Advertisement

Molecular Neurobiology

, Volume 54, Issue 9, pp 6827–6838 | Cite as

A Novel Bioresorbable Device as a Controlled Release System for Protecting Cells from Oxidative Stress from Alzheimer’s Disease

  • Geisa Nogueira Salles
  • Fernanda Aparecida dos Santos Pereira
  • Cristina Pacheco-Soares
  • Fernanda Roberta Marciano
  • Christian Hölscher
  • Thomas J Webster
  • Anderson Oliveira Lobo
Article

Abstract

Bioresorbable electrospun fibres have highly functional features that can preserve drug efficacy, avoiding premature degradation, and control drug release rates over long periods. In parallel, it is known that Alzheimer’s disease (AD) has been linked to impaired insulin signalling in the brain. Glucagon-like peptide 1 (GLP-1) analogues have beneficial effects on insulin release and possess exceptional neuroprotective properties. Herein, we describe for the first time the incorporation of a GLP-1 analogue, liraglutide, into electrospun poly (lactic acid) (PLA) fibres with in situ gelatin capsules, in order to provide the controlled release of liraglutide, improving neuroprotective properties. In this study, PLA, a bioresorbable polymer in which degradation products have neurogenesis characteristics, was electrospun and loaded with liraglutide. Moreover, PLA/liraglutide fibres were encapsulated with gelatin and were shown to have better properties than the non-encapsulated fibres in terms of the controlled release of liraglutide, which was accomplished in the present study for up to 60 days. We observed that this biodevice was completely encapsulated with gelatin, which made the material more hydrophilic than PLA fibres alone and the biodevice was able to enhance fibroblast interaction and reduce mitochondrial stress in a neuroblastoma cell line. In this manner, this study introduces a new material which can improve neuroprotective properties from AD oxidative stress via the sustained long-lasting release of liraglutide.

Graphical Abstract

Keywords

Electrospun fibres Polyester Drug delivery Sustained release Liraglutide Alzheimer’s disease Biodevice 

Notes

Acknowledgments

The authors would like to thank the São Paulo Research Foundation (FAPESP, AOL: grant 2011/17877-7 and BPE 2015/09697-0; FRM: grant 2011/20345-7 and BPE 2016/00575-1), the National Council for Scientific and Technological Development (CNPq, 474090/2013-2), the Brazilian Innovation Agency (FINEP–grant 0113042800) and the Coordination for the Improvement of Higher Education Personnel (CAPES, grant 88887.095044/2015-00). G. N. Salles would also like to thank FAPESP for the PhD scholarship (2014/20561-0). The authors would like to acknowledge Prof. Fabio Klamt who provided the SH-SY5Y cells.

