Cajal SR (1906) Nobel lecture: the structure and connexions of neurons. From Nobel Lectures, Physiology or Medicine 1901-1921, Elsevier Publishing Company, Amsterdam,1967
Coles CH, Bradke F (2015) Coordinating neuronal actin-microtubule dynamics. Curr Biol 25(15):R677–91. doi:10.1016/j.cub.2015.06.020
CAS
PubMed
Article
Google Scholar
Tischfield MA, Cederquist GY, Gupta ML Jr, Engle EC (2011) Phenotypic spectrum of the tubulin-related disorders and functional implications of disease-causing mutations. Curr Opin Genet Dev 21(3):286–94. doi:10.1016/j.gde.2011.01.003
CAS
PubMed
PubMed Central
Article
Google Scholar
Millecamps S, Julien JP (2013) Axonal transport deficits and neurodegenerative diseases. Nat Rev Neurosci 14(3):161–76. doi:10.1038/nrn3380
CAS
PubMed
Article
Google Scholar
Smith BN, Ticozzi N, Fallini C, Gkazi AS, Topp S, Kenna KP, Scotter EL, Kost J et al (2014) Exome-wide rare variant analysis identifies TUBA4A mutations associated with familial ALS. Neuron 84(2):324–31. doi:10.1016/j.neuron.2014.09.027
CAS
PubMed
PubMed Central
Article
Google Scholar
Niwa S, Takahashi H, Hirokawa N (2013) β-Tubulin mutations that cause severe neuropathies disrupt axonal transport. EMBO J 32(10):1352–64. doi:10.1038/emboj.2013.59
CAS
PubMed
PubMed Central
Article
Google Scholar
Baas PW, Ahmad FJ (2013) Beyond taxol: microtubule-based treatment of disease and injury of the nervous system. Brain 136(Pt 10):2937–51. doi:10.1093/brain/awt153
PubMed
PubMed Central
Article
Google Scholar
Sato M, Schwartz WH, Selden SC, Pollard TD (1988) Mechanical properties of brain tubulin and microtubules. J Cell Biol 106(4):1205–11
CAS
PubMed
Article
Google Scholar
Mitchison T, Kirschner M (1984) Dynamic instability of microtubule growth. Nature 312(5991):237–42
CAS
PubMed
Article
Google Scholar
Kapitein LC, Hoogenraad CC (2015) Building the neuronal microtubule cytoskeleton. Neuron 87(3):492–506. doi:10.1016/j.neuron.2015.05.046
CAS
PubMed
Article
Google Scholar
Baas PW, Deitch JS, Black MM, Banker GA (1988) Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. Proc Natl Acad Sci U S A 85(21):8335–9
CAS
PubMed
PubMed Central
Article
Google Scholar
Wai Yau K, Schatzle P, Tortosa E, Pages S, Holtmaat A, Kapitein LC, Hoogenraad CC (2016) Dendrites In vitro and in vivo contain microtubules of opposite polarity and axon formation correlates with uniform plus-end-out microtubule orientation. J Neurosci 36(4):1071–1085. doi:10.1523/JNEUROSCI.2430-15.2016
Article
CAS
Google Scholar
Kwan AC, Dombeck DA, Webb WW (2008) Polarized microtubule arrays in apical dendrites and axons. Proc Natl Acad Sci U S A 105(32):11370–5. doi:10.1073/pnas.0805199105
CAS
PubMed
PubMed Central
Article
Google Scholar
Kleele T, Marinković P, Williams PR, Stern S, Weigand EE, Engerer P, Naumann R, Hartmann J et al (2014) An assay to image neuronal microtubule dynamics in mice. Nat Commun 5:4827. doi:10.1038/ncomms5827
CAS
PubMed
PubMed Central
Article
Google Scholar
Kapitein LC, Schlager MA, Kuijpers M, Wulf PS, van Spronsen M, MacKintosh FC, Hoogenraad CC (2009) Mixed microtubules steer dynein-driven cargo transport into dendrites. Curr Biol 20(4):290–9. doi:10.1016/j.cub.2009.12.052
Article
CAS
Google Scholar
