Promotion of the Unfolding Protein Response in Orexin/Dynorphin Neurons in Sudden Infant Death Syndrome (SIDS): Elevated pPERK and ATF4 Expression

Abstract

We previously demonstrated that sudden infant death syndrome (SIDS) infants have decreased orexin immunoreactivity within the hypothalamus and pons compared to non-SIDS infants. In this study, we examined multiple mechanisms that may promote loss of orexin expression including programmed cell death, impaired maturation/structural stability, neuroinflammation and impaired unfolding protein response (UPR). Immunofluorescent and immunohistochemical staining for a number of markers was performed in the tuberal hypothalamus and pons of infants (1–10 months) who died from SIDS (n = 27) compared to age- and sex-matched non-SIDS infants (n = 19). The markers included orexin A (OxA), dynorphin (Dyn), cleaved caspase 3 (CC3), cleaved caspase 9 (CC9), glial fibrillary acid protein (GFAP), tubulin beta chain 3 (TUBB3), myelin basic protein (MBP), interleukin 1β (IL-1β), terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL), c-fos and the UPR activation markers: phosphorylated protein kinase RNA-like endoplasmic reticulum kinase (pPERK), and activating transcription factor 4 (ATF4). It was hypothesised that pPERK and ATF4 would be upregulated in Ox neurons in SIDS compared to non-SIDS. Within the hypothalamus, OxA and Dyn co-localised with a 20 % decrease in expression in SIDS infants (P = 0.001). pPERK and ATF4 expression in OxA neurons were increased by 35 % (P = 0.001) and 15 % (P = 0.001) respectively, with linear relationships between the decreased OxA/Dyn expression and the percentages of co-localised pPERK/OxA and ATF4/OxA evident (P = 0.01, P = 0.01). No differences in co-localisation with CC9, CC3, TUNEL or c-fos, nor expression of MBP, TUBB3, IL-1β and GFAP, were observed in the hypothalamus. In the pons, there were 40 % and 20 % increases in pPERK expression in the locus coeruleus (P = 0.001) and dorsal raphe (P = 0.022) respectively; ATF4 expression was not changed. The findings that decreased orexin levels in SIDS infants may be associated with an accumulation of pPERK suggest decreased orexin translation. As pPERK may inhibit multiple neuronal groups in the pons in SIDS infants, it could also indicate that a common pathway promotes loss of protein expression and impaired functionality of multiple brainstem neuronal groups.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

3V:

Third ventricle

ATF4:

Activating transcription factor 4

BiP:

Binding immunogen protein

CC3:

Cleaved caspase 3

CC9:

Cleaved caspase 9

CHOP:

CCAAT-enhancer-binding protein homologous protein

dH2O:

Deionised water

DMH:

Dorsal medial hypothalamus

DR:

Dorsal raphe

Dyn:

Dynorphin

ER:

Endoplasmic reticulum

GFAP:

Glial fibrillary acid protein

IF:

Immunofluorescence

IHC:

Immunohistochemistry

IL-1β:

Interleukin 1-beta

LC:

Locus coeruleus

LH:

Lateral hypothalamus

Lipo:

Lipofuscin

MBP:

Myelin basic protein

NHS:

Normal horse serum

Ox:

Orexin

OxA:

Orexin A

PBS:

Phosphate-buffered saline

PeF:

Perifornical area

pPERK:

Phosphorylated protein kinase RNA-like endoplasmic reticulum kinase

PPO:

Prepro-orexin

REM:

Rapid eye movement

SIDS:

Sudden infant death syndrome

THT:

Tuberal hypothalamus

TUBB3:

Tubulin beta chain 3

TUNEL:

Terminal deoxynucleotidyl transferase dUTP nick-end labelling

UPR:

Unfolding protein response

URTIs:

Upper respiratory tract infections

References

  1. 1.

    Krous H (2010) Sudden unexpected death in infancy and the dilemma of defining the sudden infant death syndrome. Curr Pediatr Rev 6(1):5–12

    Article  Google Scholar 

  2. 2.

    Cornwell AC, Feigenbaum P (2006) Sleep biological rhythms in normal infants and those at high risk for SIDS. Chronobiol Int 23(5):935–961

    Article  PubMed  Google Scholar 

  3. 3.

    Kato I, Franco P, Groswasser J, Scaillet S, Kelmanson I, Togari H, Kahn A (2003) Incomplete arousal processes in infants who were victims of sudden death. Am J Respir Crit Care Med 168(11):1298–1303

    Article  PubMed  Google Scholar 

  4. 4.