Authors’ Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

References

  1. 1.
    Shalaby S, Al-Balakocy N, Abo El-Ola S (2007) Surface modification of nylon-6 fibers for medical applications. J Appl Polym Sci 104(6):3788–3796CrossRefGoogle Scholar
  2. 2.
    Jia L, Prabhakaran MP, Qin X, Kai D, Ramakrishna S (2013) Biocompatibility evaluation of protein-incorporated electrospun polyurethane-based scaffolds with smooth muscle cells for vascular tissue engineering. J Mater Sci 48(15):5113–5124CrossRefGoogle Scholar
  3. 3.
    Sridhar R, Lakshminarayanan R, Madhaiyan K, Barathi VA, Lim KHC, Ramakrishna S (2015) Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals. Chem Soc Rev 44(3):790–814CrossRefPubMedGoogle Scholar
  4. 4.
    Son YJ, Kim WJ, Yoo HS (2014) Therapeutic applications of electrospun nanofibers for drug delivery systems. Arch Pharm Res 37(1):69–78CrossRefPubMedGoogle Scholar
  5. 5.
    Jain KK (2012) Nanobiotechnology-based strategies for crossing the blood-brain barrier. Nanomedicine 7(8):1225–1233CrossRefPubMedGoogle Scholar
  6. 6.
    Gomes MJ, Neves J, Sarmento B (2014) Nanoparticle-based drug delivery to improve the efficacy of antiretroviral therapy in the central nervous system. Int J Nanomedicine 9:1757–1769PubMedPubMedCentralGoogle Scholar
  7. 7.
    Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5(4):505–515CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Álvarez Z, Castaño O, Castells AA, Mateos-Timoneda MA, Planell JA, Engel E, Alcántara S (2014) Neurogenesis and vascularization of the damaged brain using a lactate-releasing biomimetic scaffold. Biomaterials 35(17):4769–4781CrossRefPubMedGoogle Scholar
  9. 9.
    Yang H, Qu T, Yang H, Wei L, Xie Z, Wang P, Bi J (2013) Self-assembling nanofibers improve cognitive impairment in a transgenic mice model of Alzheimer’s disease. Neurosci Lett 556:63–68CrossRefPubMedGoogle Scholar
  10. 10.
    Yang H, Yang H, Xie Z, Wang P, Bi J (2015) Self-assembling nanofibers alter the processing of amyloid precursor protein in a transgenic mouse model of Alzheimer’s disease. Neurol Res 37(1):84–91CrossRefPubMedGoogle Scholar
  11. 11.
    Luchsinger JA, Tang M-X, Shea S, Mayeux R (2004) Hyperinsulinemia and risk of Alzheimer disease. Neurology 63(7):1187–1192CrossRefPubMedGoogle Scholar
  12. 12.
    Ristow M (2004) Neurodegenerative disorders associated with diabetes mellitus. J Mol Med 82(8):510–529CrossRefPubMedGoogle Scholar
  13. 13.
    Suzanne M, Wands JR (2008) Alzheimer’s disease is type 3 diabetes—evidence reviewed. Journal of diabetes science and technology 2(6):1101–1113CrossRefGoogle Scholar
  14. 14.
    Hölscher C (2011) Diabetes as a risk factor for Alzheimer’s disease: insulin signalling impairment in the brain as an alternative model of Alzheimer’s disease. Biochem Soc Trans 39(4):891–897CrossRefPubMedGoogle Scholar
  15. 15.
    Lovshin JA, Drucker DJ (2009) Incretin-based therapies for type 2 diabetes mellitus. Nat Rev Endocrinol 5(5):262–269CrossRefPubMedGoogle Scholar
  16. 16.
    Perry T, Holloway HW, Weerasuriya A, Mouton PR, Duffy K, Mattison JA, Greig NH (2007) Evidence of GLP-1-mediated neuroprotection in an animal model of pyridoxine-induced peripheral sensory neuropathy. Exp Neurol 203(2):293–301CrossRefPubMedGoogle Scholar
  17. 17.
    Hunter K, Hölscher C (2012) Drugs developed to treat diabetes, liraglutide and lixisenatide, cross the blood brain barrier and enhance neurogenesis. BMC Neurosci 13(1):33CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hamilton A, Hölscher C (2009) Receptors for the incretin glucagon-like peptide-1 are expressed on neurons in the central nervous system. Neuroreport 20(13):1161–1166CrossRefPubMedGoogle Scholar
  19. 19.
    Holst JJ (2004) Treatment of type 2 diabetes mellitus with agonists of the GLP-1 receptor or DPP-IV inhibitors. Expert opinion on emerging drugs 9(1):155–166CrossRefPubMedGoogle Scholar
