Skip to main content
Log in

Cognitive Functioning in Temporal Lobe Epilepsy: A BOLD-fMRI Study

Molecular Neurobiology Aims and scope Submit manuscript

Abstract

We aimed to analyze the association between resting-state functional magnetic resonance imaging (re-fMRI) and cognitive function (including language, executive, and memory functions) in temporal lobe epilepsy (TLE) patients, which will help to explore the mechanism of brain function in patients. 15 TLE patients and 15 non-TLE patients were recruited. All subjects underwent neuropsychological testing and memory functional evaluation. Changes in verbal intelligence quotient (VIQ), performance intelligence quotient (PIQ), full intelligence quotient (FIQ), and memory quotient (MQ) were compared between two groups. Re-fMRI data were also collected from two groups to evaluate these changes. Each individual score of neuropsychological testing and memory functional evaluation were higher in control group, which was statistically different (all P < 0.01) while the VIQ, PIQ, FIQ, and MQ showed the same trend (all P < 0.01). The data showed the positive activation differences in brain regions between experimental and control group, namely right frontal lobe, the left middle temporal gyrus back, right superior temporal gyrus, left cerebellum, left angular gyrus, left wedge anterior lobe, and left central back; while the negatively activated brain regions were left prefrontal, right cerebellum, right corner back, and right anterior cingulate gyrus. During the language task, the activated brain regions of the TLE patients were right prefrontal lobe, the lateral temporal gyri, the left cerebellum, left cornu laterale gyrus, left precuneus, and the left postcentral gyrus, whereas the negatively activated brain areas were the left prefrontal cortex, the right cerebellum, right cornu laterale gyrus, and the right anterior cingulate gyrus. During the executive task, epilepsy patients showed activation difference in right prefrontal and right frontal lobe and right brain, left superior temporal gyrus, and right cerebellum anterior lobe compared with the control group; no negatively activated differences in brain areas. During the memory task, the difference lay in bilateral anterior cingulate gyrus and bilateral wedge anterior lobe while the negatively activated brain areas were the left inferior frontal gyrus and postcentral gyrus. The cognitive functioning is related to the functional connectivity within the cortex. There is a significant difference in the activation of brain areas during different tasks between the TLE patients and the non-TLE patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  1. Lv ZX, Huang DH, Ye W, Chen ZR, Huang WL, Zheng JO (2014) Alteration of functional connectivity within visuospatial working memory-related brain network in patients with right temporal lobe epilepsy: a resting-state fMRI study. Epilepsy Behav 35:64–71

    Article  PubMed  Google Scholar 

  2. Tellez-Zenteno JF, Hernandez-Ronquillo L (2012) A review of the epidemiology of temporal lobe epilepsy. Epilepsy Res Treat 2012:630853

    PubMed  Google Scholar 

  3. Zheng J, Qin B, Dang C, Ye W, Chen Z, Yu L (2012) Alertness network in patients with temporal lobe epilepsy: a fMRI study. Epilepsy Res 100(1–2):67–73

    Article  PubMed  Google Scholar 

  4. Hermann B, Seidenberg M, Jones J (2008) The neurobehavioural comorbidities of epilepsy: can a natural history be developed? Lancet Neurol 7(2):151–160

    Article  PubMed  Google Scholar 

  5. Belliveau JW, Kennedy DN Jr, McKinstry RC, Buchbinder BR, Weisskoff RM, Cohen MS, Vevea JM, Brady TJ et al (1991) Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254(5032):716–719

    Article  CAS  PubMed  Google Scholar 

  6. Detre JA (2006) Clinical applicability of functional MRI. J Magn Reson Imaging 23(6):808–815

    Article  PubMed  Google Scholar 

  7. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87(24):9868–9872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kobayashi E, Bagshaw AP, Grova C, Dubeau F, Gotman J (2006) Negative BOLD responses to epileptic spikes. Hum Brain Mapp 27(6):488–497

    Article  PubMed  Google Scholar 

  9. Harris JJ, Reynell C, Attwell D (2011) The physiology of developmental changes in BOLD functional imaging signals. Dev Cogn Neurosci 1(3):199–216

    Article  PubMed  Google Scholar 

  10. Moses P, Hernandez LM, Orient E (2014) Age-related differences in cerebral blood flow underlie the BOLD fMRI signal in childhood. Front Psychol 5:300

    Article  PubMed  PubMed Central  Google Scholar 

  11. Swanson SJ, Sabsevitz DS, Hammeke TA, Binder JR (2007) Functional magnetic resonance imaging of language in epilepsy. Neuropsychol Rev 17(4):491–504

    Article  PubMed  Google Scholar 

  12. Liu Y, Shen H, Zhou Z, Hu D (2011) Sustained negative BOLD response in human fMRI finger tapping task. PLoS One 6(8):e23839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Logothetis NK (2008) What we can do and what we cannot do with fMRI. Nature 453(7197):869–878