    Schechtman VL, Harper RM, Kluge KA, Wilson AJ, Hoffman HJ, Southall DP (1989) Heart rate variation in normal infants and victims of the sudden infant death syndrome. Early Hum Dev 19(3):167–181

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Kahn A, Groswasser J, Rebuffat E, Sottiaux M, Blum D, Foerster M, Franco P, Bochner A et al (1992) Sleep and cardiorespiratory characteristics of infant victims of sudden death: a prospective case-control study. Sleep 15(4):287–292

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Thach BT (2015) Potential central nervous system involvement in sudden unexpected infant deaths and the sudden infant death syndrome. Compr Physiol 5(3):1361–1368

    Google Scholar 

  7. 7.

    Machaalani R, Waters KA (2014) Neurochemical abnormalities in the brainstem of the sudden infant death syndrome (SIDS). Paediatr Respir Rev 15(4):293–300

    PubMed  Google Scholar 

  8. 8.

    Hunt NJ, Waters KA, Rodriguez ML, Machaalani R (2015) Decreased orexin (hypocretin) immunoreactivity in the hypothalamus and pontine nuclei in sudden infant death syndrome. Acta Neuropathol 130(2):185–198

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Crocker A, España RA, Papadopoulou M, Saper CB, Faraco J, Sakurai T, Honda M, Mignot E et al (2005) Concomitant loss of dynorphin, NARP, and orexin in narcolepsy. Neurology 65(8):1184–1188

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Blouin A, Thannickal T, Worley P, Baraban J, Reti I, Siegel J (2005) Narp immunostaining of human hypocretin (orexin) neurons loss in narcolepsy. Neurology 65(8):1189–1192

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Gestreau C, Bévengut M, Dutschmann M (2008) The dual role of the orexin/hypocretin system in modulating wakefulness and respiratory drive. Curr Opin Pulm Med 14(6):512–518

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Sakurai T, Mieda M (2011) Connectomics of orexin-producing neurons: interface of systems of emotion, energy homeostasis and arousal. Trends Phamacol Sci 32(8):451–462

    CAS  Article  Google Scholar 

  13. 13.

    Plaza-Zabala A, Maldonado R, Berrendero F (2012) The hypocretin/orexin system: implications for drug reward and relapse. Mol Neurobiol 45(3):424–439

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Hunt NJ, Russell B, Du MK, Waters KA, Machaalani R (2016) Changes in orexinergic immunoreactivity of the piglet hypothalamus and pons after exposure to chronic postnatal nicotine and intermittent hypercapnic hypoxia. Eur J Neurosci 43(12):1612–1622

    Article  PubMed  Google Scholar 

  15. 15.

    Hunt NJ, Rodriguez ML, Waters KA, Machaalani R (2015) Changes in orexin (hypocretin) neuronal expression with normal aging in the human hypothalamus. Neurobiol Aging 36(1):292–300

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Blumberg MS, Coleman CM, Johnson ED, Shaw C (2007) Developmental divergence of sleep-wake patterns in orexin knockout and wild-type mice. Eur J Neurosci 25(2):512–518

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Michinaga S, Hisatsune A, Isohama Y, Katsuki H (2011) Orexin neurons in hypothalamic slice cultures are vulnerable to endoplasmic reticulum stress. J Neurosci 190:289–300

    CAS  Article  Google Scholar 

  18. 18.

    Obukuro K, Nobunaga M, Takigawa M, Morioka H, Hisatsune A, Isohama Y, Shimokawa H, Tsutsui M et al (2013) Nitric oxide mediates selective degeneration of hypothalamic orexin neurons through dysfunction of protein disulfide isomerase. J Neurosci 33(31):12557–12568

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Obukuro K, Takigawa M, Hisatsune A, Isohama Y, Katsuki H (2010) Quinolinate induces selective loss of melanin-concentrating hormone neurons, rather than orexin neurons, in the hypothalamus of mice and young rats. J Neurosci 170(1):298–307

    CAS  Article  Google Scholar 

  20. 20.

    Hunt NJ, Phillips L, Waters KA, Machaalani R (2016) Proteomic MALDI-TOF/TOF-IMS examination of peptide expression in the formalin fixed brainstem and changes in sudden infant death syndrome infants. J Proteome 138:48–60

    CAS  Article  Google Scholar 

  21. 21.

