Skip to main content
Log in

Morphological Changes in a Severe Model of Parkinson’s Disease and Its Suitability to Test the Therapeutic Effects of Microencapsulated Neurotrophic Factors

Molecular Neurobiology Aims and scope Submit manuscript

Cite this article

Abstract

The unilateral 6-hydroxydopamine (6-OHDA) lesion of medial forebrain bundle (MFB) in rats affords us to study the advanced stages of Parkinson’s disease (PD). Numerous evidences suggest synergic effects when various neurotrophic factors are administered in experimental models of PD. The aim of the present work was to assess the morphological changes along the rostro-caudal axis of caudo-putamen complex and substantia nigra (SN) in the referred model in order to test the suitability of a severe model to evaluate new neurorestorative therapies. Administration of 6-OHDA into MFB in addition to a remarkable depletion of dopamine in the nigrostriatal system induced an increase of glial fibrillary acidic protein (GFAP)-positive cells in SN and an intense immunoreactivity for OX-42, vascular endothelial growth factor (VEGF), and Lycopersycum esculentum agglutinin (LEA) in striatum and SN. Tyrosine hydroxylase (TH) immunostaining revealed a significant decrease of the TH-immunopositive striatal volume in 6-OHDA group from rostral to caudal one. The loss of TH-immunoreactive (TH-ir) neurons and axodendritic network (ADN) was higher in caudal sections. Morphological recovery after the implantation of microspheres loaded with VEGF and glial cell line-derived neurotrophic factor (GDNF) in parkinsonized rats was related to the preservation of the TH-ir cell number and ADN in the caudal region of the SN. In addition, these findings support the neurorestorative role of VEGF+GDNF in the dopaminergic system and the synergistic effect between both factors. On the other hand, a topological distribution of the dopaminergic system was noticeable in the severe model, showing a selective vulnerability to 6-OHDA and recovering after treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Greenamyre JT, Hastings TG (2004) Biomedicine. Parkinson’s—divergent causes, convergent mechanisms. Science 304:1120–1122. doi:10.1126/science.1098966

    Article  CAS  PubMed  Google Scholar 

  2. Prensa L, Cossette M, Parent A (2000) Dopaminergic innervation of human basal ganglia. J Chem Neuroanat 20:207–213

    Article  CAS  PubMed  Google Scholar 

  3. Gerfen CR, Herkenham M, Thibault J (1987) The neostriatal mosaic: II. Patch- and matrix-directed mesostriatal dopaminergic and non-dopaminergic systems. J Neurosci 7:3915–3934.

  4. Lynd-Balta E, Haber SN (1994) The organization of midbrain projections to the striatum in the primate: sensorimotor-related striatum versus ventral striatum. Neuroscience 59:625–640

    Article  CAS  PubMed  Google Scholar 

  5. Prensa L, Parent A (2001) The nigrostriatal pathway in the rat: a single-axon study of the relationship between dorsal and ventral tier nigral neurons and the striosome/matrix striatal compartments. J Neurosci 21:7247–7260

    CAS  PubMed  Google Scholar 

  6. Björklund A, Dunnett SB (2007) Dopamine neuron systems in the brain: an update. Trends Neurosci 30:194–202. doi:10.1016/j.tins.2007.03.006

    Article  PubMed  Google Scholar 

  7. Dunnett SB, Robbins TW (1992) The functional role of mesotelencephalic dopamine systems. Biol Rev Camb Philos Soc 67:491–518

    Article  CAS  PubMed  Google Scholar 

  8. Schapira AHV (2009) Neurobiology and treatment of Parkinson’s disease. Trends Pharmacol Sci 30:41–47. doi:10.1016/j.tips.2008.10.005

    Article  CAS  PubMed  Google Scholar 

  9. Deumens R, Blokland A, Prickaerts J (2002) Modeling Parkinson’s disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp Neurol 175:303–317. doi:10.1006/exnr.2002.7891

