Abstract
The unilateral 6-hydroxydopamine (6-OHDA) lesion of medial forebrain bundle (MFB) in rats affords us to study the advanced stages of Parkinson’s disease (PD). Numerous evidences suggest synergic effects when various neurotrophic factors are administered in experimental models of PD. The aim of the present work was to assess the morphological changes along the rostro-caudal axis of caudo-putamen complex and substantia nigra (SN) in the referred model in order to test the suitability of a severe model to evaluate new neurorestorative therapies. Administration of 6-OHDA into MFB in addition to a remarkable depletion of dopamine in the nigrostriatal system induced an increase of glial fibrillary acidic protein (GFAP)-positive cells in SN and an intense immunoreactivity for OX-42, vascular endothelial growth factor (VEGF), and Lycopersycum esculentum agglutinin (LEA) in striatum and SN. Tyrosine hydroxylase (TH) immunostaining revealed a significant decrease of the TH-immunopositive striatal volume in 6-OHDA group from rostral to caudal one. The loss of TH-immunoreactive (TH-ir) neurons and axodendritic network (ADN) was higher in caudal sections. Morphological recovery after the implantation of microspheres loaded with VEGF and glial cell line-derived neurotrophic factor (GDNF) in parkinsonized rats was related to the preservation of the TH-ir cell number and ADN in the caudal region of the SN. In addition, these findings support the neurorestorative role of VEGF+GDNF in the dopaminergic system and the synergistic effect between both factors. On the other hand, a topological distribution of the dopaminergic system was noticeable in the severe model, showing a selective vulnerability to 6-OHDA and recovering after treatment.
This is a preview of subscription content,
to check access.







References
Greenamyre JT, Hastings TG (2004) Biomedicine. Parkinson’s—divergent causes, convergent mechanisms. Science 304:1120–1122. doi:10.1126/science.1098966
Prensa L, Cossette M, Parent A (2000) Dopaminergic innervation of human basal ganglia. J Chem Neuroanat 20:207–213
Gerfen CR, Herkenham M, Thibault J (1987) The neostriatal mosaic: II. Patch- and matrix-directed mesostriatal dopaminergic and non-dopaminergic systems. J Neurosci 7:3915–3934.
Lynd-Balta E, Haber SN (1994) The organization of midbrain projections to the striatum in the primate: sensorimotor-related striatum versus ventral striatum. Neuroscience 59:625–640
Prensa L, Parent A (2001) The nigrostriatal pathway in the rat: a single-axon study of the relationship between dorsal and ventral tier nigral neurons and the striosome/matrix striatal compartments. J Neurosci 21:7247–7260
Björklund A, Dunnett SB (2007) Dopamine neuron systems in the brain: an update. Trends Neurosci 30:194–202. doi:10.1016/j.tins.2007.03.006
Dunnett SB, Robbins TW (1992) The functional role of mesotelencephalic dopamine systems. Biol Rev Camb Philos Soc 67:491–518
Schapira AHV (2009) Neurobiology and treatment of Parkinson’s disease. Trends Pharmacol Sci 30:41–47. doi:10.1016/j.tips.2008.10.005
Deumens R, Blokland A, Prickaerts J (2002) Modeling Parkinson’s disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp Neurol 175:303–317. doi:10.1006/exnr.2002.7891
Cohen AD, Tillerson JL, Smith AD et al (2003) Neuroprotective effects of prior limb use in 6-hydroxydopamine-treated rats: possible role of GDNF. J Neurochem 85:299–305
Aron L, Klein R (2011) Repairing the parkinsonian brain with neurotrophic factors. Trends Neurosci 34:88–100. doi:10.1016/j.tins.2010.11.001
Evans JR, Barker RA (2008) Neurotrophic factors as a therapeutic target for Parkinson’s disease. Expert Opin Ther Targets