McCarthy A, Lonergan R, Olszewska DA, O’Dowd S, Cummins G, Magennis B, Fallon EM, Pender N et al (2015) Closing the tau loop: the missing tau mutation. Brain 38(Pt 10):3100–9. doi:10.1093/brain/awv234
Article
Google Scholar
Zempel H, Mandelkow E (2014) Lost after translation: missorting of Tau protein and consequences for Alzheimer disease. Trends Neurosci 37(12):721–32. doi:10.1016/j.tins.2014.08.004
CAS
PubMed
Article
Google Scholar
Evans KJ, Gomes ER, Reisenweber SM, Gundersen GG, Lauring B (2005) Linking axonal degeneration to microtubule remodeling by Spastin-mediated microtubule severing. J Cell Biol 168(4):599–606
CAS
PubMed
PubMed Central
Article
Google Scholar
Janke C (2014) The tubulin code: molecular components, readout mechanisms, and functions. J Cell Biol 206(4):461–72. doi:10.1083/jcb.201406055
CAS
PubMed
PubMed Central
Article
Google Scholar
Paturle-Lafanechère L, Manier M, Trigault N, Pirollet F, Mazarguil H, Job D (1994) Accumulation of delta 2-tubulin, a major tubulin variant that cannot be tyrosinated, in neuronal tissues and in stable microtubule assemblies. J Cell Sci 107(Pt 6):1529–43
PubMed
Google Scholar
Szyk A, Deaconescu AM, Spector J, Goodman B, Valenstein ML, Ziolkowska NE, Kormendi V, Grigorieff N et al (2014) Molecular basis for age-dependent microtubule acetylation by tubulin acetyltransferase. Cell 157(6):1405–15. doi:10.1016/j.cell.2014.03.061
CAS
PubMed
PubMed Central
Article
Google Scholar
Khawaja S, Gundersen GG, Bulinski JC (1988) Enhanced stability of microtubules enriched in detyrosinated tubulin is not a direct function of detyrosination level. J Cell Biol 106(1):141–9
CAS
PubMed
Article
Google Scholar
Peris L, Wagenbach M, Lafanechère L, Brocard J, Moore AT, Kozielski F, Job D, Wordeman L et al (2009) Motor-dependent microtubule disassembly driven by tubulin tyrosination. J Cell Biol 185(7):1159–66. doi:10.1083/jcb.200902142
CAS
PubMed
PubMed Central
Article
Google Scholar
Sharp DJ, Ross JL (2012) Microtubule-severing enzymes at the cutting edge. J Cell Sci 125(Pt 11):2561–9. doi:10.1242/jcs.101139
CAS
PubMed
PubMed Central
Article
Google Scholar
Reed NA, Cai D, Blasius TL, Jih GT, Meyhofer E, Gaertig J, Verhey KJ (2006) Microtubule acetylation promotes kinesin-1 binding and transport. Curr Biol 16(21):2166–72
CAS
PubMed
Article
Google Scholar
Dunn S, Morrison EE, Liverpool TB, Molina-París C, Cross RA, Alonso MC, Peckham M (2008) Differential trafficking of Kif5c on tyrosinated and detyrosinated microtubules in live cells. J Cell Sci 121(Pt 7):1085–95. doi:10.1242/jcs.026492
CAS
PubMed
Article
Google Scholar
Rogowski K, van Dijk J, Magiera MM, Bosc C, Deloulme JC, Bosson A, Peris L, Gold ND et al (2010) A family of protein-deglutamylating enzymes associated with neurodegeneration. Cell 143(4):564–78. doi:10.1016/j.cell.2010.10.014
CAS
PubMed
Article
Google Scholar
Prota AE, Magiera MM, Kuijpers M, Bargsten K, Frey D, Wieser M, Jaussi R, Hoogenraad CC et al (2013) Structural basis of tubulin tyrosination by tubulin tyrosine ligase. J Cell Biol 200(3):259–70. doi:10.1083/jcb.201211017
CAS
PubMed
PubMed Central
Article
Google Scholar
Song W, Cho Y, Watt D, Cavalli V (2015) Tubulin-tyrosine ligase (TTL)-mediated increase in tyrosinated α-tubulin in injured axons is required for retrograde injury signaling and axon regeneration. J Biol Chem 290(23):14765–75. doi:10.1074/jbc.M114.622753
CAS
PubMed
PubMed Central
