Skip to main content
Log in

The Role of MicroRNAs in Cerebellar Development and Autism Spectrum Disorder During Embryogenesis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are a class of small non-coding RNA molecules with wide-ranging and subtle effects on protein production. Their activity during the development of the cerebellum provides a valuable exemplar of how non-coding molecules may assist the development and function of the central nervous system and drive neurodevelopmental disorders. Three distinct aspects of miRNA contribution to early cerebellar development will here be reviewed. Aspects are the establishment of the cerebellar anlage, the generation and maturation of at least two principal cell types of the developing cerebellar microcircuit, and the etiology and early progression of autism spectrum disorder. It will be argued here that the autism spectrum is an adept model to explore miRNA impact on the cognitive and affective processes that descend from the developing cerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP (2008) The impact of microRNAs on protein output. Nature 455(7209):64–71. doi:10.1038/nature07242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455(7209):58–63. doi:10.1038/nature07228

    Article  CAS  PubMed  Google Scholar 

  3. Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466(7308):835–840. doi:10.1038/nature09267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. doi:10.1016/j.cell.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11(9):597–610. doi:10.1038/nrg2843

    CAS  PubMed  Google Scholar 

  6. Cheloufi S, Dos Santos CO, Chong MM, Hannon GJ (2010) A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 465(7298):584–589. doi:10.1038/nature09092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schmahmann JD, Sherman JC (1998) The cerebellar cognitive affective syndrome. Brain 121(Pt 4):561–579

    Article  PubMed  Google Scholar 

  8. Bauman M, Kemper TL (1985) Histoanatomic observations of the brain in early infantile autism. Neurology 35(6):866–874

    Article  CAS  PubMed  Google Scholar 

  9. Bailey A, Luthert P, Dean A, Harding B, Janota I, Montgomery M, Rutter M, Lantos P (1998) A clinicopathological study of autism. Brain 121(Pt 5):889–905

    Article  PubMed  Google Scholar 

  10. Whitney ER, Kemper TL, Bauman ML, Rosene DL, Blatt GJ (2008) Cerebellar Purkinje cells are reduced in a subpopulation of autistic brains: a stereological experiment using calbindin-D28k. Cerebellum 7(3):406–416. doi:10.1007/s12311-008-0043-y

    Article  CAS  PubMed  Google Scholar 

  11. Butts T, Green MJ, Wingate RJ (2014) Development of the cerebellum: simple steps to make a 'little brain'. Development 141(21):4031–4041. doi:10.1242/dev.106559

    Article  CAS  PubMed  Google Scholar 

  12. Broccoli V, Boncinelli E, Wurst W (1999) The caudal limit of Otx2 expression positions the isthmic organizer. Nature 401(6749):164–168. doi:10.1038/43670

    Article  CAS  PubMed  Google Scholar 

  13. Katahira T, Sato T, Sugiyama S, Okafuji T, Araki I, Funahashi J, Nakamura H (2000) Interaction between Otx2 and Gbx2 defines the organizing center for the optic tectum. Mech Dev 91(1–2):43–52

    Article  CAS  PubMed  Google Scholar 

  14. Millet S, Campbell K, Epstein DJ, Losos K, Harris E, Joyner AL (1999) A role for Gbx2 in repression of Otx2 and positioning the mid/hindbrain organizer. Nature 401(6749):161–164. doi:10.1038/43664

    Article  CAS  PubMed  Google Scholar 

  15. Martinez S, Crossley PH, Cobos I, Rubenstein JL, Martin GR (1999) FGF8 induces formation of an ectopic isthmic organizer and isthmocerebellar development via a repressive effect on Otx2 expression. Development 126(6):1189–1200

    CAS  PubMed  Google Scholar 

  16. Crossley PH, Minowada G, MacArthur CA, Martin GR (1996) Roles for FGF8 in the induction, initiation, and maintenance of chick limb development. Cell 84(1):127–136

    Article  CAS  PubMed  Google Scholar 

  17. Shamim H, Mahmood R, Logan C, Doherty P, Lumsden A, Mason I (1999) Sequential roles for Fgf4, En1 and Fgf8 in specification and regionalisation of the midbrain. Development 126(5):945–959

    CAS  PubMed  Google Scholar 

  18. McMahon AP, Joyner AL, Bradley A, McMahon JA (1992) The midbrain-hindbrain phenotype of Wnt-1−/Wnt-1- mice results from stepwise deletion of engrailed-expressing cells by 9.5 days postcoitum. Cell 69(4):581–595

    Article  CAS  PubMed  Google Scholar 

  19. Chi CL, Martinez S, Wurst W, Martin GR (2003) The isthmic organizer signal FGF8 is required for cell survival in the prospective midbrain and cerebellum. Development 130(12):2633–2644

    Article  CAS  PubMed  Google Scholar 

  20. Soukup GA, Fritzsch B, Pierce ML, Weston MD, Jahan I, McManus MT, Harfe BD (2009) Residual microRNA expression dictates the extent of inner ear development in conditional dicer knockout mice. Dev Biol 328(2):328–341. doi:10.1016/j.ydbio.2009.01.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huang T, Liu Y, Huang M, Zhao X, Cheng L (2010) Wnt1-cre-mediated conditional loss of dicer results in malformation of the midbrain and cerebellum and failure of neural crest and dopaminergic differentiation in mice. J Mol Cell Biol 2(3):152–163. doi:10.1093/jmcb/mjq008

    Article  CAS  PubMed  Google Scholar 

  22. Zehir A, Hua LL, Maska EL, Morikawa Y, Cserjesi P (2010) Dicer is required for survival of differentiating neural crest cells. Dev Biol 340(2):459–467. doi:10.1016/j.ydbio.2010.01.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kersigo J, D'Angelo A, Gray BD, Soukup GA, Fritzsch B (2011) The role of sensory organs and the forebrain for the development of the craniofacial shape as revealed by Foxg1-cre-mediated microRNA loss. Genesis 49(4):326–341. doi:10.1002/dvg.20714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jonsson ME, Nelander Wahlestedt J, Akerblom M, Kirkeby A, Malmevik J, Brattaas PL, Jakobsson J, Parmar M (2015) Comprehensive analysis of microRNA expression in regionalized human neural progenitor cells reveals microRNA-10 as a caudalizing factor. Development 142(18):3166–3177. doi:10.1242/dev.122747

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Leucht C, Stigloher C, Wizenmann A, Klafke R, Folchert A, Bally-Cuif L (2008) MicroRNA-9 directs late organizer activity of the midbrain-hindbrain boundary. Nat Neurosci 11(6):641–648. doi:10.1038/nn.2115

