Molecular Neurobiology

, Volume 55, Issue 1, pp 652–667 | Cite as

TAT-PEP Enhanced Neurobehavioral Functional Recovery by Facilitating Axonal Regeneration and Corticospinal Tract Projection After Stroke

  • Bin Deng
  • Liya Li
  • Xingchun Gou
  • Hao Xu
  • Zhaohua Zhao
  • Qiang WangEmail author
  • Lixian XuEmail author


Paired immunoglobulin-like receptor B (PirB) has been identified as a new receptor for myelin-associated inhibitory (MAI) proteins, which may play important role in axonal regeneration and corticospinal tract (CST) projection associated with neurobehavioral function recovery after stroke. Here, we found that the expression of PirB was increased in the cortical penumbra from 1 to 28 days after transient focal cerebral ischemic reperfusion of rats. Then, transactivator of transcription-PirB extracellular peptide (TAT-PEP) was generated that might block the interactions between MAIs and PirB. The results showed that TAT-PEP displayed high affinity for MAIs and ameliorated their inhibitory effect on neurite growth. Furthermore, TAT-PEP can widely distribute in the penumbra after intraperitoneal injection. Then, we found that TAT-PEP enhanced neurite growth and alleviated growth cone collapse after oxygen glucose deprivation (OGD) injury. In addition, TAT-PEP promoted long-term neurobehavioral functional recovery through enhancing axonal regeneration and CST projection. Finally, the observations demonstrated that POSH/RhoA/growth-associated protein 43 (GAP43) as PirB-associated downstream signaling molecules played important role in neurobehavioral functional recovery after stroke. Moreover, the underlying mechanism associated with TAT-PEP-mediated promoting axonal regeneration and CST projection was by intervening in the expression of POSH, RhoA, and GAP43. These studies suggest that TAT-PEP may represent an attractive therapeutic strategy against stroke.


Stroke Paired immunoglobulin-like receptor B Transactivator of transcription domain Axonal regeneration Corticospinal tract projection 





Middle cerebral arterial occlusion


Paired immunoglobulin-like receptor B


2,3,5-Triphenyltetrazolium chloride


Corticospinal tract


Oxygen glucose deprivation


Neurofilament 200


Growth-associated protein 43


Motor evoked potential



The authors thank Mr. Shiquan Wang for his surgical assistance with the MCAO model and Dr. Shun Qi for his technical assistance with MRI. This manuscript was edited for English language use by American Journal Experts. This work was supported by the General Projects of the National Natural Science Foundation of China (Grant Nos. 81501207, 81471265, 81471415, and 81473488).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12035_2016_301_MOESM1_ESM.doc (293 kb)
ESM 1 (DOC 293 kb)