    Article  CAS  PubMed  Google Scholar 

  14. Shmuel A, Yacoub E, Pfeuffer J, Van de Moortele PF, Adriany G, Hu X, Ugurbil K (2002) Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain. Neuron 36(6):1195–1210

    Article  CAS  PubMed  Google Scholar 

  15. Pasley BN, Inglis BA, Freeman RD (2007) Analysis of oxygen metabolism implies a neural origin for the negative BOLD response in human visual cortex. NeuroImage 36(2):269–276

    Article  PubMed  Google Scholar 

  16. Stefanovic B, Warnking JM, Pike GB (2004) Hemodynamic and metabolic responses to neuronal inhibition. NeuroImage 22(2):771–778

    Article  PubMed  Google Scholar 

  17. Stefanovic B, Warnking JM, Kobayashi E, Bagshaw AP, Hawco C, Dubeau F, Gotman J, Pike GB (2005) Hemodynamic and metabolic responses to activation, deactivation and epileptic discharges. NeuroImage 28(1):205–215

    Article  PubMed  Google Scholar 

  18. Binder JR (2011) Functional MRI is a valid noninvasive alternative to Wada testing. Epilepsy Behav 20(2):214–222

    Article  PubMed  Google Scholar 

  19. Sillanpaa M, Jalava M, Kaleva O, Shinnar S (1998) Long-term prognosis of seizures with onset in childhood. N Engl J Med 338(24):1715–1722

    Article  CAS  PubMed  Google Scholar 

  20. Sogawa Y, Masur D, O’Dell C, Moshe SL, Shinnar S (2010) Cognitive outcomes in children who present with a first unprovoked seizure. Epilepsia 51(12):2432–2439

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hermann BP, Jones J, Sheth R, Seidenberg M (2007) Cognitive and magnetic resonance volumetric abnormalities in new-onset pediatric epilepsy. Semin Pediatr Neurol 14(4):173–180

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gul A, Hussain I (2016) The relationship between emotional intelligence and task-switching in temporal lobe epilepsy. Neurosciences (Riyadh) 21(1):64–68

    Article  Google Scholar 

  23. Wang WH, Shih YH, Yu HY, Yen DJ, Lin YY, Kwan SY, Chen C, Hua MS (2015) Theory of mind and social functioning in patients with temporal lobe epilepsy. Epilepsia 56(7):1117–1123

    Article  PubMed  Google Scholar 

  24. Tuchscherer V, Seidenberg M, Pulsipher D, Lancaster M, Guidotti L, Hermann B (2010) Extrahippocampal integrity in temporal lobe epilepsy and cognition: thalamus and executive functioning. Epilepsy Behav 17(4):478–482

    Article  PubMed  Google Scholar 

  25. Mankinen K, Ipatti P, Harila M, Nikkinen J, Paakki JJ, Rytky S, Starck T, Remes J et al (2015) Reading, listening and memory-related brain activity in children with early-stage temporal lobe epilepsy of unknown cause-an fMRI study. Eur J Paediatr Neurol 19(5):561–571

    Article  PubMed  Google Scholar 

  26. Banks SJ, Sziklas V, Sodums DJ, Jones-Gotman M (2012) fMRI of verbal and nonverbal memory processes in healthy and epileptogenic medial temporal lobes. Epilepsy Behav 25(1):42–49

    Article  PubMed  Google Scholar 

  27. Richardson MP, Strange BA, Duncan JS, Dolan RJ (2003) Preserved verbal memory function in left medial temporal pathology involves reorganisation of function to right medial temporal lobe. NeuroImage 20(Suppl 1):S112–S119

    Article  PubMed  Google Scholar 

  28. Wagner K, Frings L, Spreer J, Buller A, Everts R, Halsband U, Schulze-Bonhage A (2008) Differential effect of side of temporal lobe epilepsy on lateralization of hippocampal, temporolateral, and inferior frontal activation patterns during a verbal episodic memory task. Epilepsy Behav 12(3):382–387

    Article  PubMed  Google Scholar 

  29. Hegde S, Bharath RD, Rao MB, Shiva K, Arimappamagan A, Sinha S, Rajeswaran J, Satishchandra P (2016) Preservation of cognitive and musical abilities of a musician following surgery for chronic drug-resistant temporal lobe epilepsy: a case report. Neurocase:1–6

Download references

Acknowledgements

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Genji Bai or Gang Xu.

Ethics declarations

Not applicable.

Conflict of Interest

There is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Bai, G., Zhang, H. et al. Cognitive Functioning in Temporal Lobe Epilepsy: A BOLD-fMRI Study. Mol Neurobiol 54, 8361–8369 (2017). https://doi.org/10.1007/s12035-016-0298-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0298-0

Keywords

Navigation