Article
Google Scholar
Marcos S, Moreau J, Backer S, Job D, Andrieux A, Bloch-Gallego E (2009) Tubulin tyrosination is required for the proper organization and pathfinding of the growth cone. PLoS One 4(4):e5405. doi:10.1371/journal.pone.0005405
PubMed
PubMed Central
Article
CAS
Google Scholar
Gozes I, Sweadner KJ (1981) Multiple tubulin forms are expressed by a single neurone. Nature 294(5840):477–80
CAS
PubMed
Article
Google Scholar
Gozes I, Littauer UZ (1978) Tubulin microheterogeneity increases with rat brain maturation. Nature 276(5686):411–3
CAS
PubMed
Article
Google Scholar
Lewis SA, Tian G, Cowan NJ (1997) The alpha- and beta-tubulin folding pathways. Trends Cell Biol 7(12):479–84
CAS
PubMed
Article
Google Scholar
Vemu A, Atherton J, Spector JO, Szyk A, Moores CA, Roll-Mecak A (2016) Structure and Dynamics of Single-isoform Recombinant Neuronal Human Tubulin. J Biol Chem. doi: 10.1074/jbc.C116.731133
Sirajuddin M, Rice LM, Vale RD (2014) Regulation of microtubule motors by tubulin isotypes and post-translational modifications. Nat Cell Biol 16(4):335–44. doi:10.1038/ncb2920
CAS
PubMed
PubMed Central
Article
Google Scholar
Schaedel L, John K, Gaillard J, Nachury MV, Blanchoin L, Théry M (2015) Microtubules self-repair in response to mechanical stress. Nat Mater 14(11):1156–63. doi:10.1038/nmat4396
CAS
PubMed
PubMed Central
Article
Google Scholar
Gardner MK, Zanic M, Gell C, Bormuth V, Howard J (2011) Depolymerizing kinesins Kip3 and MCAK shape cellular microtubule architecture by differential control of catastrophe. Cell 147(5):1092–103. doi:10.1016/j.cell.2011.10.037
CAS
PubMed
Article
Google Scholar
Bowne-Anderson H, Zanic M, Kauer M, Howard J (2013) Microtubule dynamic instability: a new model with coupled GTP hydrolysis and multistep catastrophe. Bioessays 35(5):452–61. doi:10.1002/bies.201200131
CAS
PubMed
PubMed Central
Article
Google Scholar
Coombes CE, Yamamoto A, Kenzie MR, Odde DJ, Gardner MK (2013) Evolving tip structures can explain age-dependent microtubule catastrophe. Curr Biol 23(14):1342–8. doi:10.1016/j.cub.2013.05.059
CAS
PubMed
PubMed Central
Article
Google Scholar
Obeso JA, Rodriguez-Oroz MC, Goetz CG, Marin C, Kordower JH, Rodriguez M, Hirsch EC, Farrer M et al (2010) Missing pieces in the Parkinson’s disease puzzle. Nat Med 16(6):653–61. doi:10.1038/nm.2165
CAS
PubMed
Article
Google Scholar
Klingelhoefer L, Reichmann H (2015) Pathogenesis of Parkinson disease-the gut-brain axis and environmental factors. Nat Rev Neurol 11(11):625–36. doi:10.1038/nrneurol.2015.197
CAS
PubMed
Article
Google Scholar
Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39(6):889–909
CAS
PubMed
Article
Google Scholar
Pissadaki EK, Bolam JP (2013) The energy cost of action potential propagation in dopamine neurons: clues to susceptibility in Parkinson’s disease. Front Comput Neurosci 13. doi: 10.3389/fncom.2013.00013
Hunn BH, Cragg SJ, Bolam JP, Spillantini MG, Wade-Martins R (2015) Impaired intracellular trafficking defines early Parkinson’s disease. Trends Neurosci 38(3):178–88. doi:10.1016/j.tins.2014.12.009
CAS
PubMed
PubMed Central
Article
Google Scholar
Coleman M (2005) Axon degeneration mechanisms: commonality amid diversity. Nat Rev Neurosci 6(11):889–98
CAS
PubMed
Article
Google Scholar