    Article  CAS  PubMed  Google Scholar 

  26. Bonev B, Pisco A, Papalopulu N (2011) MicroRNA-9 reveals regional diversity of neural progenitors along the anterior-posterior axis. Dev Cell 20(1):19–32. doi:10.1016/j.devcel.2010.11.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Leto K, Arancillo M, Becker EB, Buffo A, Chiang C, Ding B, Dobyns WB, Dusart I et al (2015) Consensus Paper: Cerebellar Development. Cerebellum. doi:10.1007/s12311-015-0724-2

    PubMed  PubMed Central  Google Scholar 

  28. Rakic P (1971) Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in Macacus rhesus. J Comp Neurol 141(3):283–312. doi:10.1002/cne.901410303

    Article  CAS  PubMed  Google Scholar 

  29. Hoogland TM, Kuhn B, Gobel W, Huang W, Nakai J, Helmchen F, Flint J, Wang SS (2009) Radially expanding transglial calcium waves in the intact cerebellum. Proc Natl Acad Sci U S A 106(9):3496–3501. doi:10.1073/pnas.0809269106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Iino M, Goto K, Kakegawa W, Okado H, Sudo M, Ishiuchi S, Miwa A, Takayasu Y et al (2001) Glia-synapse interaction through Ca2+-permeable AMPA receptors in Bergmann glia. Science 292(5518):926–929. doi:10.1126/science.1058827

    Article  CAS  PubMed  Google Scholar 

  31. Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, Jacob Filho W, Lent R et al (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513(5):532–541. doi:10.1002/cne.21974

    Article  PubMed  Google Scholar 

  32. Tao J, Wu H, Lin Q, Wei W, Lu XH, Cantle JP, Ao Y, Olsen RW et al (2011) Deletion of astroglial dicer causes non-cell-autonomous neuronal dysfunction and degeneration. J Neurosci 31(22):8306–8319. doi:10.1523/JNEUROSCI.0567-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kuang Y, Liu Q, Shu X, Zhang C, Huang N, Li J, Jiang M, Li H (2012) Dicer1 and MiR-9 are required for proper Notch1 signaling and the Bergmann glial phenotype in the developing mouse cerebellum. Glia 60(11):1734–1746. doi:10.1002/glia.22392

    Article  PubMed  Google Scholar 

  34. Howng SY, Huang Y, Ptacek L, Fu YH (2015) Understanding the role of dicer in astrocyte development. PLoS One 10(5):e0126667. doi:10.1371/journal.pone.0126667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Zindy F, Lee Y, Kawauchi D, Ayrault O, Merzoug LB, Li Y, McKinnon PJ, Roussel MF (2015) Dicer is required for normal cerebellar development and to restrain medulloblastoma formation. PLoS One 10(6):e0129642. doi:10.1371/journal.pone.0129642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Constantin L, Wainwright BJ (2015) MicroRNAs promote granule cell expansion in the cerebellum through Gli2. Cerebellum 14(6):688–698. doi:10.1007/s12311-015-0672-x

    Article  CAS  PubMed  Google Scholar 

  37. Swahari V, Nakamura A, Baran-Gale J, Garcia I, Crowther AJ, Sons R, Gershon TR, Hammond S et al (2016) Essential function of dicer in resolving DNA damage in the rapidly dividing cells of the developing and malignant cerebellum. Cell Rep 14(2):216–224. doi:10.1016/j.celrep.2015.12.037

    Article  CAS  PubMed  Google Scholar 

  38. Wei W, Ba Z, Gao M, Wu Y, Ma Y, Amiard S, White CI, Rendtlew Danielsen JM et al (2012) A role for small RNAs in DNA double-strand break repair. Cell 149(1):101–112. doi:10.1016/j.cell.2012.03.002

    Article  CAS  PubMed  Google Scholar 

  39. Francia S, Michelini F, Saxena A, Tang D, de Hoon M, Anelli V, Mione M, Carninci P et al (2012) Site-specific DICER and DROSHA RNA products control the DNA-damage response. Nature 488(7410):231–235. doi:10.1038/nature11179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Reinhardt HC, Schumacher B (2012) The p53 network: cellular and systemic DNA damage responses in aging and cancer. Trends Genet 28(3):128–136. doi:10.1016/j.tig.2011.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wechsler-Reya RJ, Scott MP (1999) Control of neuronal precursor proliferation in the cerebellum by sonic hedgehog. Neuron 22(1):103–114

    Article  CAS  PubMed  Google Scholar 

  42. Wallace VA (1999) Purkinje-cell-derived sonic hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum. Curr Biol 9(8):445–448

    Article  CAS  PubMed  Google Scholar 

  43. Dahmane N, Ruiz i Altaba A (1999) Sonic hedgehog regulates the growth and patterning of the cerebellum. Development 126(14):3089–3100

    PubMed  Google Scholar 

  44. De Luca A, Cerrato V, Fuca E, Parmigiani E, Buffo A, Leto K (2016) Sonic hedgehog patterning during cerebellar development. Cell Mol Life Sci 73(2):291–303. doi:10.1007/s00018-015-2065-1

    Article  CAS  PubMed  Google Scholar 

  45. Northcott PA, Fernandez LA, Hagan JP, Ellison DW, Grajkowska W, Gillespie Y, Grundy R, Van Meter T et al (2009) The miR-17/92 polycistron is up-regulated in sonic hedgehog-driven medulloblastomas and induced by N-myc in sonic hedgehog-treated cerebellar neural precursors. Cancer Res 69(8):3249–3255. doi:10.1158/0008-5472.CAN-08-4710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Uziel T, Karginov FV, Xie S, Parker JS, Wang YD, Gajjar A, He L, Ellison D et al (2009) The miR-17 ~ 92 cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma. Proc Natl Acad Sci U S A 106(8):2812–2817. doi:10.1073/pnas.0809579106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ferretti E, De Smaele E, Miele E, Laneve P, Po A, Pelloni M, Paganelli A, Di Marcotullio L et al (2008) Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells. EMBO J 27(19):2616–2627. doi:10.1038/emboj.2008.172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Garzia L, Andolfo I, Cusanelli E, Marino N, Petrosino G, De Martino D, Esposito V, Galeone A et al (2009) MicroRNA-199b-5p impairs cancer stem cells through negative regulation of HES1 in medulloblastoma. PLoS One 4(3):e4998. doi:10.1371/journal.pone.0004998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. de Antonellis P, Medaglia C, Cusanelli E, Andolfo I, Liguori L, De Vita G, Carotenuto M, Bello A et al (2011) MiR-34a targeting of Notch ligand delta-like 1 impairs CD15+/CD133+ tumor-propagating cells and supports neural differentiation in medulloblastoma. PLoS One 6(9):e24584. doi:10.1371/journal.pone.0024584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Ingram WJ, McCue KI, Tran TH, Hallahan AR, Wainwright BJ (2008) Sonic Hedgehog regulates Hes1 through a novel mechanism that is independent of canonical Notch pathway signalling. Oncogene 27(10):1489–1500. doi:10.1038/sj.onc.1210767