    Basu A, Krady JK, Levison SW (2004) Interleukin-1: a master regulator of neuroinflammation. J Neurosci Res 78(2):151–156

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Perekrest SV, Abramova TV, Novikova NS, Loskutov YV, Rogers VJ, Korneva EA (2008) Changes in immunoreactivity of orexin-A-positive neurons after intravenous lipopolysaccharide injection. Med Sci Monit 14(7):BR127–BR133

    PubMed  Google Scholar 

  23. 23.

    Zhu Y, Fenik P, Zhan G, Xin R, Veasey SC (2015) Degeneration in arousal neurons in chronic sleep disruption modeling sleep apnea. Front Neurol 6:109

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Du MK, Hunt NJ, Waters KA, Machaalani R (2016) Cumulative effects of repetitive intermittent hypercapnic hypoxia on orexin in the developing piglet hypothalamus. Int J Dev Neurosci 48:1–8

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Landry JP, Hawkins C, Wiebe S, Balaban E, Pompeiano M (2014) Opposing effects of hypoxia on catecholaminergic locus coeruleus and hypocretin/orexin neurons in chick embryos. Dev Neurobiol 74(10):1030–1037

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Hundahl CA, Luuk H, Ilmjärv S, Falktoft B, Raida Z, Vikesaa J, Friis-Hansen L, Hay-Schmidt A (2011) Neuroglobin-deficiency exacerbates Hif1A and c-FOS response, but does not affect neuronal survival during severe hypoxia in vivo. PLoS One 6(12):e28160

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Yamaguchi K, Futatsuki T, Ushikai J, Kuroki C, Minami T, Kakihana Y, Kuwaki T (2015) Intermittent but not sustained hypoxia activates orexin-containing neurons in mice. Respir Physiol Neurobiol 206:11–14

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Zhu Y, Fenik P, Zhan G, Mazza E, Kelz M, Aston-Jones G, Veasey SC (2007) Selective loss of catecholaminergic wake–active neurons in a murine sleep apnea model. J Neurosci 27(37):10060–10071

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Naidoo N, Zhu J, Zhu Y, Fenik P, Lian J, Galante R, Veasey S (2011) Endoplasmic reticulum stress in wake-active neurons progresses with aging. Aging Cell 10(4):640–649

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Koumenis C, Naczki C, Koritzinsky M, Rastani S, Diehl A, Sonenberg N, Koromilas A, Wouters BG (2002) Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2α. Mol Biol Cell 22(21):7405–7416

    CAS  Article  Google Scholar 

  32. 32.

    Kumar R, Azam S, Sullivan JM, Owen C, Cavener DR, Zhang P, Ron D, Harding HP et al (2001) Brain ischemia and reperfusion activates the eukaryotic initiation factor 2α kinase, PERK. J Neurochem 77(5):1418–1421

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    DeGracia DJ, Montie HL (2004) Cerebral ischemia and the unfolded protein response. J Neurochem 91(1):1–8

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Paxinos G, Huang X-F (1995) Atlas of the human brainstem, 1st Edition. Achedemic Press, San Diego

  35. 35.

    Mai JK, Paxinos G, Voss T (2008) Atlas of the human brain. Academic Press, Inc, San Diego

    Google Scholar 

  36. 36.

    Kaur S, Thankachan S, Begum S, Blanco-Centurion C, Sakurai T, Yanagisawa M, Shiromani PJ (2008) Entrainment of temperature and activity rhythms to restricted feeding in orexin knock out mice. Brain Res 1205:47–54

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Oppenheim RW, Flavell RA, Vinsant S, Prevette D, Kuan C-Y, Rakic P (2001) Programmed cell death of developing mammalian neurons after genetic deletion of caspases. J Neurosci 21(13):4752–4760

    CAS  PubMed  Google Scholar 

  38. 38.

    Bi M, Naczki C, Koritzinsky M, Fels D, Blais J, Hu N, Harding H, Novoa I et al (2005) ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. EMBO J 24(19):3470–3481

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Horton JK, Siamakpour-Reihani S, Lee C-T, Zhou Y, Chen W, Geradts J, Fels DR, Hoang P et al (2015) FAS death receptor: a breast cancer subtype-specific radiation response biomarker and potential therapeutic target. Radiat Res 184(5):456–469

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Chaturvedi V, Bodner B, Qin J-Z, Nickoloff BJ (2006) Knock down of p53 levels in human keratinocytes increases susceptibility to type I and type II interferon-induced apoptosis mediated by a TRAIL dependent pathway. J Dermatol Sci 41(1):31–41

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Li W, Zhai B, Zhi H, Li Y, Jia L, Ding C, Zhang B, You W (2014) Association of ABCB1, β tubulin I, and III with multidrug resistance of MCF7/DOC subline from breast cancer cell line MCF7. Tumor Biol 35(9):8883–8891

    CAS  Article  Google Scholar 

  42. 42.