  1. 1.
    Sun H, Zou X, Liu L (2013) Epidemiological factors of stroke: a survey of the current status in China. J Stroke 15:109–114CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Lindau NT, Banninger BJ, Gullo M, Good NA, Bachmann LC, Starkey ML, Schwab ME (2014) Rewiring of the corticospinal tract in the adult rat after unilateral stroke and anti-Nogo-A therapy. Brain 137:739–756CrossRefPubMedGoogle Scholar
  3. 3.
    Wu X, Zhu B, Fu L, Wang H, Zhou B, Zou S, Shi J (2013) Prevalence, incidence, and mortality of stroke in the chinese island populations: a systematic review. PLoS One 8:e78629CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lee JK, Kim JE, Sivula M, Strittmatter SM (2004) Nogo receptor antagonism promotes stroke recovery by enhancing axonal plasticity. J Neurosci 24:6209–6217CrossRefPubMedGoogle Scholar
  5. 5.
    Schwab JM, Tuli SK, Failli V (2006) The Nogo receptor complex: confining molecules to molecular mechanisms. Trends Mol Med 12:293–297CrossRefPubMedGoogle Scholar
  6. 6.
    Zheng B, Atwal J, Ho C, Case L, He XL, Garcia KC, Steward O, Tessier-Lavigne M (2005) Genetic deletion of the Nogo receptor does not reduce neurite inhibition in vitro or promote corticospinal tract regeneration in vivo. Proc Natl Acad Sci U S A 102:1205–1210CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Filbin MT (2008) PirB, a second receptor for the myelin inhibitors of axonal regeneration Nogo66, MAG, and OMgp: implications for regeneration in vivo. Neuron 60:740–742CrossRefPubMedGoogle Scholar
  8. 8.
    Atwal JK, Pinkston-Gosse J, Syken J, Stawicki S, Wu Y, Shatz C, Tessier-Lavigne M (2008) PirB is a functional receptor for myelin inhibitors of axonal regeneration. Science 322:967–970CrossRefPubMedGoogle Scholar
  9. 9.
    Adelson JD, Barreto GE, Xu L, Kim T, Brott BK, Ouyang YB, Naserke T, Djurisic M et al (2012) Neuroprotection from stroke in the absence of MHCI or PirB. Neuron 73:1100–1107CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Schwab ME (2010) Functions of Nogo proteins and their receptors in the nervous system. Nat Rev Neurosci 11:799–811CrossRefPubMedGoogle Scholar
  11. 11.
    Bochner DN, Sapp RW, Adelson JD, Zhang S, Lee H, Djurisic M, Syken J, Dan Y et al (2014) Blocking PirB up-regulates spines and functional synapses to unlock visual cortical plasticity and facilitate recovery from amblyopia. Sci Transl Med 6:140r–258rCrossRefGoogle Scholar
  12. 12.
    Sun HS, Doucette TA, Liu Y, Fang Y, Teves L, Aarts M, Ryan CL, Bernard PB et al (2008) Effectiveness of PSD95 inhibitors in permanent and transient focal ischemia in the rat. Stroke 39:2544–2553CrossRefPubMedGoogle Scholar
  13. 13.
    Aarts M, Liu Y, Liu L, Besshoh S, Arundine M, Gurd JW, Wang YT, Salter MW et al (2002) Treatment of ischemic brain damage by perturbing NMDA receptor-PSD-95 protein interactions. Science 298:846–850CrossRefPubMedGoogle Scholar
  14. 14.
    Lichota J, Skjorringe T, Thomsen LB, Moos T (2010) Macromolecular drug transport into the brain using targeted therapy. J Neurochem 113:1–13CrossRefPubMedGoogle Scholar
  15. 15.
    Deng B, Gou X, Chen H, Li L, Zhong H, Xu H, Jiang F, Zhao Z et al (2013) Targeted delivery of neurogenin-2 protein in the treatment for cerebral ischemia-reperfusion injury. Biomaterials 34:8786–8797CrossRefPubMedGoogle Scholar
  16. 16.
    Wang Q, Gou X, Xiong L, Jin W, Chen S, Hou L, Xu L (2008) Trans-activator of transcription-mediated delivery of NEP1-40 protein into brain has a neuroprotective effect against focal cerebral ischemic injury via inhibition of neuronal apoptosis. Anesthesiology 108:1071–1080CrossRefPubMedGoogle Scholar
  17. 17.
    Wang F, Wang Y, Geng X, Asmaro K, Peng C, Sullivan JM, Ding JY, Ji X et al (2012) Neuroprotective effect of acute ethanol administration in a rat with transient cerebral ischemia. Stroke 43:205–210CrossRefPubMedGoogle Scholar
  18. 18.
    Zhao Y, Chen X, Ma L, Zuo Z, Zhu Z, Zhu X, Wang Q, He E et al (2012) Electroacupuncture pretreatment induces tolerance against focal cerebral ischemia through activation of canonical Notch pathway. BMC Neurosci 13:111CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Yokoyama S, Hashimoto M, Shimizu H, Ueno-Kudoh H, Uchibe K, Kimura I, Asahara H (2008) Dynamic gene expression of Lin-28 during embryonic development in mouse and chicken. Gene Expr Patterns 8:155–160CrossRefPubMedGoogle Scholar
  20. 20.
    Guo F, Li SQ, Chu YH, Huang XF, Sun LM, Li YQ, Li HJ, Zhou TH (2007) High-level expression, polyclonal antibody preparation and sub-cellular localization analysis of mouse Rhox5 protein. Protein Expr Purif 54:247–252CrossRefPubMedGoogle Scholar