    Article  CAS  PubMed  Google Scholar 

  51. Wall DS, Mears AJ, McNeill B, Mazerolle C, Thurig S, Wang Y, Kageyama R, Wallace VA (2009) Progenitor cell proliferation in the retina is dependent on Notch-independent Sonic Hedgehog/Hes1 activity. J Cell Biol 184(1):101–112. doi:10.1083/jcb.200805155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stecca B, Ruiz i Altaba A (2009) A GLI1-p53 inhibitory loop controls neural stem cell and tumour cell numbers. EMBO J 28(6):663–676. doi:10.1038/emboj.2009.16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Takanaga H, Tsuchida-Straeten N, Nishide K, Watanabe A, Aburatani H, Kondo T (2009) Gli2 is a novel regulator of sox2 expression in telencephalic neuroepithelial cells. Stem Cells 27(1):165–174. doi:10.1634/stemcells.2008-0580

    Article  CAS  PubMed  Google Scholar 

  54. Andolfo I, Liguori L, De Antonellis P, Cusanelli E, Marinaro F, Pistollato F, Garzia L, De Vita G et al (2012) The micro-RNA 199b-5p regulatory circuit involves Hes1, CD15, and epigenetic modifications in medulloblastoma. Neuro-Oncology 14(5):596–612. doi:10.1093/neuonc/nos002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Constantin L, Constantin M, Wainwright BJ (2016) MicroRNA biogenesis and hedgehog-patched signaling cooperate to regulate an important developmental transition in granule cell development. Genetics 202(3):1105–1118. doi:10.1534/genetics.115.184176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Thor T, Kunkele A, Pajtler KW, Wefers AK, Stephan H, Mestdagh P, Heukamp L, Hartmann W et al (2015) MiR-34a deficiency accelerates medulloblastoma formation in vivo. Int J Cancer 136(10):2293–2303. doi:10.1002/ijc.29294

    Article  CAS  PubMed  Google Scholar 

  57. Berenguer J, Herrera A, Vuolo L, Torroba B, Llorens F, Sumoy L, Pons S (2013) MicroRNA 22 regulates cell cycle length in cerebellar granular neuron precursors. Mol Cell Biol 33(14):2706–2717. doi:10.1128/MCB.00338-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ma M, Wu W, Li Q, Li J, Sheng Z, Shi J, Zhang M, Yang H et al (2015) N-myc is a key switch regulating the proliferation cycle of postnatal cerebellar granule cell progenitors. Sci Rep 5:12740. doi:10.1038/srep12740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Association AP (2013) Diagnostic and statistical manual of mental disorders (DSM-5®). American Psychiatric Pub

  60. Autism, Developmental Disabilities Monitoring Network Surveillance Year Principal I, Centers for Disease C, Prevention (2007) Prevalence of autism spectrum disorders—autism and developmental disabilities monitoring network, 14 sites, United States, 2002. MMWR Surveill Summ 56(1):12–28

    Google Scholar 

  61. Christensen DL, Baio J, Braun KV, Bilder D, Charles J, Constantino JN, Daniels J, Durkin MS et al (2016) Prevalence and characteristics of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2012. MMWR Surveill Summ 65(3):1–23. doi:10.15585/mmwr.ss6503a1

    Article  PubMed  Google Scholar 

  62. Sandin S, Lichtenstein P, Kuja-Halkola R, Larsson H, Hultman CM, Reichenberg A (2014) The familial risk of autism. JAMA 311(17):1770–1777. doi:10.1001/jama.2014.4144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bailey A, Le Couteur A, Gottesman I, Bolton P, Simonoff E, Yuzda E, Rutter M (1995) Autism as a strongly genetic disorder: evidence from a British twin study. Psychol Med 25(1):63–77

    Article  CAS  PubMed  Google Scholar 

  64. Ritvo ER, Spence MA, Freeman BJ, Mason-Brothers A, Mo A, Marazita ML (1985) Evidence for autosomal recessive inheritance in 46 families with multiple incidences of autism. Am J Psychiatry 142(2):187–192. doi:10.1176/ajp.142.2.187

    Article  CAS  PubMed  Google Scholar 

  65. Muhle R, Trentacoste SV, Rapin I (2004) The genetics of autism. Pediatrics 113(5):e472–e486

    Article  PubMed  Google Scholar 

  66. Klei L, Sanders SJ, Murtha MT, Hus V, Lowe JK, Willsey AJ, Moreno-De-Luca D, Yu TW et al (2012) Common genetic variants, acting additively, are a major source of risk for autism. Mol Autism 3(1):9. doi:10.1186/2040-2392-3-9

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kohane IS, McMurry A, Weber G, MacFadden D, Rappaport L, Kunkel L, Bickel J, Wattanasin N et al (2012) The co-morbidity burden of children and young adults with autism spectrum disorders. PLoS One 7(4):e33224. doi:10.1371/journal.pone.0033224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Reddy KS (2005) Cytogenetic abnormalities and fragile-X syndrome in autism spectrum disorder. BMC Med Genet 6:3. doi:10.1186/1471-2350-6-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Estecio M, Fett-Conte AC, Varella-Garcia M, Fridman C, Silva AE (2002) Molecular and cytogenetic analyses on Brazilian youths with pervasive developmental disorders. J Autism Dev Disord 32(1):35–41

    Article  PubMed  Google Scholar 

  70. Watson MS, Leckman JF, Annex B, Breg WR, Boles D, Volkmar FR, Cohen DJ, Carter C (1984) Fragile X in a survey of 75 autistic males. N Engl J Med 310(22):1462. doi:10.1056/NEJM198405313102214

    CAS  PubMed  Google Scholar 

  71. Li SY, Chen YC, Lai TJ, Hsu CY, Wang YC (1993) Molecular and cytogenetic analyses of autism in Taiwan. Hum Genet 92(5):441–445

    Article  CAS  PubMed  Google Scholar 

  72. Gaugler T, Klei L, Sanders SJ, Bodea CA, Goldberg AP, Lee AB, Mahajan M, Manaa D et al (2014) Most genetic risk for autism resides with common variation. Nat Genet 46(8):881–885. doi:10.1038/ng.3039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cross-Disorder Group of the Psychiatric Genomics C, Lee SH, Ripke S, Neale BM, Faraone SV, Purcell SM, Perlis RH, Mowry BJ et al (2013) Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet 45(9):984–994. doi:10.1038/ng.2711