Sullivan AM, Toulouse A (2011) Neurotrophic factors for the treatment of Parkinson’s disease. Cytokine Growth Factor Rev 22:157–165. doi:10.1016/j.cytogfr.2011.05.001
Satake K, Matsuyama Y, Kamiya M et al (2000) Up-regulation of glial cell line-derived neurotrophic factor (GDNF) following traumatic spinal cord injury. Neuroreport 11:3877–3881
Panickar KS, Norenberg MD (2005) Astrocytes in cerebral ischemic injury: morphological and general considerations. Glia 50:287–298. doi:10.1002/glia.20181
Herrán E, Ruiz-Ortega JÁ, Aristieta A et al (2013) In vivo administration of VEGF- and GDNF-releasing biodegradable polymeric microspheres in a severe lesion model of Parkinson’s disease. Eur J Pharm Biopharm 85:1183–1190. doi:10.1016/j.ejpb.2013.03.034
Yue X, Hariri DJ, Caballero B et al (2014) Comparative study of the neurotrophic effects elicited by VEGF-B and GDNF in preclinical in vivo models of Parkinson’s disease. Neuroscience 258:385–400. doi:10.1016/j.neuroscience.2013.11.038
Requejo C, Ruiz-Ortega JA, Bengoetxea H et al (2015) Topographical distribution of morphological changes in a partial model of Parkinson’s disease-effects of nanoencapsulated neurotrophic factors administration. Mol Neurobiol. doi:10.1007/s12035-015-9234-y
Herrán E, Requejo C, Ruiz-Ortega JA et al (2014) Increased antiparkinson efficacy of the combined administration of VEGF- and GDNF-loaded nanospheres in a partial lesion model of Parkinson’s disease. Int J Nanomedicine 9:2677–2687. doi:10.2147/IJN.S61940
Quiroga-Varela A, Walters JR, Brazhnik E et al (2013) What basal ganglia changes underlie the parkinsonian state? The significance of neuronal oscillatory activity. Neurobiol Dis 58:242–248. doi:10.1016/j.nbd.2013.05.010
Blandini F, Armentero M-T, Martignoni E (2008) The 6-hydroxydopamine model: news from the past. Parkinsonism Relat Disord 14(Suppl 2):S124–S129. doi:10.1016/j.parkreldis.2008.04.015
Ungerstedt U (1968) 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol 5:107–110
Morera-Herreras T, Ruiz-Ortega JA, Linazasoro G, Ugedo L (2011) Nigrostriatal denervation changes the effect of cannabinoids on subthalamic neuronal activity in rats. Psychopharmacology 214:379–389. doi:10.1007/s00213-010-2043-0
Paxinos G, Watson C (2013) The rat brain in stereotaxic coordinates, Hard cover edn. Academic Press
Aristieta A, Azkona G, Sagarduy A et al (2012) The role of the subthalamic nucleus in L-DOPA induced dyskinesia in 6-hydroxydopamine lesioned rats. PLoS One 7:e42652. doi:10.1371/journal.pone.0042652
Garbayo E, Montero-Menei CN, Ansorena E et al (2009) Effective GDNF brain delivery using microspheres—a promising strategy for Parkinson’s disease. J Control Release 135:119–126. doi:10.1016/j.jconrel.2008.12.010
Arkadir D, Bergman H, Fahn S (2014) Redundant dopaminergic activity may enable compensatory axonal sprouting in Parkinson disease. Neurology 82:1093–1098. doi:10.1212/WNL.0000000000000243
Henderson JM, Watson S, Halliday GM et al (2003) Relationships between various behavioural abnormalities and nigrostriatal dopamine depletion in the unilateral 6-OHDA-lesioned rat. Behav Brain Res 139:105–113
Chen X, Li J, Qi WQ, Shen SH (2007) Experimental change on dopaminergic neurons in striatum of Parkinson disease rats. Histol Histopathol 22:1085–1090
Stott SRW, Barker RA (2014) Time course of dopamine neuron loss and glial response in the 6-OHDA striatal mouse model of Parkinson’s disease. Eur J Neurosci 39:1042–1056. doi:10.1111/ejn.12459
González-Hernández T, Cruz-Muros I, Afonso-Oramas D et al (2010) Vulnerability of mesostriatal dopaminergic neurons in Parkinson’s disease. Front Neuroanat 4:140. doi:10.3389/fnana.2010.00140