    Article  CAS  PubMed  Google Scholar 

  10. Cohen AD, Tillerson JL, Smith AD et al (2003) Neuroprotective effects of prior limb use in 6-hydroxydopamine-treated rats: possible role of GDNF. J Neurochem 85:299–305

    Article  CAS  PubMed  Google Scholar 

  11. Aron L, Klein R (2011) Repairing the parkinsonian brain with neurotrophic factors. Trends Neurosci 34:88–100. doi:10.1016/j.tins.2010.11.001

    Article  CAS  PubMed  Google Scholar 

  12. Evans JR, Barker RA (2008) Neurotrophic factors as a therapeutic target for Parkinson’s disease. Expert Opin Ther Targets

  13. Sullivan AM, Toulouse A (2011) Neurotrophic factors for the treatment of Parkinson’s disease. Cytokine Growth Factor Rev 22:157–165. doi:10.1016/j.cytogfr.2011.05.001

    Article  CAS  PubMed  Google Scholar 

  14. Satake K, Matsuyama Y, Kamiya M et al (2000) Up-regulation of glial cell line-derived neurotrophic factor (GDNF) following traumatic spinal cord injury. Neuroreport 11:3877–3881

    Article  CAS  PubMed  Google Scholar 

  15. Panickar KS, Norenberg MD (2005) Astrocytes in cerebral ischemic injury: morphological and general considerations. Glia 50:287–298. doi:10.1002/glia.20181

    Article  PubMed  Google Scholar 

  16. Herrán E, Ruiz-Ortega JÁ, Aristieta A et al (2013) In vivo administration of VEGF- and GDNF-releasing biodegradable polymeric microspheres in a severe lesion model of Parkinson’s disease. Eur J Pharm Biopharm 85:1183–1190. doi:10.1016/j.ejpb.2013.03.034

    Article  PubMed  Google Scholar 

  17. Yue X, Hariri DJ, Caballero B et al (2014) Comparative study of the neurotrophic effects elicited by VEGF-B and GDNF in preclinical in vivo models of Parkinson’s disease. Neuroscience 258:385–400. doi:10.1016/j.neuroscience.2013.11.038

    Article  CAS  PubMed  Google Scholar 

  18. Requejo C, Ruiz-Ortega JA, Bengoetxea H et al (2015) Topographical distribution of morphological changes in a partial model of Parkinson’s disease-effects of nanoencapsulated neurotrophic factors administration. Mol Neurobiol. doi:10.1007/s12035-015-9234-y

    PubMed  Google Scholar 

  19. Herrán E, Requejo C, Ruiz-Ortega JA et al (2014) Increased antiparkinson efficacy of the combined administration of VEGF- and GDNF-loaded nanospheres in a partial lesion model of Parkinson’s disease. Int J Nanomedicine 9:2677–2687. doi:10.2147/IJN.S61940

    PubMed  PubMed Central  Google Scholar 

  20. Quiroga-Varela A, Walters JR, Brazhnik E et al (2013) What basal ganglia changes underlie the parkinsonian state? The significance of neuronal oscillatory activity. Neurobiol Dis 58:242–248. doi:10.1016/j.nbd.2013.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Blandini F, Armentero M-T, Martignoni E (2008) The 6-hydroxydopamine model: news from the past. Parkinsonism Relat Disord 14(Suppl 2):S124–S129. doi:10.1016/j.parkreldis.2008.04.015

    Article  PubMed  Google Scholar 

  22. Ungerstedt U (1968) 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol 5:107–110

    Article  CAS  PubMed  Google Scholar 

  23. Morera-Herreras T, Ruiz-Ortega JA, Linazasoro G, Ugedo L (2011) Nigrostriatal denervation changes the effect of cannabinoids on subthalamic neuronal activity in rats. Psychopharmacology 214:379–389. doi:10.1007/s00213-010-2043-0