Zhai Q, Wang J, Kim A, Liu Q, Watts R, Hoopfer E, Mitchison T, Luo L et al (2003) Involvement of the ubiquitin-proteasome system in the early stages of Wallerian degeneration. Neuron 39(2):217–25
CAS
PubMed
Article
Google Scholar
Ertürk A, Hellal F, Enes J, Bradke F (2007) Disorganized microtubules underlie the formation of retraction bulbs and the failure of axonal regeneration. J Neurosci 27(34):9169–80. doi:10.1523/JNEUROSCI.0612-07.2007
PubMed
Article
CAS
Google Scholar
Feng J (2006) Microtubule: a common target for parkin and Parkinson’s disease toxins. Neuroscientist 12(6):469–76. doi:10.1177/1073858406293853
CAS
PubMed
Article
Google Scholar
Cappelletti G, Casagrande F, Calogero A, De Gregorio C, Pezzoli G, Cartelli D (2015) Linking microtubules to Parkinson’s disease: the case of parkin. Biochem Soc Trans 43(2):292–6. doi:10.1042/BST20150007
CAS
PubMed
Article
Google Scholar
Lindahl PE, Oberg KE (1961) The effect of rotenone on respiration and its point of attack. Exp Cell Res 23:228–37
CAS
PubMed
Article
Google Scholar
Nicklas WJ, Vyas I, Heikkila RE (1985) Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci 36(26):2503–8
CAS
PubMed
Article
Google Scholar
Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–7
CAS
PubMed
Article
Google Scholar
Marshall LE, Himes RH (1978) Rotenone inhibition of tubulin self-assembly. Biochim Biophys Acta 543(4):590–4
CAS
PubMed
Article
Google Scholar
Cappelletti G, Pedrotti B, Maggioni MG, Maci R (2001) Microtubule assembly is directly affected by MPP(+)in vitro. Cell Biol Int 25(10):981–4
CAS
PubMed
Article
Google Scholar
Choi WS, Kruse SE, Palmiter RD, Xia Z (2008) Mitochondrial complex I inhibition is not required for dopaminergic neuron death induced by rotenone, MPP+, or paraquat. Proc Natl Acad Sci U S A 105(39):15136–41. doi:10.1073/pnas.0807581105
CAS
PubMed
PubMed Central
Article
Google Scholar
Ren Y, Liu W, Jiang H, Jiang Q, Feng J (2005) Selective vulnerability of dopaminergic neurons to microtubule depolymerization. J Biol Chem 280(40):34105–12
CAS
PubMed
Article
Google Scholar
Liang Y, Li S, Wen C, Zhang Y, Guo Q, Wang H, Su B (2008) Intrastriatal injection of colchicine induces striatonigral degeneration in mice. J Neurochem 106(4):1815–27. doi:10.1111/j.1471-4159.2008.05526.x
CAS
PubMed
Article
Google Scholar
Cappelletti G, Surrey T, Maci R (2005) The parkinsonism producing neurotoxin MPP+ affects microtubule dynamics by acting as a destabilising factor. FEBS Lett 579(21):4781–6. doi:10.1016/j.febslet.2005.07.058
CAS
PubMed
Article
Google Scholar
Cartelli D, Ronchi C, Maggioni MG, Rodighiero S, Giavini E, Cappelletti G (2010) Microtubule dysfunction precedes transport impairment and mitochondria damage in MPP+-induced neurodegeneration. J Neurochem 115(1):247–58. doi:10.1111/j.1471-4159.2010.06924.x
CAS
PubMed
Article
Google Scholar
Cartelli D, Casagrande F, Busceti CL, Bucci D, Molinaro G, Traficante A, Passarella D, Giavini E et al (2013) Microtubule alterations occur early in experimental parkinsonism and the microtubule stabilizer epothilone D is neuroprotective. Sci Rep 3:1837. doi:10.1038/srep01837
PubMed
PubMed Central
Article
CAS
Google Scholar
Shemesh OA, Erez H, Ginzburg I, Spira ME (2008) Tau-induced traffic jams reflect organelles accumulation at points of microtubule polar mismatching. Traffic 9(4):458–71. doi:10.1111/j.1600-0854.2007.00695.x