    Hsu K-W, Hsieh R-H, Wu C-W, Chi C-W, Lee Y-HW, Kuo M-L, Wu K-J, Yeh T-S (2009) MBP-1 suppresses growth and metastasis of gastric cancer cells through COX-2. Mol Biol Cell 20(24):5127–5137

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Chou TC, Lee CE, Lu J, Elmquist JK, Hara J, Willie JT, Beuckmann CT, Chemelli RM et al (2001) Orexin (hypocretin) neurons contain dynorphin. J Neurosci 21(19):1–6

    Google Scholar 

  44. 44.

    Hou X, Liu Y, Liu H, Chen X, Liu M, Che H, Guo F, Wang C et al (2015) PERK silence inhibits glioma cell growth under low glucose stress by blockage of p-AKT and subsequent HK2's mitochondria translocation. Sci Rep 5(9065). doi:10.1038/srep09065

  45. 45.

    Moeton M, Kanski R, Stassen OM, Sluijs JA, Geerts D, van Tijn P, Wiche G, van Strien ME et al (2014) Silencing GFAP isoforms in astrocytoma cells disturbs laminin-dependent motility and cell adhesion. FASEB 28(7):2942–2954

    CAS  Article  Google Scholar 

  46. 46.

    Santangelo KS, Nuovo GJ, Bertone AL (2012) In vivo reduction or blockade of interleukin-1β in primary osteoarthritis influences expression of mediators implicated in pathogenesis. Osteoarthr Cartilage 20(12):1610–1618. doi:10.1016/j.joca.2012.08.011

    CAS  Article  Google Scholar 

  47. 47.

    Machaalani R, Waters KA (2008) Neuronal cell death in the sudden infant death syndrome brainstem and associations with risk factors. Brain 131(1):218–228

    Article  PubMed  Google Scholar 

  48. 48.

    Stern AL, Naidoo N (2015) Wake-active neurons across aging and neurodegeneration: a potential role for sleep disturbances in promoting disease. SpringerPlus 4(1):25. doi:10.1186/s40064-014-0777-6

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Hoozemans J, Van Haastert E, Eikelenboom P, De Vos R, Rozemuller J, Scheper W (2007) Activation of the unfolded protein response in Parkinson’s disease. Biochem Biophys Res Commun 354(3):707–711

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Hoozemans J, Veerhuis R, Van Haastert E, Rozemuller J, Baas F, Eikelenboom P, Scheper W (2005) The unfolded protein response is activated in Alzheimer’s disease. Acta Neuropathol 110(2):165–172

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Smith HL, Mallucci GR (2016) The unfolded protein response: mechanisms and therapy of neurodegeneration. Brain. doi:10.1093/brain/aww101

    Google Scholar 

  52. 52.

    Wu J, Kaufman R (2006) From acute ER stress to physiological roles of the unfolded protein response. Cell Death Differ 13(3):374–384

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Broadbelt KG, Rivera KD, Paterson DS, Duncan JR, Trachtenberg FL, Paulo JA, Stapels MD, Borenstein NS et al (2012) Brainstem deficiency of the 14-3-3 regulator of serotonin synthesis: a proteomics analysis in the sudden infant death syndrome. Mol Cell Proteomics 11(1):M111. 009530

    Article  PubMed  Google Scholar 

  54. 54.

    Bodalia A, Li H, Jackson MF (2013) Loss of endoplasmic reticulum Ca2+ homeostasis: contribution to neuronal cell death during cerebral ischemia. Acta Pharmacol Sin 34(1):49–59

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Wong MK, Nicholson CJ, Holloway AC, Hardy DB (2015) Maternal nicotine exposure leads to impaired disulfide bond formation and augmented endoplasmic reticulum stress in the rat placenta. PLoS One 10(3):e0122295. doi:10.1371/journal.pone.0122295

    Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    De Felice FG, Lourenco MV (2015) Brain metabolic stress and neuroinflammation at the basis of cognitive impairment in Alzheimer’s disease. Front Aging Neurosci 7:94. doi:10.3389/fnagi.2015.00094

    Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Hettiarachchi KD, Zimmet PZ, Myers MA (2008) Dietary toxins, endoplasmic reticulum (ER) stress and diabetes. Curr Diabetes Rev 4(2):146–156

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Qian Y, Tiffany-Castiglioni E (2003) Lead-induced endoplasmic reticulum (ER) stress responses in the nervous system. Neurochem Res 28(1):153–162

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Pavlovsky AA, Boehning D, Li D, Zhang Y, Fan X, Green TA (2013) Psychological stress, cocaine and natural reward each induce endoplasmic reticulum stress genes in rat brain. J Neurosci 246:160–169

    CAS  Article  Google Scholar 

  60. 60.

    Wang H, Wang X, Ke Z-J, Comer AL, Xu M, Frank JA, Zhang Z, Shi X et al (2015) Tunicamycin-induced unfolded protein response in the developing mouse brain. Toxicol Appl Pharmacol 283(3):157–167

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Chakrabarti A, Chen AW, Varner JD (2011) A review of the mammalian unfolded protein response. Biotechnol Bioeng 108(12):2777–2793

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Brown MK, Naidoo N (2010) The UPR and the anti-oxidant response: relevance to sleep and sleep loss. Mol Neurobiol 42(2):103–113

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Malhotra JD, Kaufman RJ (2007) The endoplasmic reticulum and the unfolded protein response. In: Sem Cell Dev Biol, vol 6. Elsevier, pp 716–731

  64. 64.

    Rutkowski DT, Kaufman RJ (2004) A trip to the ER: coping with stress. Trends Cell Biol 14(1):20–28

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Ron D (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6(5):1099–1108

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D (2000) Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 5(5):897–904

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397(6716):271–274

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C et al (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11(3):619–633

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334(6059):1081–1086

    CAS  Article  PubMed  Google Scholar 

  70. 70.

    Machaalani R, Rodriguez M, Waters K (2007) Active caspase-3 in the sudden infant death syndrome (SIDS) brainstem. Acta Neuropathol 113(5):577–584

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Kadhim H, Kahn A, Sébire G (2003) Distinct cytokine profile in SIDS brain a common denominator in a multifactorial syndrome? Neurology 61(9):1256–1259

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    Santhanasabapathy R, Sudhandiran G (2015) Farnesol attenuates lipopolysaccharide-induced neurodegeneration in Swiss albino mice by regulating intrinsic apoptotic cascade. Brain Res 1620:42–56

    CAS  Article  PubMed  Google Scholar 

  73. 73.

    Duncan JR, Paterson DS, Hoffman JM, Mokler DJ, Borenstein NS, Belliveau RA, Krous HF, Haas EA et al (2010) Brainstem serotonergic deficiency in sudden infant death syndrome. JAMA 303(5):430–437

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Lavezzi AM, Ottaviani G, Mingrone R, Matturri L (2005) Analysis of the human locus coeruleus in perinatal and infant sudden unexplained deaths. Possible role of the cigarette smoking in the development of this nucleus. Dev Brain Res 154(1):71–80

    CAS  Article  Google Scholar 

  75. 75.

    Chen L, Thakkar MM, Winston S, Bolortuya Y, Basheer R, McCarley RW (2006) REM sleep changes in rats induced by siRNA-mediated orexin knockdown. Eur J Neurosci 24(7):2039–2048

    Article  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Cornwell AC, Feigenbaum P, Kim A (1998) SIDS, abnormal nighttime REM sleep and CNS immaturity. Neuropediatr 29(02):72–79

    CAS  Article  Google Scholar 

  77. 77.

    Li A, Nattie E (2008) Serotonin transporter knockout mice have a reduced ventilatory response to hypercapnia (predominantly in males) but not to hypoxia. J Physiol 586(9):2321–2329

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Wisor J, Wurts S, Hall F, Lesch K, Murphy D, Uhl G, Edgar D (2003) Altered rapid eye movement sleep timing in serotonin transporter knockout mice. Neuroreport 14(2):233–238

    CAS  Article  PubMed  Google Scholar 

  79. 79.