  20. 20.
    Holscher C (2010) Incretin analogues that have been developed to treat type 2 diabetes hold promise as a novel treatment strategy for Alzheimer’s disease. Recent patents on CNS drug discovery 5(2):109–117CrossRefPubMedGoogle Scholar
  21. 21.
    Hölscher C (2014) Central effects of GLP-1: new opportunities for treatments of neurodegenerative diseases. J Endocrinol 221(1):T31–T41CrossRefPubMedGoogle Scholar
  22. 22.
    Stalder AF, Melchior T, Müller M, Sage D, Blu T, Unser M (2010) Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops. Colloids Surf A Physicochem Eng Asp 364(1):72–81CrossRefGoogle Scholar
  23. 23.
    Aboutalebi Anaraki N, Roshanfekr Rad L, Irani M, Haririan I (2015) Fabrication of PLA/PEG/MWCNT electrospun nanofibrous scaffolds for anticancer drug delivery. J Appl Polym Sci 132(3)Google Scholar
  24. 24.
    Wu D, Chen X, Chen T, Ding C, Wu W, Li J (2015) Substrate-anchored and degradation-sensitive anti-inflammatory coatings for implant materials Scientific reports 5Google Scholar
  25. 25.
    Karthikeyan K, Sowjanya RS, Yugandhar AD, Gopinath S, Korrapati PS (2015) Design and development of a topical dosage form for the convenient delivery of electrospun drug loaded nanofibers. RSC Adv 5(65):52420–52426CrossRefGoogle Scholar
  26. 26.
    Sharma MK, Jalewa J, Hölscher C (2014) Neuroprotective and anti-apoptotic effects of liraglutide on SH-SY5Y cells exposed to methylglyoxal stress. J Neurochem 128(3):459–471CrossRefPubMedGoogle Scholar
  27. 27.
    Caspers PJ, Lucassen GW, Carter EA, Bruining HA, Puppels GJ (2001) In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles. J Investig Dermatol 116(3):434–442CrossRefPubMedGoogle Scholar
  28. 28.
    Lakshmi RJ, Kartha V, Murali Krishna C, R. Solomon J, Ullas G, Uma Devi P (2002) Tissue Raman spectroscopy for the study of radiation damage: brain irradiation of mice. Radiat Res 157(2):175–182CrossRefGoogle Scholar
  29. 29.
    Payne K, Veis A (1988) Fourier transform IR spectroscopy of collagen and gelatin solutions: deconvolution of the amide I band for conformational studies. Biopolymers 27(11):1749–1760CrossRefPubMedGoogle Scholar
  30. 30.
    de Campos VB, Mello MLS (2011) Collagen type I amide I band infrared spectroscopy. Micron 42(3):283–289CrossRefGoogle Scholar
  31. 31.
    Sellaro TL, Hildebrand D, Lu Q, Vyavahare N, Scott M, Sacks MS (2007) Effects of collagen fiber orientation on the response of biologically derived soft tissue biomaterials to cyclic loading. J Biomed Mater Res A 80(1):194–205CrossRefPubMedGoogle Scholar
  32. 32.
    Lu Y, Huang J, Yu G, Cardenas R, Wei S, Wujcik EK, Guo Z (2016) Coaxial electrospun fibers: applications in drug delivery and tissue engineering. Wiley Interdisciplinary Reviews: Nanomedicine and NanobiotechnologyGoogle Scholar
  33. 33.
    Binan L, Tendey C, De Crescenzo G, El Ayoubi R, Ajji A, Jolicoeur M (2014) Differentiation of neuronal stem cells into motor neurons using electrospun poly-L-lactic acid/gelatin scaffold. Biomaterials 35(2):664–674CrossRefPubMedGoogle Scholar
  34. 34.
    Zamani M, Prabhakaran MP, Ramakrishna S (2013) Advances in drug delivery via electrospun and electrosprayed nanomaterials. Int J Nanomedicine 8(1):2997–3017PubMedPubMedCentralGoogle Scholar
  35. 35.
    Nie H, Fu Y, Wang C-H (2010) Paclitaxel and suramin-loaded core/shell microspheres in the treatment of brain tumors. Biomaterials 31(33):8732–8740CrossRefPubMedGoogle Scholar
  36. 36.
    Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry 28(8):988–994CrossRefGoogle Scholar
  37. 37.
    Bormashenko E, Bormashenko Y (2011) Non-stick droplet surgery with a superhydrophobic scalpel. Langmuir 27(7):3266–3270CrossRefPubMedGoogle Scholar
  38. 38.
    Kaasalainen M, Mäkilä E, Riikonen J, Kovalainen M, Järvinen K, Herzig K-H, Lehto V-P, Salonen J (2012) Effect of isotonic solutions and peptide adsorption on zeta potential of porous silicon nanoparticle drug delivery formulations. Int J Pharm 431(1):230–236CrossRefPubMedGoogle Scholar