    Article  CAS  Google Scholar 

  74. Fatemi SH, Aldinger KA, Ashwood P, Bauman ML, Blaha CD, Blatt GJ, Chauhan A, Chauhan V et al (2012) Consensus paper: pathological role of the cerebellum in autism. Cerebellum 11(3):777–807. doi:10.1007/s12311-012-0355-9

    Article  PubMed  PubMed Central  Google Scholar 

  75. Bauman ML, Kemper TL (2005) Neuroanatomic observations of the brain in autism: a review and future directions. Int J Dev Neurosci 23(2–3):183–187. doi:10.1016/j.ijdevneu.2004.09.006

    Article  PubMed  Google Scholar 

  76. Courchesne E, Karns CM, Davis HR, Ziccardi R, Carper RA, Tigue ZD, Chisum HJ, Moses P et al (2001) Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology 57(2):245–254

    Article  CAS  PubMed  Google Scholar 

  77. Bauman ML, Kemper TL (1994) Neuroanatomic observations of the brain in autism. 612:119–145

  78. Fatemi SH, Halt AR, Realmuto G, Earle J, Kist DA, Thuras P, Merz A (2002) Purkinje cell size is reduced in cerebellum of patients with autism. Cell Mol Neurobiol 22(2):171–175

    Article  PubMed  Google Scholar 

  79. Skefos J, Cummings C, Enzer K, Holiday J, Weed K, Levy E, Yuce T, Kemper T et al (2014) Regional alterations in purkinje cell density in patients with autism. PLoS One 9(2):e81255. doi:10.1371/journal.pone.0081255

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Riva D, Giorgi C (2000) The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumours. Brain 123(Pt 5):1051–1061

    Article  PubMed  Google Scholar 

  81. Levisohn L, Cronin-Golomb A, Schmahmann JD (2000) Neuropsychological consequences of cerebellar tumour resection in children: cerebellar cognitive affective syndrome in a paediatric population. Brain 123(Pt 5):1041–1050

    Article  PubMed  Google Scholar 

  82. Ronning C, Sundet K, Due-Tonnessen B, Lundar T, Helseth E (2005) Persistent cognitive dysfunction secondary to cerebellar injury in patients treated for posterior fossa tumors in childhood. Pediatr Neurosurg 41(1):15–21. doi:10.1159/000084860

    Article  PubMed  Google Scholar 

  83. Ozgur BM, Berberian J, Aryan HE, Meltzer HS, Levy ML (2006) The pathophysiologic mechanism of cerebellar mutism. Surg Neurol 66(1):18–25. doi:10.1016/j.surneu.2005.12.003

    Article  PubMed  Google Scholar 

  84. Limperopoulos C, Chilingaryan G, Sullivan N, Guizard N, Robertson RL, du Plessis AJ (2014) Injury to the premature cerebellum: outcome is related to remote cortical development. Cereb Cortex 24(3):728–736. doi:10.1093/cercor/bhs354

    Article  PubMed  Google Scholar 

  85. Bolduc ME, du Plessis AJ, Sullivan N, Guizard N, Zhang X, Robertson RL, Limperopoulos C (2012) Regional cerebellar volumes predict functional outcome in children with cerebellar malformations. Cerebellum 11(2):531–542. doi:10.1007/s12311-011-0312-z

    Article  PubMed  Google Scholar 

  86. Wang SS, Kloth AD, Badura A (2014) The cerebellum, sensitive periods, and autism. Neuron 83(3):518–532. doi:10.1016/j.neuron.2014.07.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mostofsky SH, Powell SK, Simmonds DJ, Goldberg MC, Caffo B, Pekar JJ (2009) Decreased connectivity and cerebellar activity in autism during motor task performance. Brain 132(Pt 9):2413–2425. doi:10.1093/brain/awp088

    Article  PubMed  PubMed Central  Google Scholar 

  88. Allen G, Courchesne E (2003) Differential effects of developmental cerebellar abnormality on cognitive and motor functions in the cerebellum: an fMRI study of autism. Am J Psychiatry 160(2):262–273. doi:10.1176/appi.ajp.160.2.262

    Article  PubMed  Google Scholar 

  89. Tsai PT, Hull C, Chu Y, Greene-Colozzi E, Sadowski AR, Leech JM, Steinberg J, Crawley JN et al (2012) Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature 488(7413):647–651. doi:10.1038/nature11310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Reith RM, McKenna J, Wu H, Hashmi SS, Cho SH, Dash PK, Gambello MJ (2013) Loss of Tsc2 in Purkinje cells is associated with autistic-like behavior in a mouse model of tuberous sclerosis complex. Neurobiol Dis 51:93–103. doi:10.1016/j.nbd.2012.10.014

    Article  CAS  PubMed  Google Scholar 

  91. Cupolillo D, Hoxha E, Faralli A, De Luca A, Rossi F, Tempia F, Carulli D (2016) Autistic-like traits and cerebellar dysfunction in Purkinje cell PTEN knock-out mice. Neuropsychopharmacology 41(6):1457–1466. doi:10.1038/npp.2015.339

    Article  PubMed  Google Scholar 

  92. Lotta LT, Conrad K, Cory-Slechta D, Schor NF (2014) Cerebellar Purkinje cell p75 neurotrophin receptor and autistic behavior. Transl Psychiatry 4:e416. doi:10.1038/tp.2014.55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Fujita E, Tanabe Y, Imhof BA, Momoi MY, Momoi T (2012) Cadm1-expressing synapses on Purkinje cell dendrites are involved in mouse ultrasonic vocalization activity. PLoS One 7(1):e30151. doi:10.1371/journal.pone.0030151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Brielmaier J, Matteson PG, Silverman JL, Senerth JM, Kelly S, Genestine M, Millonig JH, DiCicco-Bloom E et al (2012) Autism-relevant social abnormalities and cognitive deficits in engrailed-2 knockout mice. PLoS One 7(7):e40914. doi:10.1371/journal.pone.0040914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dickson PE, Rogers TD, Del Mar N, Martin LA, Heck D, Blaha CD, Goldowitz D, Mittleman G (2010) Behavioral flexibility in a mouse model of developmental cerebellar Purkinje cell loss. Neurobiol Learn Mem 94(2):220–228. doi:10.1016/j.nlm.2010.05.010

    Article  PubMed  PubMed Central  Google Scholar 

  96. Martin LA, Goldowitz D, Mittleman G (2010) Repetitive behavior and increased activity in mice with Purkinje cell loss: a model for understanding the role of cerebellar pathology in autism. Eur J Neurosci 31(3):544–555. doi:10.1111/j.1460-9568.2009.07073.x

    Article  PubMed  PubMed Central  Google Scholar 

  97. Steadman PE, Ellegood J, Szulc KU, Turnbull DH, Joyner AL, Henkelman RM, Lerch JP (2014) Genetic effects on cerebellar structure across mouse models of autism using a magnetic resonance imaging atlas. Autism Res 7(1):124–137. doi:10.1002/aur.1344