    Article  CAS  PubMed  Google Scholar 

  24. Paxinos G, Watson C (2013) The rat brain in stereotaxic coordinates, Hard cover edn. Academic Press

  25. Aristieta A, Azkona G, Sagarduy A et al (2012) The role of the subthalamic nucleus in L-DOPA induced dyskinesia in 6-hydroxydopamine lesioned rats. PLoS One 7:e42652. doi:10.1371/journal.pone.0042652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Garbayo E, Montero-Menei CN, Ansorena E et al (2009) Effective GDNF brain delivery using microspheres—a promising strategy for Parkinson’s disease. J Control Release 135:119–126. doi:10.1016/j.jconrel.2008.12.010

    Article  CAS  PubMed  Google Scholar 

  27. Arkadir D, Bergman H, Fahn S (2014) Redundant dopaminergic activity may enable compensatory axonal sprouting in Parkinson disease. Neurology 82:1093–1098. doi:10.1212/WNL.0000000000000243

    Article  PubMed  Google Scholar 

  28. Henderson JM, Watson S, Halliday GM et al (2003) Relationships between various behavioural abnormalities and nigrostriatal dopamine depletion in the unilateral 6-OHDA-lesioned rat. Behav Brain Res 139:105–113

    Article  CAS  PubMed  Google Scholar 

  29. Chen X, Li J, Qi WQ, Shen SH (2007) Experimental change on dopaminergic neurons in striatum of Parkinson disease rats. Histol Histopathol 22:1085–1090

    CAS  PubMed  Google Scholar 

  30. Stott SRW, Barker RA (2014) Time course of dopamine neuron loss and glial response in the 6-OHDA striatal mouse model of Parkinson’s disease. Eur J Neurosci 39:1042–1056. doi:10.1111/ejn.12459

    Article  PubMed  Google Scholar 

  31. González-Hernández T, Cruz-Muros I, Afonso-Oramas D et al (2010) Vulnerability of mesostriatal dopaminergic neurons in Parkinson’s disease. Front Neuroanat 4:140. doi:10.3389/fnana.2010.00140

    Article  PubMed  PubMed Central  Google Scholar 

  32. German DC, Manaye K, Smith WK et al (1989) Midbrain dopaminergic cell loss in Parkinson’s disease: computer visualization. Ann Neurol 26:507–514. doi:10.1002/ana.410260403

    Article  CAS  PubMed  Google Scholar 

  33. Damier P, Hirsch EC, Agid Y, Graybiel AM (1999) The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122(Pt 8):1437–1448

    Article  PubMed  Google Scholar 

  34. Hernandez-Baltazar D, Mendoza-Garrido ME, Martinez-Fong D (2013) Activation of GSK-3?? and Caspase-3 occurs in nigral dopamine neurons during the development of apoptosis activated by a striatal injection of 6-hydroxydopamine. PLoS One 8:1–13. doi:10.1371/journal.pone.0070951

    Article  Google Scholar 

  35. Janelidze S, Lindqvist D, Francardo V et al (2015) Increased CSF biomarkers of angiogenesis in Parkinson disease. Neurology 85:1834–1842. doi:10.1212/WNL.0000000000002151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Faucheux BA, Bonnet AM, Agid Y, Hirsch EC (1999) Blood vessels change in the mesencephalon of patients with Parkinson’s disease. Lancet (London, England) 353:981–982. doi:10.1016/S0140-6736(99)00641-8

    Article  CAS  Google Scholar 

  37. Barcia C, Bautista V, Sánchez-Bahillo A et al (2005) Changes in vascularization in substantia nigra pars compacta of monkeys rendered parkinsonian. J Neural Transm 112:1237–1248. doi:10.1007/s00702-004-0256-2

    Article  CAS  PubMed  Google Scholar 

  38. Henning J, Strauss U, Wree A et al (2008) Differential astroglial activation in 6-hydroxydopamine models of Parkinson’s disease. Neurosci Res 62:246–253. doi:10.1016/j.neures.2008.09.001

    Article  CAS  PubMed  Google Scholar 

  39. Morales I, Sanchez A, Rodriguez-Sabate C, Rodriguez M (2016) The astrocytic response to the dopaminergic denervation of the striatum. J Neurochem 81–95. doi:10.1111/jnc.13684