  21. 21.
    Cheng G, Zhang X, Gao D, Jiang X, Dong W (2009) Resveratrol inhibits MMP-9 expression by up-regulating PPAR alpha expression in an oxygen glucose deprivation-exposed neuron model. Neurosci Lett 451:105–108CrossRefPubMedGoogle Scholar
  22. 22.
    Zeng Y, Xie K, Dong H, Zhang H, Wang F, Li Y, Xiong L (2012) Hyperbaric oxygen preconditioning protects cortical neurons against oxygen-glucose deprivation injury: role of peroxisome proliferator-activated receptor-gamma. Brain Res 1452:140–150CrossRefPubMedGoogle Scholar
  23. 23.
    Deng B, Gao F, Liu FF, Zhao XH, Yu CY, Ju G, Xu LX, Wang J (2014) Two monoclonal antibodies recognising aa 634-668 and aa 1026-1055 of NogoA enhance axon extension and branching in cultured neurons. PLoS One 9:e88554CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, Sanchez-Ramos J, Chopp M (2001) Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 32:2682–2688CrossRefPubMedGoogle Scholar
  25. 25.
    Rogers DC, Campbell CA, Stretton JL, Mackay KB (1997) Correlation between motor impairment and infarct volume after permanent and transient middle cerebral artery occlusion in the rat. Stroke 28:2060–2065 2066CrossRefPubMedGoogle Scholar
  26. 26.
    Barreto G, Huang TT, Giffard RG (2010) Age-related defects in sensorimotor activity, spatial learning, and memory in C57BL/6 mice. J Neurosurg Anesthesiol 22:214–219CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Jolkkonen J, Puurunen K, Rantakomi S, Harkonen A, Haapalinna A, Sivenius J (2000) Behavioral effects of the alpha(2)-adrenoceptor antagonist, atipamezole, after focal cerebral ischemia in rats. Eur J Pharmacol 400:211–219CrossRefPubMedGoogle Scholar
  28. 28.
    Jang DK, Park SI, Han YM, Jang KS, Park MS, Chung YA, Kim MW, Maeng LS et al (2011) Motor-evoked potential confirmation of functional improvement by transplanted bone marrow mesenchymal stem cell in the ischemic rat brain. J Biomed Biotechnol 2011:238409PubMedPubMedCentralGoogle Scholar
  29. 29.
    Deng B, Xu H, Zhang J, Wang J, Han LC, Li LY, Wu GL, Hou YN et al (2014) Neuroprotective effects of sevoflurane against electromagnetic pulse-induced brain injury through inhibition of neuronal oxidative stress and apoptosis. PLoS One 9:e91019CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Mathis C, Schroter A, Thallmair M, Schwab ME (2010) Nogo-a regulates neural precursor migration in the embryonic mouse cortex. Cereb Cortex 20:2380–2390CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Gou X, Zhang Q, Xu N, Deng B, Wang H, Xu L, Wang Q (2013) Spatio-temporal expression of paired immunoglobulin-like receptor-B in the adult mouse brain after focal cerebral ischaemia. Brain Inj 27:1311–1315CrossRefPubMedGoogle Scholar
  32. 32.
    Tao T, Xu G, Si CC, Feng J, Kong Y, Qin X (2013) Minocycline promotes axonal regeneration through suppression of RGMa in rat MCAO/reperfusion model. Synapse 67:189–198CrossRefPubMedGoogle Scholar
  33. 33.
    Biernaskie J, Szymanska A, Windle V, Corbett D (2005) Bi-hemispheric contribution to functional motor recovery of the affected forelimb following focal ischemic brain injury in rats. Eur J Neurosci 21:989–999CrossRefPubMedGoogle Scholar
  34. 34.
    Blankenburg F, Ruff CC, Bestmann S, Bjoertomt O, Josephs O, Deichmann R, Driver J (2010) Studying the role of human parietal cortex in visuospatial attention with concurrent TMS-fMRI. Cereb Cortex 20:2702–2711CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Rehme AK, Grefkes C (2013) Cerebral network disorders after stroke: evidence from imaging-based connectivity analyses of active and resting brain states in humans. J Physiol 591:17–31CrossRefPubMedGoogle Scholar
  36. 36.
    Benowitz LI, Carmichael ST (2010) Promoting axonal rewiring to improve outcome after stroke. Neurobiol Dis 37:259–266CrossRefPubMedGoogle Scholar
  37. 37.
    Fournier AE, GrandPre T, Strittmatter SM (2001) Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature 409:341–346CrossRefPubMedGoogle Scholar
  38. 38.
    Domeniconi M, Cao Z, Spencer T, Sivasankaran R, Wang K, Nikulina E, Kimura N, Cai H et al (2002) Myelin-associated glycoprotein interacts with the Nogo66 receptor to inhibit neurite outgrowth. Neuron 35:283–290CrossRefPubMedGoogle Scholar
  39. 39.
    GrandPre T, Li S, Strittmatter SM (2002) Nogo-66 receptor antagonist peptide promotes axonal regeneration. Nature 417:547–551CrossRefPubMedGoogle Scholar
  40. 40.