    Article  PubMed  Google Scholar 

  98. Abu-Elneel K, Liu T, Gazzaniga FS, Nishimura Y, Wall DP, Geschwind DH, Lao K, Kosik KS (2008) Heterogeneous dysregulation of microRNAs across the autism spectrum. Neurogenetics 9(3):153–161. doi:10.1007/s10048-008-0133-5

    Article  CAS  PubMed  Google Scholar 

  99. Bensoula AN, Guastavino JM, Lalonde R, Portet R, Bertin R, Krafft B (1995) Spatial navigation of staggerer and normal mice during juvenile and adult stages. Physiol Behav 58(5):823–825

    Article  CAS  PubMed  Google Scholar 

  100. Ghahramani Seno MM, Hu P, Gwadry FG, Pinto D, Marshall CR, Casallo G, Scherer SW (2011) Gene and miRNA expression profiles in autism spectrum disorders. Brain Res 1380:85–97. doi:10.1016/j.brainres.2010.09.046

    Article  CAS  PubMed  Google Scholar 

  101. Mundalil Vasu M, Anitha A, Thanseem I, Suzuki K, Yamada K, Takahashi T, Wakuda T, Iwata K et al (2014) Serum microRNA profiles in children with autism. Mol Autism 5:40. doi:10.1186/2040-2392-5-40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Talebizadeh Z, Butler MG, Theodoro MF (2008) Feasibility and relevance of examining lymphoblastoid cell lines to study role of microRNAs in autism. Autism Res 1(4):240–250. doi:10.1002/aur.33

    Article  PubMed  PubMed Central  Google Scholar 

  103. Sarachana T, Zhou R, Chen G, Manji HK, Hu VW (2010) Investigation of post-transcriptional gene regulatory networks associated with autism spectrum disorders by microRNA expression profiling of lymphoblastoid cell lines. Genome Med 2(4):23. doi:10.1186/gm144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL et al (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838. doi:10.1038/nature03702

    Article  CAS  PubMed  Google Scholar 

  105. Cheh MA, Millonig JH, Roselli LM, Ming X, Jacobsen E, Kamdar S, Wagner GC (2006) En2 knockout mice display neurobehavioral and neurochemical alterations relevant to autism spectrum disorder. Brain Res 1116(1):166–176. doi:10.1016/j.brainres.2006.07.086

    Article  CAS  PubMed  Google Scholar 

  106. Sgado P, Genovesi S, Kalinovsky A, Zunino G, Macchi F, Allegra M, Murenu E, Provenzano G et al (2013) Loss of GABAergic neurons in the hippocampus and cerebral cortex of Engrailed-2 null mutant mice: implications for autism spectrum disorders. Exp Neurol 247:496–505. doi:10.1016/j.expneurol.2013.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gant JC, Thibault O, Blalock EM, Yang J, Bachstetter A, Kotick J, Schauwecker PE, Hauser KF et al (2009) Decreased number of interneurons and increased seizures in neuropilin 2 deficient mice: implications for autism and epilepsy. Epilepsia 50(4):629–645. doi:10.1111/j.1528-1167.2008.01725.x

    Article  CAS  PubMed  Google Scholar 

  108. Steinmayr M, Andre E, Conquet F, Rondi-Reig L, Delhaye-Bouchaud N, Auclair N, Daniel H, Crepel F et al (1998) Staggerer phenotype in retinoid-related orphan receptor alpha-deficient mice. Proc Natl Acad Sci U S A 95(7):3960–3965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Trindade AJ, Medvetz DA, Neuman NA, Myachina F, Yu J, Priolo C, Henske EP (2013) MicroRNA-21 is induced by rapamycin in a model of tuberous sclerosis (TSC) and lymphangioleiomyomatosis (LAM). PLoS One 8(3):e60014. doi:10.1371/journal.pone.0060014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Guibinga GH, Hrustanovic G, Bouic K, Jinnah HA, Friedmann T (2012) MicroRNA-mediated dysregulation of neural developmental genes in HPRT deficiency: clues for Lesch-Nyhan disease? Hum Mol Genet 21(3):609–622. doi:10.1093/hmg/ddr495

    Article  CAS  PubMed  Google Scholar 

  111. Lee K, Kim JH, Kwon OB, An K, Ryu J, Cho K, Suh YH et al (2012) An activity-regulated microRNA, miR-188, controls dendritic plasticity and synaptic transmission by downregulating neuropilin-2. J Neurosci 32(16):5678–5687. doi:10.1523/JNEUROSCI.6471-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Devanna P, Vernes SC (2014) A direct molecular link between the autism candidate gene RORa and the schizophrenia candidate MIR137. Sci Rep 4:3994. doi:10.1038/srep03994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Cianchetti C, Sannio-Fancello G, Fratta AL, Manconi F, Orano A, Pischedda MP, Pruna D, Spinicci G et al (1991) Neuropsychological, psychiatric, and physical manifestations in 149 members from 18 fragile X families. Am J Med Genet 40(2):234–243. doi:10.1002/ajmg.1320400222

    Article  CAS  PubMed  Google Scholar 

  114. Klauck SM, Munstermann E, Bieber-Martig B, Ruhl D, Lisch S, Schmotzer G, Poustka A, Poustka F (1997) Molecular genetic analysis of the FMR-1 gene in a large collection of autistic patients. Hum Genet 100(2):224–229

    Article  CAS  PubMed  Google Scholar 

  115. Lombroso PJ (2003) Genetics of childhood disorders: XLVIII. Learning and memory, part 1: fragile X syndrome update. J Am Acad Child Adolesc Psychiatry 42(3):372–375. doi:10.1097/00004583-200303000-00019

    Article  PubMed  Google Scholar 

  116. Oostra BA, Chiurazzi P (2001) The fragile X gene and its function. Clin Genet 60(6):399–408

    Article  CAS  PubMed  Google Scholar 

  117. Vincent JB, Thevarkunnel S, Kolozsvari D, Paterson AD, Roberts W, Scherer SW (2004) Association and transmission analysis of the FMR1 IVS10 + 14C-T variant in autism. Am J Med Genet B Neuropsychiatr Genet 125B(1):54–56. doi:10.1002/ajmg.b.20088

    Article  PubMed  Google Scholar 

  118. Bolton PF, Griffiths PD (1997) Association of tuberous sclerosis of temporal lobes with autism and atypical autism. Lancet 349(9049):392–395. doi:10.1016/S0140-6736(97)80012-8

    Article  CAS  PubMed  Google Scholar 

  119. Bolton PF, Park RJ, Higgins JN, Griffiths PD, Pickles A (2002) Neuro-epileptic determinants of autism spectrum disorders in tuberous sclerosis complex. Brain 125(Pt 6):1247–1255