CAS
PubMed
Article
Google Scholar
Patel VP, Chu CT (2014) Decreased SIRT2 activity leads to altered microtubule dynamics in oxidatively-stressed neuronal cells: implications for Parkinson’s disease. Exp Neurol 257:170–81. doi:10.1016/j.expneurol.2014.04.024
CAS
PubMed
PubMed Central
Article
Google Scholar
Escobar-Khondiker M, Höllerhage M, Muriel MP, Champy P, Bach A, Depienne C, Respondek G, Yamada ES et al (2007) Annonacin, a natural mitochondrial complex I inhibitor, causes tau pathology in cultured neurons. J Neurosci 27(29):7827–37. doi:10.1523/JNEUROSCI.1644-07.2007
CAS
PubMed
Article
Google Scholar
Kim-Han JS, Antenor-Dorsey JA, O’Malley KL (2011) The parkinsonian mimetic, MPP+, specifically impairs mitochondrial transport in dopamine axons. J Neurosci 31(19):7212–21. doi:10.1523/JNEUROSCI.0711-11.2011
CAS
PubMed
PubMed Central
Article
Google Scholar
Shen J (2004) Protein kinases linked to the pathogenesis of Parkinson’s disease. Neuron 44(4):575–7
CAS
PubMed
Article
Google Scholar
Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y et al (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392(6676):605–8
CAS
PubMed
Article
Google Scholar
Law BM, Spain VA, Leinster VH, Chia R, Beilina A, Cho HJ, Taymans JM, Urban MK et al (2014) A direct interaction between leucine-rich repeat kinase 2 and specific β-tubulin isoforms regulates tubulin acetylation. J Biol Chem 289(2):895–908. doi:10.1074/jbc.M113.507913
CAS
PubMed
Article
Google Scholar
Gillardon F (2009) Leucine-rich repeat kinase 2 phosphorylates brain tubulin-beta isoforms and modulates microtubule stability—a point of convergence in parkinsonian neurodegeneration? J Neurochem 110(5):1514–22. doi:10.1111/j.1471-4159.2009.06235.x
CAS
PubMed
Article
Google Scholar
Cartelli D, Goldwurm S, Casagrande F, Pezzoli G, Cappelletti G (2012) Microtubule destabilization is shared by genetic and idiopathic Parkinson's disease patient fibroblasts. PLoS One 7(5):e37467. doi:10.1371/journal.pone.0037467
Godena VK, Brookes-Hocking N, Moller A, Shaw G, Oswald M, Sancho RM, Miller CC, Whitworth AJ et al (2014) Increasing microtubule acetylation rescues axonal transport and locomotor deficits caused by LRRK2 Roc-COR domain mutations. Nat Commun 5:5245. doi:10.1038/ncomms6245
CAS
PubMed
PubMed Central
Article
Google Scholar
Schwab AJ, Ebert AD (2015) Neurite aggregation and calcium dysfunction in iPSC-derived sensory neurons with Parkinson's disease-related LRRK2 G2019S mutation. Stem Cell Reports 5(6):1039–52. doi:10.1016/j.stemcr.2015.11.004
CAS
PubMed
PubMed Central
Article
Google Scholar
Ren Y, Zhao J, Feng J (2003) Parkin binds to alpha/beta tubulin and increases their ubiquitination and degradation. J Neurosci 23(8):3316–24
CAS
PubMed
PubMed Central
Google Scholar
Yang F, Jiang Q, Zhao J, Ren Y, Sutton MD, Feng J (2005) Parkin stabilizes microtubules through strong binding mediated by three independent domains. J Biol Chem 280(17):17154–62
CAS
PubMed
Article
Google Scholar
Ren Y, Jiang H, Yang F, Nakaso K, Feng J (2009) Parkin protects dopaminergic neurons against microtubule-depolymerizing toxins by attenuating microtubule-associated protein kinase activation. J Biol Chem 284(6):4009–17. doi:10.1074/jbc.M806245200
CAS
PubMed
PubMed Central
Article
Google Scholar
