Skip to main content
Log in

MARK2/Par1b Insufficiency Attenuates DVL Gene Transcription via Histone Deacetylation in Lumbosacral Spina Bifida

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Dishevelled (DVL/Dvl) genes play roles in canonical and noncanonical Wnt signaling, both of which are essential in neural tube closing and are involved in balancing neural progenitor growth and differentiation, or neuroepithelial cell polarity, respectively. In mouse Dvl haploinsufficiency leads to neural tube defects (NTDs), which represent the second most common birth defects. However, DVL genes’ genetic contributions in human NTDs are modest. We sought to explore the molecular impact on such genes in human NTDs in a Han Chinese cohort. In 47 cases with NTDs and 61 matched controls, in brain tissues, the DVL1/2 mRNA levels were correlated with the levels of a serine/threonine protein kinase MARK2, and in 20 cases with lumbosacral spina bifida, the mRNA levels of DVL1 and MARK2 were significantly decreased; by contrast, only an intronic rare variant was found. Moreover, in an extended population, we found merely three novel rare missense variants in 1 % of individuals with NTDs. In cell-based assays, Mark2 depletion indeed reduces Dvl gene expression and interrupts neural stem cell (NSCs) growth and differentiation, which are likely to be mediated through a decrease in class IIa HDAC phosphorylation and reduced H3K4ac and H3K27ac occupancies at the Dvl1/2 promoters. Finally, the detections of folate concentration in human brain tissue and NSCs and MEF cells indicates that folate deficiency contributes to the observed decreases in Mark2 and Dvl1 expression. Our present study raises a potential common pathogenicity mechanism in human lumbosacral spina bifida about DVL genes rather than their genetic pathogenic role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig 4
Fig 5
Fig 6

Similar content being viewed by others

References

  1. Kiecker C, Niehrs C (2001) A morphogen gradient of Wnt/beta-catenin signalling regulates anteroposterior neural patterning in Xenopus. Development 128(21):4189–4201

    CAS  PubMed  Google Scholar 

  2. Kimura-Yoshida C, Nakano H, Okamura D, Nakao K, Yonemura S, Belo JA, Aizawa S, Matsui Y, Matsuo I (2005) Canonical Wnt signaling and its antagonist regulate anterior-posterior axis polarization by guiding cell migration in mouse visceral endoderm. Dev Cell 9(5):639–650. doi:10.1016/j.devcel.2005.09.011

    Article  CAS  PubMed  Google Scholar 

  3. Chenn A, Walsh CA (2002) Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297(5580):365–369. doi:10.1126/science.1074192

    Article  CAS  PubMed  Google Scholar 

  4. Hirabayashi Y, Itoh Y, Tabata H, Nakajima K, Akiyama T, Masuyama N, Gotoh Y (2004) The Wnt/beta-catenin pathway directs neuronal differentiation of cortical neural precursor cells. Development 131(12):2791–2801. doi:10.1242/dev.01165

    Article  CAS  PubMed  Google Scholar 

  5. Gray RS, Roszko I, Solnica-Krezel L (2011) Planar cell polarity: coordinating morphogenetic cell behaviors with embryonic polarity. Dev Cell 21(1):120–133. doi:10.1016/j.devcel.2011.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wallingford JB, Habas R (2005) The developmental biology of Dishevelled: an enigmatic protein governing cell fate and cell polarity. Development 132(20):4421–4436. doi:10.1242/dev.02068

    Article  CAS  PubMed  Google Scholar 

  7. Malbon CC, Wang HY (2006) Dishevelled: a mobile scaffold catalyzing development. Curr Top Dev Biol 72:153–166. doi:10.1016/S0070-2153(05)72002-0

    Article  CAS  PubMed  Google Scholar 

  8. Klingensmith J, Yang Y, Axelrod JD, Beier DR, Perrimon N, Sussman DJ (1996) Conservation of dishevelled structure and function between flies and mice: isolation and characterization of Dvl2. Mech Dev 58(1–2):15–26

    Article  CAS  PubMed  Google Scholar 

  9. Lijam N, Sussman DJ (1995) Organization and promoter analysis of the mouse dishevelled-1 gene. Genome Res 5(2):116–124