    Article  PubMed  Google Scholar 

  120. Lewis JC, Thomas HV, Murphy KC, Sampson JR (2004) Genotype and psychological phenotype in tuberous sclerosis. J Med Genet 41(3):203–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Percy AK, Lane JB (2004) Rett syndrome: clinical and molecular update. Curr Opin Pediatr 16(6):670–677

    Article  PubMed  Google Scholar 

  122. Barton M, Volkmar F (1998) How commonly are known medical conditions associated with autism? J Autism Dev Disord 28(4):273–278

    Article  CAS  PubMed  Google Scholar 

  123. Rutter M, Bailey A, Bolton P, Le Couteur A (1994) Autism and known medical conditions: myth and substance. J Child Psychol Psychiatry 35(2):311–322

    Article  CAS  PubMed  Google Scholar 

  124. Verkerk AJ, Pieretti M, Sutcliffe JS, Fu YH, Kuhl DP, Pizzuti A, Reiner O, Richards S et al (1991) Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65(5):905–914

    Article  CAS  PubMed  Google Scholar 

  125. Devys D, Biancalana V, Rousseau F, Boue J, Mandel JL, Oberle I (1992) Analysis of full fragile X mutations in fetal tissues and monozygotic twins indicate that abnormal methylation and somatic heterogeneity are established early in development. Am J Med Genet 43(1–2):208–216

    Article  CAS  PubMed  Google Scholar 

  126. Laggerbauer B, Ostareck D, Keidel EM, Ostareck-Lederer A, Fischer U (2001) Evidence that fragile X mental retardation protein is a negative regulator of translation. Hum Mol Genet 10(4):329–338

    Article  CAS  PubMed  Google Scholar 

  127. Darnell JC, Fraser CE, Mostovetsky O, Stefani G, Jones TA, Eddy SR, Darnell RB (2005) Kissing complex RNAs mediate interaction between the fragile-X mental retardation protein KH2 domain and brain polyribosomes. Genes Dev 19(8):903–918. doi:10.1101/gad.1276805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ceman S, O'Donnell WT, Reed M, Patton S, Pohl J, Warren ST (2003) Phosphorylation influences the translation state of FMRP-associated polyribosomes. Hum Mol Genet 12(24):3295–3305. doi:10.1093/hmg/ddg350

    Article  CAS  PubMed  Google Scholar 

  129. Hinton VJ, Brown WT, Wisniewski K, Rudelli RD (1991) Analysis of neocortex in three males with the fragile X syndrome. Am J Med Genet 41(3):289–294. doi:10.1002/ajmg.1320410306

    Article  CAS  PubMed  Google Scholar 

  130. Comery TA, Harris JB, Willems PJ, Oostra BA, Irwin SA, Weiler IJ, Greenough WT (1997) Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proc Natl Acad Sci U S A 94(10):5401–5404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Nimchinsky EA, Oberlander AM, Svoboda K (2001) Abnormal development of dendritic spines in FMR1 knock-out mice. J Neurosci 21(14):5139–5146

    CAS  PubMed  Google Scholar 

  132. Greenough WT, Klintsova AY, Irwin SA, Galvez R, Bates KE, Weiler IJ (2001) Synaptic regulation of protein synthesis and the fragile X protein. Proc Natl Acad Sci U S A 98(13):7101–7106. doi:10.1073/pnas.141145998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Huber KM, Gallagher SM, Warren ST, Bear MF (2002) Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl Acad Sci U S A 99(11):7746–7750. doi:10.1073/pnas.122205699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kaufmann WE, Cooper KL, Mostofsky SH, Capone GT, Kates WR, Newschaffer CJ, Bukelis I, Stump MH et al (2003) Specificity of cerebellar vermian abnormalities in autism: a quantitative magnetic resonance imaging study. J Child Neurol 18(7):463–470

    Article  PubMed  Google Scholar 

  135. Mostofsky SH, Mazzocco MM, Aakalu G, Warsofsky IS, Denckla MB, Reiss AL (1998) Decreased cerebellar posterior vermis size in fragile X syndrome: correlation with neurocognitive performance. Neurology 50(1):121–130

    Article  CAS  PubMed  Google Scholar 

  136. Koekkoek SK, Hulscher HC, Dortland BR, Hensbroek RA, Elgersma Y, Ruigrok TJ, De Zeeuw CI (2003) Cerebellar LTD and learning-dependent timing of conditioned eyelid responses. Science 301(5640):1736–1739. doi:10.1126/science.1088383

    Article  CAS  PubMed  Google Scholar 

  137. Koekkoek SK, Yamaguchi K, Milojkovic BA, Dortland BR, Ruigrok TJ, Maex R, De Graaf W, Smit AE et al (2005) Deletion of FMR1 in Purkinje cells enhances parallel fiber LTD, enlarges spines, and attenuates cerebellar eyelid conditioning in fragile X syndrome. Neuron 47(3):339–352. doi:10.1016/j.neuron.2005.07.005

    Article  CAS  PubMed  Google Scholar 

  138. Ishizuka A, Siomi MC, Siomi H (2002) A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev 16(19):2497–2508. doi:10.1101/gad.1022002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Caudy AA, Myers M, Hannon GJ, Hammond SM (2002) Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev 16(19):2491–2496. doi:10.1101/gad.1025202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Jin P, Zarnescu DC, Ceman S, Nakamoto M, Mowrey J, Jongens TA, Nelson DL, Moses K et al (2004) Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nat Neurosci 7(2):113–117. doi:10.1038/nn1174

    Article  CAS  PubMed  Google Scholar 

  141. Stefanovic S, Bassell GJ, Mihailescu MR (2015) G quadruplex RNA structures in PSD-95 mRNA: potential regulators of miR-125a seed binding site accessibility. RNA 21(1):48–60. doi:10.1261/rna.046722.114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Bhattacharyya S, Biou V, Xu W, Schluter O, Malenka RC (2009) A critical role for PSD-95/AKAP interactions in endocytosis of synaptic AMPA receptors. Nat Neurosci 12(2):172–181. doi:10.1038/nn.2249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Xu W, Schluter OM, Steiner P, Czervionke BL, Sabatini B, Malenka RC (2008) Molecular dissociation of the role of PSD-95 in regulating synaptic strength and LTD. Neuron 57(2):248–262. doi:10.1016/j.neuron.2007.11.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. De Roo M, Klauser P, Mendez P, Poglia L, Muller D (2008) Activity-dependent PSD formation and stabilization of newly formed spines in hippocampal slice cultures. Cereb Cortex 18(1):151–161. doi:10.1093/cercor/bhm041