Ren Y, Jiang H, Hu Z, Fan K, Wang J, Janoschka S, Wang X, Ge S et al (2015) Parkin mutations reduce the complexity of neuronal processes in iPSC-derived human neurons. Stem Cells 33(1):68–78. doi:10.1002/stem.1854
CAS
PubMed
PubMed Central
Article
Google Scholar
Alim MA, Hossain MS, Arima K, Takeda K, Izumiyama Y, Nakamura M, Kaji H, Shinoda T et al (2002) Tubulin seeds alpha-synuclein fibril formation. J Biol Chem 277(3):2112–7
CAS
PubMed
Article
Google Scholar
Esteves AR, Arduíno DM, Swerdlow RH, Oliveira CR, Cardoso SM (2010) Microtubule depolymerization potentiates alpha-synuclein oligomerization. Front Aging Neurosci 1:5. doi:10.3389/neuro.24.005.2009, eCollection 2010
PubMed
PubMed Central
Article
CAS
Google Scholar
Nakayama K, Suzuki Y, Yazawa I (2010) Microtubule depolymerization suppresses alpha-synuclein accumulation in a mouse model of multiple system atrophy. Am J Pathol 174(4):1471–80. doi:10.2353/ajpath.2009.080503
Article
CAS
Google Scholar
Zhou RM, Huang YX, Li XL, Chen C, Shi Q, Wang GR, Tian C, Wang ZY et al (2010) Molecular interaction of α-synuclein with tubulin influences on the polymerization of microtubule in vitro and structure of microtubule in cells. Mol Biol Rep 37(7):3183–92. doi:10.1007/s11033-009-9899-2
CAS
PubMed
Article
Google Scholar
Prots I, Veber V, Brey S, Campioni S, Buder K, Riek R, Böhm KJ, Winner B (2013) α-Synuclein oligomers impair neuronal microtubule-kinesin interplay. J Biol Chem 288(30):21742–54. doi:10.1074/jbc.M113.451815
CAS
PubMed
PubMed Central
Article
Google Scholar
Alim MA, Ma QL, Takeda K, Aizawa T, Matsubara M, Nakamura M, Asada A, Saito T et al (2004) Demonstration of a role for alpha-synuclein as a functional microtubule-associated protein. J Alzheimers Dis 6(4):435–42, discussion 443-9
PubMed
Article
Google Scholar
Chen L, Jin J, Davis J, Zhou Y, Wang Y, Liu J, Lockhart PJ, Zhang J (2007) Oligomeric alpha-synuclein inhibits tubulin polymerization. Biochem Biophys Res Commun 356(3):548–53
CAS
PubMed
Article
Google Scholar
Cartelli D, Aliverti A, Barbiroli A, Santambrogio C, Ragg EM, Casagrande FVM, Cantele F, Beltramone S et al (2016) α-Synuclein is a novel microtubule dynamase. Sci Rep 6:33289. doi:10.1038/srep33289
CAS
PubMed
PubMed Central
Article
Google Scholar
Wang X, Winter D, Ashrafi G, Schlehe J, Wong YL, Selkoe D, Rice S, Steen J et al (2011) PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147(4):893–906. doi:10.1016/j.cell.2011.10.018
CAS
PubMed
PubMed Central
Article
Google Scholar
Sheng C, Heng X, Zhang G, Xiong R, Li H, Zhang S, Chen S (2013) DJ-1 deficiency perturbs microtubule dynamics and impairs striatal neurite outgrowth. Neurobiol Aging 34(2):489–98. doi:10.1016/j.neurobiolaging.2012.04.008
CAS
PubMed
Article
Google Scholar
Galloway PG, Grundke-Iqbal I, Iqbal K, Perry G (1988) Lewy bodies contain epitopes both shared and distinct from Alzheimer neurofibrillary tangles. J Neuropathol Exp Neurol 47(6):654–63
CAS
PubMed
Article
Google Scholar
Lewy FH (1912) Paralysis agitans I. Pathologische anatomie. In: Lewandowsky M (ed) Handbuch der neurologie. Springer, Berlin, pp 920–933
Google Scholar
Ross CA, Poirier MA (2005) Opinion: what is the role of protein aggregation in neurodegeneration? Nat Rev Mol Cell Biol 6(11):891–8
CAS
PubMed
Article
Google Scholar
