann H (2011) Reduced activity of a sensory neuron during a sleep-like state in Caenorhabditis elegans. Current biology : CB 21(24):R983–R984. doi:10.1016/j.cub.2011.10.046

    Article  CAS  PubMed  Google Scholar 

  51. Cho JY, Sternberg PW (2014) Multilevel modulation of a sensory motor circuit during C. elegans sleep and arousal. Cell 156(1–2):249–260. doi:10.1016/j.cell.2013.11.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Janssen T, Husson SJ, Meelkop E, Temmerman L, Lindemans M, Verstraelen K, Rademakers S, Mertens I et al (2009) Discovery and characterization of a conserved pigment dispersing factor-like neuropeptide pathway in Caenorhabditis elegans. J Neurochem 111(1):228–241. doi:10.1111/j.1471-4159.2009.06323.x

    Article  CAS  PubMed  Google Scholar 

  53. Renn SC, Park JH, Rosbash M, Hall JC, Taghert PH (1999) A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in drosophila. Cell 99(7):791–802

    Article  CAS  PubMed  Google Scholar 

  54. Sheeba V, Fogle KJ, Kaneko M, Rashid S, Chou YT, Sharma VK, Holmes TC (2008) Large ventral lateral neurons modulate arousal and sleep in Drosophila. Current biology : CB 18(20):1537–1545. doi:10.1016/j.cub.2008.08.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen D, Taylor KP, Hall Q, Kaplan JM (2016) The neuropeptides FLP-2 and PDF-1 act in concert to arouse Caenorhabditis elegans locomotion. Genetics. doi:10.1534/genetics.116.192898

    Google Scholar 

  56. Choi S, Taylor KP, Chatzigeorgiou M, Hu Z, Schafer WR, Kaplan JM (2015) Sensory neurons Arouse C. elegans locomotion via both glutamate and neuropeptide release. PLoS Genet 11(7):e1005359. doi:10.1371/journal.pgen.1005359

    Article  PubMed  PubMed Central  Google Scholar 

  57. Juhasz G, Kekesi K, Emri Z, Soltesz I, Crunelli V (1990) Sleep-promoting action of excitatory amino acid antagonists: a different role for thalamic NMDA and non-NMDA receptors. Neurosci Lett 114(3):333–338

    Article  CAS  PubMed  Google Scholar 

  58. Li FW, Deurveilher S, Semba K (2011) Behavioural and neuronal activation after microinjections of AMPA and NMDA into the perifornical lateral hypothalamus in rats. Behav Brain Res 224(2):376–386. doi:10.1016/j.bbr.2011.06.021

    CAS  PubMed  Google Scholar 

  59. Trulson ME (1985) Simultaneous recording of substantia nigra neurons and voltammetric release of dopamine in the caudate of behaving cats. Brain Res Bull 15(2):221–223

    Article  CAS  PubMed  Google Scholar 

  60. Wisor JP, Nishino S, Sora I, Uhl GH, Mignot E, Edgar DM (2001) Dopaminergic role in stimulant-induced wakefulness. The Journal of neuroscience : the official journal of the Society for Neuroscience 21(5):1787–1794

    CAS  Google Scholar 

  61. Singh K, Ju JY, Walsh MB, DiIorio MA, Hart AC (2014) Deep conservation of genes required for both Drosphila melanogaster and Caenorhabditis elegans sleep includes a role for dopaminergic signaling. Sleep 37(9):1439–1451. doi:10.5665/sleep.3990

    Article  PubMed  PubMed Central  Google Scholar 

  62. Turek M, Bringmann H (2014) Gene expression changes of Caenorhabditis elegans larvae during molting and sleep-like lethargus. PLoS One 9(11):e113269. doi:10.1371/journal.pone.0113269

    Article  PubMed  PubMed Central  Google Scholar 

  63. George-Raizen JB, Shockley KR, Trojanowski NF, Lamb AL, Raizen DM (2014) Dynamically-expressed prion-like proteins form a cuticle in the pharynx of Caenorhabditis elegans. Biology open 3(11):1139–1149. doi:10.1242/bio.20147500

    Article  PubMed  PubMed Central  Google Scholar 

  64. Van Buskirk C, Sternberg PW (2007) Epidermal growth factor signaling induces behavioral quiescence in Caenorhabditis elegans. Nat Neurosci 10(10):1300–1307. doi:10.1038/nn1981

    Article  CAS  PubMed  Google Scholar 

  65. Nelson MD, Lee KH, Churgin MA, Hill AJ, Van Buskirk C, Fang-Yen C, Raizen DM (2014) FMRFamide-like FLP-13 neuropeptides promote quiescence following heat stress in Caenorhabditis elegans. Current biology : CB 24(20):2406–2410. doi:10.1016/j.cub.2014.08.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nath RD, Chow ES, Wang H, Schwarz EM, Sternberg PW (2016) C. elegans Stress-induced sleep emerges from the collective action of multiple neuropeptides. Current biology : CB 26(18):2446–2455. doi:10.1016/j.cub.2016.07.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Trojanowski NF, Nelson MD (2015) Distinct mechanisms underlie quiescence during two Caenorhabditis elegans sleep-like states. J Neurosci 35(43):14571–14584. doi:10.1523/jneurosci.1369-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Donlea J, Leahy A, Thimgan MS, Suzuki Y, Hughson BN, Sokolowski MB, Shaw PJ (2012) Foraging alters resilience/vulnerability to sleep disruption and starvation in drosophila. Proc Natl Acad Sci U S A 109(7):2613–2618. doi:10.1073/pnas.1112623109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Langmesser S, Franken P, Feil S, Emmenegger Y, Albrecht U, Feil R (2009) cGMP-dependent protein kinase type I is implicated in the regulation of the timing and quality of sleep and wakefulness. PLoS One 4(1):e4238. doi:10.1371/journal.pone.0004238