    Article  PubMed  Google Scholar 

  145. Edbauer D, Neilson JR, Foster KA, Wang CF, Seeburg DP, Batterton MN, Tada T, Dolan BM et al (2010) Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron 65(3):373–384. doi:10.1016/j.neuron.2010.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Dabora SL, Jozwiak S, Franz DN, Roberts PS, Nieto A, Chung J, Choy YS, Reeve MP et al (2001) Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am J Hum Genet 68(1):64–80. doi:10.1086/316951

    Article  CAS  PubMed  Google Scholar 

  147. Jones AC, Shyamsundar MM, Thomas MW, Maynard J, Idziaszczyk S, Tomkins S, Sampson JR, Cheadle JP (1999) Comprehensive mutation analysis of TSC1 and TSC2-and phenotypic correlations in 150 families with tuberous sclerosis. Am J Hum Genet 64(5):1305–1315. doi:10.1086/302381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Sancak O, Nellist M, Goedbloed M, Elfferich P, Wouters C, Maat-Kievit A, Zonnenberg B, Verhoef S et al (2005) Mutational analysis of the TSC1 and TSC2 genes in a diagnostic setting: genotype–phenotype correlations and comparison of diagnostic DNA techniques in tuberous sclerosis complex. Eur J Hum Genet 13(6):731–741. doi:10.1038/sj.ejhg.5201402

    Article  CAS  PubMed  Google Scholar 

  149. van Slegtenhorst M, Nellist M, Nagelkerken B, Cheadle J, Snell R, van den Ouweland A, Reuser A, Sampson J et al (1998) Interaction between hamartin and tuberin, the TSC1 and TSC2 gene products. Hum Mol Genet 7(6):1053–1057

    Article  PubMed  Google Scholar 

  150. Plank TL, Yeung RS, Henske EP (1998) Hamartin, the product of the tuberous sclerosis 1 (TSC1) gene, interacts with tuberin and appears to be localized to cytoplasmic vesicles. Cancer Res 58(21):4766–4770

    CAS  PubMed  Google Scholar 

  151. Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115(5):577–590

    Article  CAS  PubMed  Google Scholar 

  152. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274–293. doi:10.1016/j.cell.2012.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Choi YJ, Di Nardo A, Kramvis I, Meikle L, Kwiatkowski DJ, Sahin M, He X (2008) Tuberous sclerosis complex proteins control axon formation. Genes Dev 22(18):2485–2495. doi:10.1101/gad.1685008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Goto J, Talos DM, Klein P, Qin W, Chekaluk YI, Anderl S, Malinowska IA, Di Nardo A et al (2011) Regulable neural progenitor-specific Tsc1 loss yields giant cells with organellar dysfunction in a model of tuberous sclerosis complex. Proc Natl Acad Sci U S A 108(45):E1070–E1079. doi:10.1073/pnas.1106454108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Bateup HS, Johnson CA, Denefrio CL, Saulnier JL, Kornacker K, Sabatini BL (2013) Excitatory/inhibitory synaptic imbalance leads to hippocampal hyperexcitability in mouse models of tuberous sclerosis. Neuron 78(3):510–522. doi:10.1016/j.neuron.2013.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Smalley SL (1998) Autism and tuberous sclerosis. J Autism Dev Disord 28(5):407–414

    Article  CAS  PubMed  Google Scholar 

  157. Eluvathingal TJ, Behen ME, Chugani HT, Janisse J, Bernardi B, Chakraborty P, Juhasz C, Muzik O et al (2006) Cerebellar lesions in tuberous sclerosis complex: neurobehavioral and neuroimaging correlates. J Child Neurol 21(10):846–851

    Article  PubMed  Google Scholar 

  158. Dombkowski AA, Batista CE, Cukovic D, Carruthers NJ, Ranganathan R, Shukla U, Stemmer PM, Chugani HT et al (2016) Cortical tubers: windows into dysregulation of epilepsy risk and synaptic signaling genes by MicroRNAs. Cereb Cortex 26(3):1059–1071. doi:10.1093/cercor/bhu276

    Article  PubMed  Google Scholar 

  159. Romaker D, Kumar V, Cerqueira DM, Cox RM, Wessely O (2014) MicroRNAs are critical regulators of tuberous sclerosis complex and mTORC1 activity in the size control of the Xenopus kidney. Proc Natl Acad Sci U S A 111(17):6335–6340. doi:10.1073/pnas.1320577111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Zhang Y, Ueno Y, Liu XS, Buller B, Wang X, Chopp M, Zhang ZG (2013) The MicroRNA-17-92 cluster enhances axonal outgrowth in embryonic cortical neurons. J Neurosci 33(16):6885–6894. doi:10.1523/JNEUROSCI.5180-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23(2):185–188. doi:10.1038/13810

    Article  CAS  PubMed  Google Scholar 

  162. Kortum F, Das S, Flindt M, Morris-Rosendahl DJ, Stefanova I, Goldstein A, Horn D, Klopocki E et al (2011) The core FOXG1 syndrome phenotype consists of postnatal microcephaly, severe mental retardation, absent language, dyskinesia, and corpus callosum hypogenesis. J Med Genet 48(6):396–406. doi:10.1136/jmg.2010.087528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Lewis JD, Meehan RR, Henzel WJ, Maurer-Fogy I, Jeppesen P, Klein F, Bird A (1992) Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69(6):905–914

    Article  CAS  PubMed  Google Scholar 

  164. Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J, Wolffe AP (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 19(2):187–191. doi:10.1038/561

    Article  CAS  PubMed  Google Scholar 

  165. Chahrour M, Jung SY, Shaw C, Zhou X, Wong ST, Qin J, Zoghbi HY (2008) MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320(5880):1224–1229. doi:10.1126/science.1153252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Gabel HW, Kinde B, Stroud H, Gilbert CS, Harmin DA, Kastan NR, Hemberg M, Ebert DH et al (2015) Disruption of DNA-methylation-dependent long gene repression in Rett syndrome. Nature 522(7554):89–93. doi:10.1038/nature14319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Chen L, Chen K, Lavery LA, Baker SA, Shaw CA, Li W, Zoghbi HY (2015) MeCP2 binds to non-CG methylated DNA as neurons mature, influencing transcription and the timing of onset for Rett syndrome. Proc Natl Acad Sci U S A 112(17):5509–5514. doi:10.1073/pnas.1505909112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Zylka MJ, Simon JM, Philpot BD (2015) Gene length matters in neurons. Neuron 86(2):353–355. doi:10.1016/j.neuron.2015.03.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Nelson ED, Kavalali ET, Monteggia LM (2006) MeCP2-dependent transcriptional repression regulates excitatory neurotransmission. Curr Biol 16(7):710–716. doi:10.1016/j.cub.2006.02.062