    Hodges MR, Richerson GB (2010) The role of medullary serotonin (5-HT) neurons in respiratory control: contributions to eupneic ventilation, CO2 chemoreception, and thermoregulation. J Appl Physiol 108(5):1425–1432

    Article  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Hodges MR, Richerson GB (2010) Medullary serotonin neurons and their roles in central respiratory chemoreception. Respir Physiol Neurobiol 173(3):256–263

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Hilaire G, Voituron N, Menuet C, Ichiyama RM, Subramanian HH, Dutschmann M (2010) The role of serotonin in respiratory function and dysfunction. Respir Physiol Neurobiol 174(1):76–88

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Kantor S, Mochizuki T, Janisiewicz AM, Clark E, Nishino S, Scammell TE (2009) Orexin neurons are necessary for the circadian control of REM sleep. Sleep 32(9):1127–1134

    Article  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Williams KS, Behn CGD (2011) Dynamic interactions between orexin and dynorphin may delay onset of functional orexin effects: a modeling study. J Biol Rhythm 26(2):171–181

    CAS  Article  Google Scholar 

  84. 84.

    Winsky-Sommerer R, Boutrel B, de Lecea L (2005) Stress and arousal. Mol Neurobiol 32(3):285–294

    CAS  Article  PubMed  Google Scholar 

  85. 85.

    Hetz C, Chevet E, Harding HP (2013) Targeting the unfolded protein response in disease. Nat Rev Drug Discov 12(9):703–719

    CAS  Article  PubMed  Google Scholar 

  86. 86.

    Blair PS, Byard RW, Fleming PJ (2012) Sudden unexpected death in infancy (SUDI): suggested classification and applications to facilitate research activity. Forensic Sci Med Pathol 8(3):312–315

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The tissue used in this study was obtained from the NSW Forensic and Analytical Science Service. The authors acknowledge the facilities and scientific and technical assistance of the Australian Microscopy and Microanalysis Research Faculty at the Australian Centre of Microscopy and Micro Analysis, University of Sydney.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rita Machaalani.

Ethics declarations

Funding

This research was funded by the SIDS Stampede, Australia, and the Miranda Belshaw Foundation.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Key Sentences

pPERK and ATF4 accumulate in orexin neurons and may possibly inhibit protein translation.

pPERK accumulation is observed in the locus coeruleus and dorsal raphe in the pons.

Electronic Supplementary Material

Supplementary Figure 1
figure7

Changes in OxA, Dyn, CC3 and TUNEL (TUN) in the nuclei and regions of the tuberal hypothalamus (THT). No changes in CC3 or TUN were observed in any nuclei or levels of the THT between non-SIDS and SIDS cases. Decreased expression was observed overall in the anterior THT (OxA: F 1,7 = 6.75, P = 0.036; Dyn: F 1,7 = 6.75, P = 0.036), and within the PeF, LH and overall of the central THT (OxA: F 1,23 = 9.78, 10.79, 14.16; P = 0.005, 0.003, 0.001; Dyn: F 1,23 = 10.54, 6.23, 12.44; P = 0.004, 0.02, 0.001) and posterior THT (OxA: F 1,10 = 6.44, 12.94, 21.00; P = 0.034, 0.005, 0.001; Dyn: F 1,10 = 5.82, 9.64, 23.00; P = 0.044, 0.011, 0.001). (GIF 446 kb)

Supplementary Figure 2
figure8

No differences in Ox neuron size (a–c) or total THT neuronal numbers (d–f) between non-SIDS and SIDS infants within the anterior, central or posterior THT. (GIF 120 kb)

Supplementary Figure 3
figure9

Co-localisation of c-fos and OxA was not different between non-SIDS and SIDS infants. (a) non-SIDS and (b) SIDS expression staining images, OxA staining was observed in the cytoplasm of neurons and c-fos expression in the nucleus. (c) box and whisker plot comparing non-SIDS and SIDS co-localised c-fos/OxA expression. (GIF 73 kb)

Supplementary Figure 4
figure10

(GIF 158 kb)

Supplementary Table 1

(DOCX 27 kb)

Supplementary Table 2

(DOCX 33 kb)

High resolution image (TIFF 12385 kb)

High resolution image (TIFF 10053 kb)

High resolution image (TIFF 6692 kb)

High resolution image (TIFF 5395 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hunt, N.J., Waters, K.A. & Machaalani, R. Promotion of the Unfolding Protein Response in Orexin/Dynorphin Neurons in Sudden Infant Death Syndrome (SIDS): Elevated pPERK and ATF4 Expression. Mol Neurobiol 54, 7171–7185 (2017). https://doi.org/10.1007/s12035-016-0234-3

Download citation

Keywords

  • UPR
  • ATF4
  • CREB
  • Development
  • Sleep
  • Hypocretin