Power JH, Barnes OL, Chegini F (2015) Lewy bodies and the mechanisms of neuronal cell death in parkinson's disease and dementia with Lewy bodies. Brain Pathol 15. doi: 10.1111/bpa.12344
Chu Y, Morfini GA, Langhamer LB, He Y, Brady ST, Kordower JH (2012) Alterations in axonal transport motor proteins in sporadic and experimental Parkinson's disease. Brain 135(Pt 7):2058–73. doi:10.1093/brain/aws133
PubMed
PubMed Central
Article
Google Scholar
Chung CY, Koprich JB, Siddiqi H, Isacson O (2009) Dynamic changes in presynaptic and axonal transport proteins combined with striatal neuroinflammation precede dopaminergic neuronal loss in a rat model of AAV alpha-synucleinopathy. J Neurosci 29(11):3365–73. doi:10.1523/JNEUROSCI.5427-08.2009
CAS
PubMed
PubMed Central
Article
Google Scholar
Akella JS, Wloga D, Kim J, Starostina NG, Lyons-Abbott S, Morrissette NS, Dougan ST, Kipreos ET et al (2010) MEC-17 is an alpha-tubulin acetyltransferase. Nature 467(7312):218–22. doi:10.1038/nature09324
CAS
PubMed
PubMed Central
Article
Google Scholar
Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, Yoshida M, Wang XF et al (2002) HDAC6 is a microtubule-associated deacetylase. Nature 417(6887):455–8
CAS
PubMed
Article
Google Scholar
Simões-Pires C, Zwick V, Nurisso A, Schenker E, Carrupt PA, Cuendet M (2013) HDAC6 as a target for neurodegenerative diseases: what makes it different from the other HDACs? Mol Neurodegener 8:7. doi:10.1186/1750-1326-8-7
PubMed
PubMed Central
Article
CAS
Google Scholar
Gobrecht P, Andreadaki A, Diekmann H, Heskamp A, Leibinger M, Fischer D (2016) Promotion of functional nerve regeneration by inhibition of microtubule detyrosination. J Neurosci 36(14):3890–3902
CAS
PubMed
Article
Google Scholar
Das V, Sim DA, Miller JH (2014) Effect of taxoid and nontaxoid site microtubule-stabilizing agents on axonal transport of mitochondria in untransfected and ECFP-htau40-transfected rat cortical neurons in culture. J Neurosci Res 92(9):1155–66. doi:10.1002/jnr.23394
CAS
PubMed
Article
Google Scholar
Katsetos CD, Dráber P (2012) Tubulins as therapeutic targets in cancer: from bench to bedside. Curr Pharm Des 8(19):2778–92
Article
Google Scholar
Brunden KR, Zhang B, Carroll J, Yao Y, Potuzak JS, Hogan AM, Iba M, James MJ et al (2010) Epothilone D improves microtubule density, axonal integrity, and cognition in a transgenic mouse model of tauopathy. J Neurosci 30(41):13861–6. doi:10.1523/JNEUROSCI.3059-10.2010
CAS
PubMed
PubMed Central
Article
Google Scholar
Zhang B, Carroll J, Trojanowski JQ, Yao Y, Iba M, Potuzak JS, Hogan AM, Xie SX et al (2012) The microtubule-stabilizing agent, epothilone D, reduces axonal dysfunction, neurotoxicity, cognitive deficits, and Alzheimer-like pathology in an interventional study with aged tau transgenic mice. J Neurosci 32(11):3601–11. doi:10.1523/JNEUROSCI.4922-11.2012
CAS
PubMed
PubMed Central
Article
Google Scholar
Hellal F, Hurtado A, Ruschel J, Flynn KC, Laskowski CJ, Umlauf M, Kapitein LC, Strikis D et al (2011) Microtubule stabilization reduces scarring and causes axon regeneration after spinal cord injury. Science 331(6019):928–31. doi:10.1126/science.1201148
CAS
PubMed
PubMed Central
Article
Google Scholar