    Liu BP, Fournier A, GrandPre T, Strittmatter SM (2002) Myelin-associated glycoprotein as a functional ligand for the Nogo-66 receptor. Science 297:1190–1193CrossRefPubMedGoogle Scholar
  41. 41.
    Kim JE, Liu BP, Park JH, Strittmatter SM (2004) Nogo-66 receptor prevents raphespinal and rubrospinal axon regeneration and limits functional recovery from spinal cord injury. Neuron 44:439–451CrossRefPubMedGoogle Scholar
  42. 42.
    Syken J, Grandpre T, Kanold PO, Shatz CJ (2006) PirB restricts ocular-dominance plasticity in visual cortex. Science 313:1795–1800CrossRefPubMedGoogle Scholar
  43. 43.
    Platt SM, Haddad IE, Pieber SM, Huang RJ, Zardini AA, Clairotte M, Suarez-Bertoa R, Barmet P et al (2014) Two-stroke scooters are a dominant source of air pollution in many cities. Nat Commun 5:3749CrossRefPubMedGoogle Scholar
  44. 44.
    Matsushita H, Endo S, Kobayashi E, Sakamoto Y, Kobayashi K, Kitaguchi K, Kuroki K, Soderhall A et al (2011) Differential but competitive binding of Nogo protein and class i major histocompatibility complex (MHCI) to the PIR-B ectodomain provides an inhibition of cells. J Biol Chem 286:25739–25747CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Fujita Y, Endo S, Takai T, Yamashita T (2011) Myelin suppresses axon regeneration by PIR-B/SHP-mediated inhibition of Trk activity. EMBO J 30:1389–1401CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Dickson HM, Zurawski J, Zhang H, Turner DL, Vojtek AB (2010) POSH is an intracellular signal transducer for the axon outgrowth inhibitor Nogo66. J Neurosci 30:13319–13325CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Del VJ, Duran-Vilaregut J, Manich G, Pallas M, Camins A, Vilaplana J, Pelegri C (2011) Cerebral amyloid angiopathy, blood-brain barrier disruption and amyloid accumulation in SAMP8 mice. Neurodegener Dis 8:421–429CrossRefGoogle Scholar
  48. 48.
    Becker-Hapak M, McAllister SS, Dowdy SF (2001) TAT-mediated protein transduction into mammalian cells. Methods 24:247–256CrossRefPubMedGoogle Scholar
  49. 49.
    Cook DJ, Teves L, Tymianski M (2012) A translational paradigm for the preclinical evaluation of the stroke neuroprotectant Tat-NR2B9c in gyrencephalic nonhuman primates. Sci Transl Med 4:133r–154rGoogle Scholar
  50. 50.
    Castro-Alvarez JF, Gutierrez-Vargas J, Darnaudery M, Cardona-Gomez GP (2011) ROCK inhibition prevents tau hyperphosphorylation and p25/CDK5 increase after global cerebral ischemia. Behav Neurosci 125:465–472CrossRefPubMedGoogle Scholar
  51. 51.
    Taylor J, Chung KH, Figueroa C, Zurawski J, Dickson HM, Brace EJ, Avery AW, Turner DL et al (2008) The scaffold protein POSH regulates axon outgrowth. Mol Biol Cell 19:5181–5192CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Kataoka C, Egashira K, Inoue S, Takemoto M, Ni W, Koyanagi M, Kitamoto S, Usui M et al (2002) Important role of Rho-kinase in the pathogenesis of cardiovascular inflammation and remodeling induced by long-term blockade of nitric oxide synthesis in rats. Hypertension 39:245–250CrossRefPubMedGoogle Scholar
  53. 53.
    Rikitake Y, Kim HH, Huang Z, Seto M, Yano K, Asano T, Moskowitz MA, Liao JK (2005) Inhibition of Rho kinase (ROCK) leads to increased cerebral blood flow and stroke protection. Stroke 36:2251–2257CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Latchney SE, Masiulis I, Zaccaria KJ, Lagace DC, Powell CM, McCasland JS, Eisch AJ (2014) Developmental and adult GAP-43 deficiency in mice dynamically alters hippocampal neurogenesis and mossy fiber volume. Dev Neurosci 36:44–63CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Wang H, Xiong Y, Mu D (2012) PirB restricts neuronal regeneration in developing rat brain following hypoxia-ischemia. Mol Med Rep 6:339–344PubMedGoogle Scholar
  56. 56.
    Fujita Y, Yamashita T (2014) Axon growth inhibition by RhoA/ROCK in the central nervous system. Front Neurosci 8:338CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Li C, Wen H, Wang Q, Zhang C, Jiang L, Dou Z, Luo X, Zeng J (2015) Exercise training inhibits the Nogo-A/NgR1/Rho-A signals in the cortical peri-infarct area in hypertensive stroke rats. Am J Phys Med Rehabil 94:1083–1094CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Oral Diseases, Department of Anesthesiology, School of StomatologyFourth Military Medical UniversityXi’anChina
  2. 2.Department of AnesthesiologyThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
  3. 3.Department of EmergencyThe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
  4. 4.The Laboratory of Cell Biology and Translational MedicineXi’an Medical UniversityXi’anChina

Personalised recommendations