  40. Koyama Y (2014) Signaling molecules regulating phenotypic conversions of astrocytes and glial scar formation in damaged nerve tissues. Neurochem Int 78:35–42. doi:10.1016/j.neuint.2014.08.005

    Article  CAS  PubMed  Google Scholar 

  41. Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32:638–647. doi:10.1016/j.tins.2009.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jakel RJ, Kern JT, Johnson DA, Johnson JA (2005) Induction of the protective antioxidant response element pathway by 6-hydroxydopamine in vivo and in vitro. Toxicol Sci 87:176–186. doi:10.1093/toxsci/kfi241

    Article  CAS  PubMed  Google Scholar 

  43. Burton NC, Kensler TW, Guilarte TR (2006) In vivo modulation of the parkinsonian phenotype by Nrf2. Neurotoxicology 27:1094–1100. doi:10.1016/j.neuro.2006.07.019

    Article  CAS  PubMed  Google Scholar 

  44. Jakel RJ, Townsend JA, Kraft AD, Johnson JA (2007) Nrf2-mediated protection against 6-hydroxydopamine. Brain Res 1144:192–201. doi:10.1016/j.brainres.2007.01.131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fuller HR, Hurtado ML, Wishart TM, Gates MA (2014) The rat striatum responds to nigro-striatal degeneration via the increased expression of proteins associated with growth and regeneration of neuronal circuitry. Proteome Sci 12:20. doi:10.1186/1477-5956-12-20

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rabchevsky AG, Weinitz JM, Coulpier M et al (1998) A role for transforming growth factor alpha as an inducer of astrogliosis. J Neurosci 18:10541–10552

    CAS  PubMed  Google Scholar 

  47. Krum JM, Mani N, Rosenstein JM (2002) Angiogenic and astroglial responses to vascular endothelial growth factor administration in adult rat brain. Neuroscience 110:589–604

    Article  CAS  PubMed  Google Scholar 

  48. Krum JM, Khaibullina A (2003) Inhibition of endogenous VEGF impedes revascularization and astroglial proliferation: roles for VEGF in brain repair. Exp Neurol 181:241–257. doi:10.3201/eid0906.020485

    Article  CAS  PubMed  Google Scholar 

  49. Mani N, Khaibullina A, Krum JM, Rosenstein JM (2005) Astrocyte growth effects of vascular endothelial growth factor (VEGF) application to perinatal neocortical explants: receptor mediation and signal transduction pathways. Exp Neurol 192:394–406. doi:10.1016/j.expneurol.2004.12.022

    Article  CAS  PubMed  Google Scholar 

  50. Chen C-H, Huang S-Y, Chen N-F et al (2013) Intrathecal granulocyte colony-stimulating factor modulate glial cell line-derived neurotrophic factor and vascular endothelial growth factor A expression in glial cells after experimental spinal cord ischemia. Neuroscience 242:39–52. doi:10.1016/j.neuroscience.2013.02.017

    Article  CAS  PubMed  Google Scholar 

  51. Magnusson JP, Goritz C, Tatarishvili J et al (2014) A latent neurogenic program in astrocytes regulated by Notch signaling in the mouse. Science (80- ) 346:237–241. doi:10.1126/science.346.6206.237

    Article  CAS  Google Scholar 

  52. Doetsch F (2003) The glial identity of neural stem cells. Nat Neurosci 6:1127–1134. doi:10.1038/nn1144

    Article  CAS  PubMed  Google Scholar 

  53. Steiner B, Winter C, Hosman K et al (2006) Enriched environment induces cellular plasticity in the adult substantia nigra and improves motor behavior function in the 6-OHDA rat model of Parkinson’s disease. Exp Neurol 199:291–300. doi:10.1016/j.expneurol.2005.11.004