Ruschel J, Hellal F, Flynn KC, Dupraz S, Elliott DA, Tedeschi A, Bates M, Sliwinski C et al (2015) Axonal regeneration. Systemic administration of epothilone B promotes axon regeneration after spinal cord injury. Science 348(6232):347–52. doi:10.1126/science.aaa2958
CAS
PubMed
PubMed Central
Article
Google Scholar
Fleming SM, Mulligan CK, Richter F, Mortazavi F, Lemesre V, Frias C, Zhu C, Stewart A et al (2011) A pilot trial of the microtubule-interacting peptide (NAP) in mice overexpressing alpha-synuclein shows improvement in motor function and reduction of alpha-synuclein inclusions. Mol Cell Neurosci 46(3):597–606. doi:10.1016/j.mcn.2010.12.011
CAS
PubMed
Article
Google Scholar
Magen I, Ostritsky R, Richter F, Zhu C, Fleming SM, Lemesre V, Stewart AJ, Morimoto BH et al (2014) Intranasal NAP (davunetide) decreases tau hyperphosphorylation and moderately improves behavioral deficits in mice overexpressing α-synuclein. Pharmacol Res Perspect 2(5):e00065. doi:10.1002/prp2.65
PubMed
PubMed Central
Article
CAS
Google Scholar
Esteves AR, Gozes I, Cardoso SM (2014) The rescue of microtubule-dependent traffic recovers mitochondrial function in Parkinson's disease. Biochim Biophys Acta 1842(1):7–21. doi:10.1016/j.bbadis.2013.10.003
CAS
PubMed
Article
Google Scholar
Gozes I, Iram T, Maryanovsky E, Arviv C, Rozenberg L, Schirer Y, Giladi E, Furman-Assaf S (2014) Novel tubulin and tau neuroprotective fragments sharing structural similarities with the drug candidate NAP (davunetide). J Alzheimers Dis 40(Suppl 1):S23–36. doi:10.3233/JAD-131664
PubMed
Google Scholar
Pieraccini S, Saladino G, Cappelletti G, Cartelli D, Francescato P, Speranza G, Manitto P, Sironi M (2009) In silico design of tubulin-targeted antimitotic peptides. Nat Chem 8:642–8. doi:10.1038/nchem.401
Article
CAS
Google Scholar
Lazzara CA, Kim YH (2015) Potential application of lithium in Parkinson's and other neurodegenerative diseases. Front Neurosci 9:403. doi:10.3389/fnins.2015.00403, eCollection 2015
PubMed
PubMed Central
Article
Google Scholar
Williams R, Ryves WJ, Dalton EC, Eickholt B, Shaltiel G, Agam G, Harwood AJ (2004) A molecular cell biology of lithium. Biochem Soc Trans 32(Pt 5):799–802
CAS
PubMed
Article
Google Scholar
Wolff J, Sackett DL, Knipling L (1996) Cation selective promotion of tubulin polymerization by alkali metal chlorides. Protein Sci 5(10):2020–8
CAS
PubMed
PubMed Central
Article
Google Scholar
Bhattacharyya B, Wolff J (1976) Stabilization of microtubules by lithium ion. Biochem Biophys Res Commun 73(2):383–90
CAS
PubMed
Article
Google Scholar
Nakakura T, Asano-Hoshino A, Suzuki T, Arisawa K, Tanaka H, Sekino Y, Kiuchi Y, Kawai K et al (2015) The elongation of primary cilia via the acetylation of α-tubulin by the treatment with lithium chloride in human fibroblast KD cells. Med Mol Morpho 48(1):44–53. doi:10.1007/s00795-014-0076-x
CAS
Article
Google Scholar
Rostovtseva TK, Sheldon KL, Hassanzadeh E, Monge C, Saks V, Bezrukov SM, Sackett DL (2008) Tubulin binding blocks mitochondrial voltage-dependent anion channel and regulates respiration. Proc Natl Acad Sci U S A 105(48):18746–51. doi:10.1073/pnas.0806303105
CAS
PubMed
PubMed Central
Article
Google Scholar
Maldonado EN, Patnaik J, Mullins MR, Lemasters JJ (2010) Free tubulin modulates mitochondrial membrane potential in cancer cells. Cancer Res 70(24):10192–201. doi:10.1158/0008-5472.CAN-10-2429
CAS
PubMed
PubMed Central
Article
Google Scholar