    Article  CAS  PubMed  Google Scholar 

  10. Semenov MV, Snyder M (1997) Human dishevelled genes constitute a DHR-containing multigene family. Genomics 42(2):302–310. doi:10.1006/geno.1997.4713

    Article  CAS  PubMed  Google Scholar 

  11. Tsang M, Lijam N, Yang Y, Beier DR, Wynshaw-Boris A, Sussman DJ (1996) Isolation and characterization of mouse dishevelled-3. Dev Dyn 207(3):253–262. doi:10.1002/(SICI)1097-0177(199611)207:3<253::AID-AJA2>3.0.CO;2-G

    Article  CAS  PubMed  Google Scholar 

  12. Grumolato L, Liu G, Mong P, Mudbhary R, Biswas R, Arroyave R, Vijayakumar S, Economides AN, Aaronson SA (2010) Canonical and noncanonical Wnts use a common mechanism to activate completely unrelated coreceptors. Genes Dev 24(22):2517–2530. doi:10.1101/gad.1957710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zeng X, Huang H, Tamai K, Zhang X, Harada Y, Yokota C, Almeida K, Wang J, Doble B, Woodgett J, Wynshaw-Boris A, Hsieh JC, He X (2008) Initiation of Wnt signaling: control of Wnt coreceptor Lrp6 phosphorylation/activation via frizzled, dishevelled and axin functions. Development 135(2):367–375. doi:10.1242/dev.013540

    Article  CAS  PubMed  Google Scholar 

  14. Torban E, Wang HJ, Groulx N, Gros P (2004) Independent mutations in mouse Vangl2 that cause neural tube defects in looptail mice impair interaction with members of the Dishevelled family. J Biol Chem 279(50):52703–52713. doi:10.1074/jbc.M408675200

    Article  CAS  PubMed  Google Scholar 

  15. Quemelo PR, Lourenco CM, Peres LC (2007) Teratogenic effect of retinoic acid in Swiss mice. Acta Cir Bras 22(6):451–456

    Article  PubMed  Google Scholar 

  16. Imbard A, Benoist JF, Blom HJ (2013) Neural tube defects, folic acid and methylation. Int J Environ Res Public Health 10(9):4352–4389. doi:10.3390/ijerph10094352

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wallingford JB, Niswander LA, Shaw GM, Finnell RH (2013) The continuing challenge of understanding, preventing, and treating neural tube defects. Science 339. doi:10.1126/science.1222002

  18. Copp AJ, Stanier P, Greene ND (2013) Neural tube defects: recent advances, unsolved questions, and controversies. Lancet Neurol 12(8):799–810. doi:10.1016/S1474-4422(13)70110-8

    Article  PubMed  PubMed Central  Google Scholar 

  19. Carter M, Chen X, Slowinska B, Minnerath S, Glickstein S, Shi L, Campagne F, Weinstein H, Ross ME (2005) Crooked tail (Cd) model of human folate-responsive neural tube defects is mutated in Wnt coreceptor lipoprotein receptor-related protein 6. Proc Natl Acad Sci U S A 102(36):12843–12848. doi:10.1073/pnas.0501963102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pinson KI, Brennan J, Monkley S, Avery BJ, Skarnes WC (2000) An LDL-receptor-related protein mediates Wnt signalling in mice. Nature 407(6803):535–538. doi:10.1038/35035124

    Article  CAS  PubMed  Google Scholar 

  21. Wu CI, Hoffman JA, Shy BR, Ford EM, Fuchs E, Nguyen H, Merrill BJ (2012) Function of Wnt/beta-catenin in counteracting Tcf3 repression through the Tcf3-beta-catenin interaction. Development 139(12):2118–2129. doi:10.1242/dev.076067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhao T, Gan Q, Stokes A, Lassiter RN, Wang Y, Chan J, Han JX, Pleasure DE, Epstein JA, Zhou CJ (2014) Beta-catenin regulates Pax3 and Cdx2 for caudal neural tube closure and elongation. Development 141(1):148–157. doi:10.1242/dev.101550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hamblet NS, Lijam N, Ruiz-Lozano P, Wang J, Yang Y, Luo Z, Mei L, Chien KR, Sussman DJ, Wynshaw-Boris A (2002) Dishevelled 2 is essential for cardiac outflow tract development, somite segmentation and neural tube closure. Development 129(24):5827–5838