    Article  CAS  PubMed  Google Scholar 

  170. Li H, Zhong X, Chau KF, Williams EC, Chang Q (2011) Loss of activity-induced phosphorylation of MeCP2 enhances synaptogenesis, LTP and spatial memory. Nat Neurosci 14(8):1001–1008. doi:10.1038/nn.2866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Tropea D, Giacometti E, Wilson NR, Beard C, McCurry C, Fu DD, Flannery R, Jaenisch R et al (2009) Partial reversal of Rett syndrome-like symptoms in MeCP2 mutant mice. Proc Natl Acad Sci U S A 106(6):2029–2034. doi:10.1073/pnas.0812394106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Dani VS, Chang Q, Maffei A, Turrigiano GG, Jaenisch R, Nelson SB (2005) Reduced cortical activity due to a shift in the balance between excitation and inhibition in a mouse model of Rett syndrome. Proc Natl Acad Sci U S A 102(35):12560–12565. doi:10.1073/pnas.0506071102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Nelson ED, Bal M, Kavalali ET, Monteggia LM (2011) Selective impact of MeCP2 and associated histone deacetylases on the dynamics of evoked excitatory neurotransmission. J Neurophysiol 106(1):193–201. doi:10.1152/jn.00751.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Ramocki MB, Peters SU, Tavyev YJ, Zhang F, Carvalho CM, Schaaf CP, Richman R, Fang P et al (2009) Autism and other neuropsychiatric symptoms are prevalent in individuals with MeCP2 duplication syndrome. Ann Neurol 66(6):771–782. doi:10.1002/ana.21715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Xu X, Xu Q, Zhang Y, Zhang X, Cheng T, Wu B, Ding Y, Lu P et al (2012) A case report of Chinese brothers with inherited MECP2-containing duplication: autism and intellectual disability, but not seizures or respiratory infections. BMC Med Genet 13:75. doi:10.1186/1471-2350-13-75

    Article  PubMed  PubMed Central  Google Scholar 

  176. Novara F, Simonati A, Sicca F, Battini R, Fiori S, Contaldo A, Criscuolo L, Zuffardi O et al (2014) MECP2 duplication phenotype in symptomatic females: report of three further cases. Mol Cytogenet 7(1):10. doi:10.1186/1755-8166-7-10

    Article  PubMed  PubMed Central  Google Scholar 

  177. Murakami JW, Courchesne E, Haas RH, Press GA, Yeung-Courchesne R (1992) Cerebellar and cerebral abnormalities in Rett syndrome: a quantitative MR analysis. AJR Am J Roentgenol 159(1):177–183. doi:10.2214/ajr.159.1.1609693

    Article  CAS  PubMed  Google Scholar 

  178. Oldfors A, Sourander P, Armstrong DL, Percy AK, Witt-Engerstrom I, Hagberg BA (1990) Rett syndrome: cerebellar pathology. Pediatr Neurol 6(5):310–314

    Article  CAS  PubMed  Google Scholar 

  179. Russell JC, Blue ME, Johnston MV, Naidu S, Hossain MA (2007) Enhanced cell death in MeCP2 null cerebellar granule neurons exposed to excitotoxicity and hypoxia. Neuroscience 150(3):563–574. doi:10.1016/j.neuroscience.2007.09.076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Bashina VM, Simashkova NV, Grachev VV, Gorbachevskaya NL (2002) Speech and motor disturbances in Rett syndrome. Neurosci Behav Physiol 32(4):323–327

    Article  CAS  PubMed  Google Scholar 

  181. Hagberg B, Aicardi J, Dias K, Ramos O (1983) A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett’s syndrome: report of 35 cases. Ann Neurol 14(4):471–479. doi:10.1002/ana.410140412

    Article  CAS  PubMed  Google Scholar 

  182. Pelka GJ, Watson CM, Radziewic T, Hayward M, Lahooti H, Christodoulou J, Tam PP (2006) Mecp2 deficiency is associated with learning and cognitive deficits and altered gene activity in the hippocampal region of mice. Brain 129(Pt 4):887–898. doi:10.1093/brain/awl022

    Article  PubMed  Google Scholar 

  183. Wu H, Tao J, Chen PJ, Shahab A, Ge W, Hart RP, Ruan X, Ruan Y et al (2010) Genome-wide analysis reveals methyl-CpG-binding protein 2-dependent regulation of microRNAs in a mouse model of Rett syndrome. Proc Natl Acad Sci U S A 107(42):18161–18166. doi:10.1073/pnas.1005595107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Tsujimura K, Irie K, Nakashima H, Egashira Y, Fukao Y, Fujiwara M, Itoh M, Uesaka M et al (2015) miR-199a links MeCP2 with mTOR signaling and its dysregulation leads to Rett syndrome phenotypes. Cell Rep 12(11):1887–1901. doi:10.1016/j.celrep.2015.08.028

    Article  CAS  PubMed  Google Scholar 

  185. Hansen KF, Sakamoto K, Wayman GA, Impey S, Obrietan K (2010) Transgenic miR132 alters neuronal spine density and impairs novel object recognition memory. PLoS One 5(11):e15497. doi:10.1371/journal.pone.0015497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Hernandez-Rapp J, Smith PY, Filali M, Goupil C, Planel E, Magill ST, Goodman RH, Hebert SS (2015) Memory formation and retention are affected in adult miR-132/212 knockout mice. Behav Brain Res 287:15–26. doi:10.1016/j.bbr.2015.03.032

    Article  CAS  PubMed  Google Scholar 

  187. Shibata M, Kurokawa D, Nakao H, Ohmura T, Aizawa S (2008) MicroRNA-9 modulates Cajal-Retzius cell differentiation by suppressing Foxg1 expression in mouse medial pallium. J Neurosci 28(41):10415–10421. doi:10.1523/JNEUROSCI.3219-08.2008

    Article  CAS  PubMed  Google Scholar 

  188. Garaffo G, Conte D, Provero P, Tomaiuolo D, Luo Z, Pinciroli P, Peano C, D'Atri I et al (2015) The Dlx5 and Foxg1 transcription factors, linked via miRNA-9 and -200, are required for the development of the olfactory and GnRH system. Mol Cell Neurosci 68:103–119. doi:10.1016/j.mcn.2015.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. J.C. Eccles, M. Ito, J. Szentágothai. (1967) The Cerebellum as a Neuronal Machine. Springer-Verlag,Berlin.

Download references

Acknowledgments

The author would like to acknowledge Dr Myrna Constantin for stimulating intellectual discussions and the critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lena Constantin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Constantin, L. The Role of MicroRNAs in Cerebellar Development and Autism Spectrum Disorder During Embryogenesis. Mol Neurobiol 54, 6944–6959 (2017). https://doi.org/10.1007/s12035-016-0220-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0220-9

Keywords

Navigation