German DC, Manaye K, Smith WK et al (1989) Midbrain dopaminergic cell loss in Parkinson’s disease: computer visualization. Ann Neurol 26:507–514. doi:10.1002/ana.410260403
Damier P, Hirsch EC, Agid Y, Graybiel AM (1999) The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122(Pt 8):1437–1448
Hernandez-Baltazar D, Mendoza-Garrido ME, Martinez-Fong D (2013) Activation of GSK-3?? and Caspase-3 occurs in nigral dopamine neurons during the development of apoptosis activated by a striatal injection of 6-hydroxydopamine. PLoS One 8:1–13. doi:10.1371/journal.pone.0070951
Janelidze S, Lindqvist D, Francardo V et al (2015) Increased CSF biomarkers of angiogenesis in Parkinson disease. Neurology 85:1834–1842. doi:10.1212/WNL.0000000000002151
Faucheux BA, Bonnet AM, Agid Y, Hirsch EC (1999) Blood vessels change in the mesencephalon of patients with Parkinson’s disease. Lancet (London, England) 353:981–982. doi:10.1016/S0140-6736(99)00641-8
Barcia C, Bautista V, Sánchez-Bahillo A et al (2005) Changes in vascularization in substantia nigra pars compacta of monkeys rendered parkinsonian. J Neural Transm 112:1237–1248. doi:10.1007/s00702-004-0256-2
Henning J, Strauss U, Wree A et al (2008) Differential astroglial activation in 6-hydroxydopamine models of Parkinson’s disease. Neurosci Res 62:246–253. doi:10.1016/j.neures.2008.09.001
Morales I, Sanchez A, Rodriguez-Sabate C, Rodriguez M (2016) The astrocytic response to the dopaminergic denervation of the striatum. J Neurochem 81–95. doi:10.1111/jnc.13684
Koyama Y (2014) Signaling molecules regulating phenotypic conversions of astrocytes and glial scar formation in damaged nerve tissues. Neurochem Int 78:35–42. doi:10.1016/j.neuint.2014.08.005
Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32:638–647. doi:10.1016/j.tins.2009.08.002
Jakel RJ, Kern JT, Johnson DA, Johnson JA (2005) Induction of the protective antioxidant response element pathway by 6-hydroxydopamine in vivo and in vitro. Toxicol Sci 87:176–186. doi:10.1093/toxsci/kfi241
Burton NC, Kensler TW, Guilarte TR (2006) In vivo modulation of the parkinsonian phenotype by Nrf2. Neurotoxicology 27:1094–1100. doi:10.1016/j.neuro.2006.07.019
Jakel RJ, Townsend JA, Kraft AD, Johnson JA (2007) Nrf2-mediated protection against 6-hydroxydopamine. Brain Res 1144:192–201. doi:10.1016/j.brainres.2007.01.131
Fuller HR, Hurtado ML, Wishart TM, Gates MA (2014) The rat striatum responds to nigro-striatal degeneration via the increased expression of proteins associated with growth and regeneration of neuronal circuitry. Proteome Sci 12:20. doi:10.1186/1477-5956-12-20
Rabchevsky AG, Weinitz JM, Coulpier M et al (1998) A role for transforming growth factor alpha as an inducer of astrogliosis. J Neurosci 18:10541–10552
Krum JM, Mani N, Rosenstein JM (2002) Angiogenic and astroglial responses to vascular endothelial growth factor administration in adult rat brain. Neuroscience 110:589–604
Krum JM, Khaibullina A (2003) Inhibition of endogenous VEGF impedes revascularization and astroglial proliferation: roles for VEGF in brain repair. Exp Neurol 181:241–257. doi:10.3201/eid0906.020485
Mani N, Khaibullina A, Krum JM, Rosenstein JM (2005) Astrocyte growth effects of vascular endothelial growth factor (VEGF) application to perinatal neocortical explants: receptor mediation and signal transduction pathways. Exp Neurol 192:394–406. doi:10.1016/j.expneurol.2004.12.022
Chen C-H, Huang S-Y, Chen N-F et al (2013) Intrathecal granulocyte colony-stimulating factor modulate glial cell line-derived neurotrophic factor and vascular endothelial growth factor A expression in glial cells after experimental spinal cord ischemia. Neuroscience 242:39–52. doi:10.1016/j.neuroscience.2013.02.017