  39. 39.
    Mangır N, Bullock AJ, Roman S, Osman N, Chapple C, MacNeil S (2016) Production of ascorbic acid releasing biomaterials for pelvic floor repair. Acta Biomater 29:188–197CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Parthsarathy V, Hölscher C (2013) The type 2 diabetes drug liraglutide reduces chronic inflammation induced by irradiation in the mouse brain. Eur J Pharmacol 700(1):42–50CrossRefPubMedGoogle Scholar
  41. 41.
    Spéder P, Liu J, Brand AH (2011) Nutrient control of neural stem cells. Curr Opin Cell Biol 23(6):724–729CrossRefPubMedGoogle Scholar
  42. 42.
    Álvarez Z, Mateos-Timoneda MA, Hyroššová P, Castaño O, Planell JA, Perales JC, Engel E, Alcántara S (2013) The effect of the composition of PLA films and lactate release on glial and neuronal maturation and the maintenance of the neuronal progenitor niche. Biomaterials 34(9):2221–2233CrossRefPubMedGoogle Scholar
  43. 43.
    Mukhopadhyay P, Rajesh M, Yoshihiro K, Haskó G, Pacher P (2007) Simple quantitative detection of mitochondrial superoxide production in live cells. Biochem Biophys Res Commun 358(1):203–208CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Starkov AA (2008) The role of mitochondria in reactive oxygen species metabolism and signaling. Ann N Y Acad Sci 1147(1):37–52CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, Vercesi AE (2009) Mitochondria and reactive oxygen species. Free Radic Biol Med 47(4):333–343CrossRefPubMedGoogle Scholar
  46. 46.
    Moreira P, Cardoso S, Santos M, Oliveira C (2006) The key role of mitochondria in Alzheimer’s disease. J Alzheimers Dis 9(2):101–110CrossRefPubMedGoogle Scholar
  47. 47.
    Su B, Wang X, Nunomura A, Moreira PI, Lee H-g, Perry G, Smith MA, Zhu X (2008) Oxidative stress signaling in Alzheimer’s disease. Curr Alzheimer Res 5(6):525CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, Balraj EK, Jones PK, Ghanbari H et al (2001) Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 60(8):759–767CrossRefPubMedGoogle Scholar
  49. 49.
    Li WJ, Danielson KG, Alexander PG, Tuan RS (2003) Biological response of chondrocytes cultured in three-dimensional nanofibrous poly (ϵ-caprolactone) scaffolds. J Biomed Mater Res A 67(4):1105–1114CrossRefPubMedGoogle Scholar
  50. 50.
    Teng F-Y, Ko C-L, Kuo H-N, Hu J-J, Lin J-H, Lou C-W, Hung C-C, Wang Y-L et al (2012) A comparison of epithelial cells, fibroblasts, and osteoblasts in dental implant titanium topographies. Bioinorg Chem Appl 2012:9. doi: 10.1155/2012/687291 CrossRefGoogle Scholar
  51. 51.
    Carneiro J, Junqueira L (2008) Histologia básica: texto, atlas. Guanabar-KooganGoogle Scholar
  52. 52.
    Teo W-E, Inai R, Ramakrishna S (2016) Technological advances in electrospinning of nanofibers. Science and Technology of Advanced MaterialsGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Geisa Nogueira Salles
    • 1
    • 2
  • Fernanda Aparecida dos Santos Pereira
    • 1
    • 2
  • Cristina Pacheco-Soares
    • 2
  • Fernanda Roberta Marciano
    • 1
    • 3
    • 4
  • Christian Hölscher
    • 5
  • Thomas J Webster
    • 4
  • Anderson Oliveira Lobo
    • 1
    • 3
    • 4
  1. 1.Laboratory of Biomedical Nanotechnology, Institute of Research and Development (IP&D)University of Vale do Paraiba (UNIVAP)São Jose dos CamposBrazil
  2. 2.Laboratory of Dynamics of Cellular Compartments, IP&DUniversity of Vale do Paraíba (Univap)São Jose dos CamposBrazil
  3. 3.Department of Medicine, Biomaterials Innovation Research Center, Brigham and Women’s HospitalHarvard Medical SchoolCambridgeUSA
  4. 4.Department of Chemical EngineeringNortheastern UniversityBostonUSA
  5. 5.Division of Biomedical and Life Sciences, Faculty of Health and MedicineLancaster UniversityLancasterEngland

Personalised recommendations