    Article  PubMed  Google Scholar 

  54. Kronenberg G, Reuter K, Steiner B et al (2003) Subpopulations of proliferating cells of the adult hippocampus respond differently to physiologic neurogenic stimuli. J Comp Neurol 467:455–463. doi:10.1002/cne.10945

    Article  PubMed  Google Scholar 

  55. Kempermann G, Jessberger S, Steiner B, Kronenberg G (2004) Milestones of neuronal development in the adult hippocampus. Trends Neurosci 27:447–452. doi:10.1016/j.tins.2004.05.013

    Article  CAS  PubMed  Google Scholar 

  56. Garcia ADR, Doan NB, Imura T et al (2004) GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci 7:1233–1241. doi:10.1038/nn1340

    Article  CAS  PubMed  Google Scholar 

  57. Klaissle P, Lesemann A, Huehnchen P et al (2012) Physical activity and environmental enrichment regulate the generation of neural precursors in the adult mouse substantia nigra in a dopamine-dependent manner. BMC Neurosci 13:132. doi:10.1186/1471-2202-13-132

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gittis AH, Hang GB, LaDow ES et al (2011) Rapid target-specific remodeling of fast-spiking inhibitory circuits after loss of dopamine. Neuron 71:858–868. doi:10.1016/j.neuron.2011.06.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jollivet C (2004) Striatal implantation of GDNF releasing biodegradable microspheres promotes recovery of motor function in a partial model of Parkinson’s disease. Biomaterials 25:933–942. doi:10.1016/S0142-9612(03)00601-X

    Article  CAS  PubMed  Google Scholar 

  60. Kirik D, Rosenblad C, Björklund A (2000) Preservation of a functional nigrostriatal dopamine pathway by GDNF in the intrastriatal 6-OHDA lesion model depends on the site of administration of the trophic factor. Eur J Neurosci 12:3871–3882

    Article  CAS  PubMed  Google Scholar 

  61. Bezard E, Crossman AR, Gross CE, Brotchie JM (2001) Structures outside the basal ganglia may compensate for dopamine loss in the presymptomatic stages of Parkinson’s disease. FASEB J 15:1092–1094

    CAS  PubMed  Google Scholar 

  62. Zigmond MJ, Hastings TG, Perez RG (2002) Increased dopamine turnover after partial loss of dopaminergic neurons: compensation or toxicity? Parkinsonism Relat Disord 8:389–393

    Article  PubMed  Google Scholar 

  63. Tufro A, Teichman J, Banu N, Villegas G (2007) Crosstalk between VEGF-A/VEGFR2 and GDNF/RET signaling pathways. Biochem Biophys Res Commun 358:410–416. doi:10.1016/j.bbrc.2007.04.146

    Article  CAS  PubMed  Google Scholar 

  64. Krakora D, Mulcrone P, Meyer M et al (2013) Synergistic effects of GDNF and VEGF on lifespan and disease progression in a familial ALS rat model. Mol Ther 21:1602–1610. doi:10.1038/mt.2013.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rosenblad C, Kirik D, Devaux B, et al (1999) Protection and regeneration of nigral dopaminergic neurons by neurturin or GDNF in a partial lesion model of Parkinson’s disease after administration into the striatum or the lateral ventricle. 11:1554–1566

Download references

Acknowledgments

The authors thank the support of the University of the Basque Country (UPV/EHU) (UFI 11/32), the Basque Government (Saiotek SA-2010/00028, GIC 794/13), “Ministerio de Ciencia e Innovación”(SAF2010-20375), FEDER funds, and SGIker (UPV/EHU). C. Requejo appreciates the UPV/EHU for a fellowship subvention.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Requejo.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Requejo, C., Ruiz-Ortega, J.A., Bengoetxea, H. et al. Morphological Changes in a Severe Model of Parkinson’s Disease and Its Suitability to Test the Therapeutic Effects of Microencapsulated Neurotrophic Factors. Mol Neurobiol 54, 7722–7735 (2017). https://doi.org/10.1007/s12035-016-0244-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0244-1

Keywords

Navigation