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zimmerman JE, Naidoo N, Raizen DM, Pack AI (2008) Conservation of sleep: insights from non-mammalian model systems. Trends Neurosci 31(7):371–376. doi:10.1016/j.tins.2008.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Belfer SJ, Chuang HS, Freedman BL, Yuan J, Norton M, Bau HH, Raizen DM (2013) Caenorhabditis-in-drop array for monitoring C. elegans quiescent behavior. Sleep 36(5):689–698g. doi:10.5665/sleep.2628

    Article  PubMed  PubMed Central  Google Scholar 

  72. Artavanis-Tsakonas S, Matsuno K, Fortini ME (1995) Notch signaling. Science (New York, NY) 268(5208):225–232

    Article  CAS  Google Scholar 

  73. Wu MN, Raizen DM (2011) Notch signaling: a role in sleep and stress. Current biology : CB 21(10):R397–R398. doi:10.1016/j.cub.2011.04.014

    Article  CAS  PubMed  Google Scholar 

  74. Fortini ME (2009) Notch signaling: the core pathway and its posttranslational regulation. Dev Cell 16(5):633–647. doi:10.1016/j.devcel.2009.03.010

    Article  CAS  PubMed  Google Scholar 

  75. Komatsu H, Chao MY, Larkins-Ford J, Corkins ME, Somers GA, Tucey T, Dionne HM, White JQ et al (2008) OSM-11 facilitates LIN-12 notch signaling during Caenorhabditis elegans vulval development. PLoS Biol 6(8):e196. doi:10.1371/journal.pbio.0060196

    Article  PubMed  PubMed Central  Google Scholar 

  76. Singh K, Chao MY, Somers GA, Komatsu H, Corkins ME, Larkins-Ford J, Tucey T, Dionne HM et al (2011) C. elegans Notch signaling regulates adult chemosensory response and larval molting quiescence. Current biology : CB 21(10):825–834. doi:10.1016/j.cub.2011.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nagy S, Tramm N, Sanders J, Iwanir S, Shirley IA, Levine E, Biron D (2014) Homeostasis in C. elegans sleep is characterized by two behaviorally and genetically distinct mechanisms. eLife 3:e04380. doi:10.7554/eLife.04380

    Article  PubMed  PubMed Central  Google Scholar 

  78. Nagy S, Raizen DM, Biron D (2014) Measurements of behavioral quiescence in Caenorhabditis elegans. Methods (San Diego, Calif) 68(3):500–507. doi:10.1016/j.ymeth.2014.03.009

    Article  CAS  Google Scholar 

  79. He C, Yang Y, Zhang M, Price JL, Zhao Z (2013) Regulation of sleep by neuropeptide Y-like system in Drosophila melanogaster. PLoS One 8(9):e74237. doi:10.1371/journal.pone.0074237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Henderson ST, Johnson TE (2001) Daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Current biology : CB 11(24):1975–1980

    Article  CAS  PubMed  Google Scholar 

  81. Funato H, Miyoshi C, Fujiyama T, Kanda T, Sato M, Wang Z, Ma J, Nakane S et al (2016) Forward-genetics analysis of sleep in randomly mutagenized mice. Nature. doi:10.1038/nature20142

    PubMed  Google Scholar 

  82. van der Linden AM, Wiener S, You YJ, Kim K, Avery L, Sengupta P (2008) The EGL-4 PKG acts with KIN-29 salt-inducible kinase and protein kinase a to regulate chemoreceptor gene expression and sensory behaviors in Caenorhabditis elegans. Genetics 180(3):1475–1491. doi:10.1534/genetics.108.094771

    Article  PubMed  PubMed Central  Google Scholar 

  83. Aroian RV, Koga M, Mendel JE, Ohshima Y, Sternberg PW (1990) The let-23 gene necessary for Caenorhabditis elegans vulval induction encodes a tyrosine kinase of the EGF receptor subfamily. Nature 348(6303):693–699. doi:10.1038/348693a0

    Article  CAS  PubMed  Google Scholar 

  84. Hill RJ, Sternberg PW (1992) The gene lin-3 encodes an inductive signal for vulval development in C. elegans. Nature 358(6386):470–476. doi:10.1038/358470a0

    Article  CAS  PubMed  Google Scholar 

  85. Kushikata T, Fang J, Chen Z, Wang Y, Krueger JM (1998) Epidermal growth factor enhances spontaneous sleep in rabbits. Am J Phys 275(2 Pt 2):R509–R514

    CAS  Google Scholar 

  86. Kramer A, Yang FC, Snodgrass P, Li X, Scammell TE, Davis FC, Weitz CJ (2001) Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling. Science (New York, NY) 294(5551):2511–2515. doi:10.1126/science.1067716

    Article  CAS  Google Scholar 

  87. Norman KR, Fazzio RT, Mellem JE, Espelt MV, Strange K, Beckerle MC, Maricq AV (2005) The rho/Rac-family guanine nucleotide exchange factor VAV-1 regulates rhythmic behaviors in C. elegans. Cell 123(1):119–132. doi:10.1016/j.cell.2005.08.001

    Article  CAS  PubMed  Google Scholar 

  88. Fry AL, Laboy JT, Norman KR (2014) VAV-1 acts in a single interneuron to inhibit motor circuit activity in Caenorhabditis elegans. Nat Commun 5:5579. doi:10.1038/yy6579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholam Reza Hatam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moosavi, M., Hatam, G.R. The Sleep in Caenorhabditis elegans: What We Know Until Now. Mol Neurobiol 55, 879–889 (2018). https://doi.org/10.1007/s12035-016-0362-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0362-9

Keywords

Navigation