Magnusson JP, Goritz C, Tatarishvili J et al (2014) A latent neurogenic program in astrocytes regulated by Notch signaling in the mouse. Science (80- ) 346:237–241. doi:10.1126/science.346.6206.237
Doetsch F (2003) The glial identity of neural stem cells. Nat Neurosci 6:1127–1134. doi:10.1038/nn1144
Steiner B, Winter C, Hosman K et al (2006) Enriched environment induces cellular plasticity in the adult substantia nigra and improves motor behavior function in the 6-OHDA rat model of Parkinson’s disease. Exp Neurol 199:291–300. doi:10.1016/j.expneurol.2005.11.004
Kronenberg G, Reuter K, Steiner B et al (2003) Subpopulations of proliferating cells of the adult hippocampus respond differently to physiologic neurogenic stimuli. J Comp Neurol 467:455–463. doi:10.1002/cne.10945
Kempermann G, Jessberger S, Steiner B, Kronenberg G (2004) Milestones of neuronal development in the adult hippocampus. Trends Neurosci 27:447–452. doi:10.1016/j.tins.2004.05.013
Garcia ADR, Doan NB, Imura T et al (2004) GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci 7:1233–1241. doi:10.1038/nn1340
Klaissle P, Lesemann A, Huehnchen P et al (2012) Physical activity and environmental enrichment regulate the generation of neural precursors in the adult mouse substantia nigra in a dopamine-dependent manner. BMC Neurosci 13:132. doi:10.1186/1471-2202-13-132
Gittis AH, Hang GB, LaDow ES et al (2011) Rapid target-specific remodeling of fast-spiking inhibitory circuits after loss of dopamine. Neuron 71:858–868. doi:10.1016/j.neuron.2011.06.035
Jollivet C (2004) Striatal implantation of GDNF releasing biodegradable microspheres promotes recovery of motor function in a partial model of Parkinson’s disease. Biomaterials 25:933–942. doi:10.1016/S0142-9612(03)00601-X
Kirik D, Rosenblad C, Björklund A (2000) Preservation of a functional nigrostriatal dopamine pathway by GDNF in the intrastriatal 6-OHDA lesion model depends on the site of administration of the trophic factor. Eur J Neurosci 12:3871–3882
Bezard E, Crossman AR, Gross CE, Brotchie JM (2001) Structures outside the basal ganglia may compensate for dopamine loss in the presymptomatic stages of Parkinson’s disease. FASEB J 15:1092–1094
Zigmond MJ, Hastings TG, Perez RG (2002) Increased dopamine turnover after partial loss of dopaminergic neurons: compensation or toxicity? Parkinsonism Relat Disord 8:389–393
Tufro A, Teichman J, Banu N, Villegas G (2007) Crosstalk between VEGF-A/VEGFR2 and GDNF/RET signaling pathways. Biochem Biophys Res Commun 358:410–416. doi:10.1016/j.bbrc.2007.04.146
Krakora D, Mulcrone P, Meyer M et al (2013) Synergistic effects of GDNF and VEGF on lifespan and disease progression in a familial ALS rat model. Mol Ther 21:1602–1610. doi:10.1038/mt.2013.108
Rosenblad C, Kirik D, Devaux B, et al (1999) Protection and regeneration of nigral dopaminergic neurons by neurturin or GDNF in a partial lesion model of Parkinson’s disease after administration into the striatum or the lateral ventricle. 11:1554–1566
Acknowledgments
The authors thank the support of the University of the Basque Country (UPV/EHU) (UFI 11/32), the Basque Government (Saiotek SA-2010/00028, GIC 794/13), “Ministerio de Ciencia e Innovación”(SAF2010-20375), FEDER funds, and SGIker (UPV/EHU). C. Requejo appreciates the UPV/EHU for a fellowship subvention.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Requejo, C., Ruiz-Ortega, J.A., Bengoetxea, H. et al. Morphological Changes in a Severe Model of Parkinson’s Disease and Its Suitability to Test the Therapeutic Effects of Microencapsulated Neurotrophic Factors. Mol Neurobiol 54, 7722–7735 (2017). https://doi.org/10.1007/s12035-016-0244-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12035-016-0244-1