    Article  CAS  PubMed  Google Scholar 

  24. Etheridge SL, Ray S, Li S, Hamblet NS, Lijam N, Tsang M, Greer J, Kardos N, Wang J, Sussman DJ, Chen P, Wynshaw-Boris A (2008) Murine dishevelled 3 functions in redundant pathways with dishevelled 1 and 2 in normal cardiac outflow tract, cochlea, and neural tube development. PLoS Genet 4(11):e1000259. doi:10.1371/journal.pgen.1000259

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lei YP, Zhang T, Li H, BL W, Jin L, Wang HY (2010) VANGL2 mutations in human cranial neural-tube defects. N Engl J Med 362(23):2232–2235. doi:10.1056/NEJMc0910820

    Article  CAS  PubMed  Google Scholar 

  26. Kibar Z, Torban E, McDearmid JR, Reynolds A, Berghout J, Mathieu M, Kirillova I, De Marco P, Merello E, Hayes JM, Wallingford JB, Drapeau P, Capra V, Gros P (2007) Mutations in VANGL1 associated with neural-tube defects. N Engl J Med 356(14):1432–1437. doi:10.1056/NEJMoa060651

    Article  CAS  PubMed  Google Scholar 

  27. Merello E, Mascelli S, Raso A, Piatelli G, Consales A, Cama A, Kibar Z, Capra V, Marco PD (2015) Expanding the mutational spectrum associated to neural tube defects: literature revision and description of novel VANGL1 mutations. Birth Defects Res A Clin Mol Teratol 103(1):51–61. doi:10.1002/bdra.23305

    Article  CAS  PubMed  Google Scholar 

  28. De Marco P, Merello E, Piatelli G, Cama A, Kibar Z, Capra V (2014) Planar cell polarity gene mutations contribute to the etiology of human neural tube defects in our population. Birth Defects Res A Clin Mol Teratol 100(8):633–641. doi:10.1002/bdra.23255

    Article  CAS  PubMed  Google Scholar 

  29. De Marco P, Merello E, Consales A, Piatelli G, Cama A, Kibar Z, Capra V (2013) Genetic analysis of disheveled 2 and disheveled 3 in human neural tube defects. J Mol Neurosci 49(3):582–588. doi:10.1007/s12031-012-9871-9

    Article  PubMed  Google Scholar 

  30. Merello E, Kibar Z, Allache R, Piatelli G, Cama A, Capra V, De Marco P (2013) Rare missense variants in DVL1, one of the human counterparts of the Drosophila dishevelled gene, do not confer increased risk for neural tube defects. Birth Defects Res A Clin Mol Teratol 97(7):452–455. doi:10.1002/bdra.23157

    Article  CAS  PubMed  Google Scholar 

  31. Kemphues K (2000) PARsing embryonic polarity. Cell 101(4):345–348

    Article  CAS  PubMed  Google Scholar 

  32. Ossipova O, He X, Green J (2002) Molecular cloning and developmental expression of Par-1/MARK homologues XPar-1A and XPar-1B from Xenopus laevis. Mech Dev 119(Suppl 1):S143–S148

    Article  PubMed  Google Scholar 

  33. Kusakabe M, Nishida E (2004) The polarity-inducing kinase Par-1 controls Xenopus gastrulation in cooperation with 14-3-3 and aPKC. EMBO J 23(21):4190–4201. doi:10.1038/sj.emboj.7600381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sun TQ, Lu B, Feng JJ, Reinhard C, Jan YN, Fantl WJ, Williams LT (2001) PAR-1 is a Dishevelled-associated kinase and a positive regulator of Wnt signalling. Nat Cell Biol 3(7):628–636. doi:10.1038/35083016

    Article  CAS  PubMed  Google Scholar 

  35. Ossipova O, Dhawan S, Sokol S, Green JB (2005) Distinct PAR-1 proteins function in different branches of Wnt signaling during vertebrate development. Dev Cell 8(6):829–841. doi:10.1016/j.devcel.2005.04.011

    Article  CAS  PubMed  Google Scholar 

  36. Dequiedt F, Martin M, Von Blume J, Vertommen D, Lecomte E, Mari N, Heinen MF, Bachmann M, Twizere JC, Huang MC, Rider MH, Piwnica-Worms H, Seufferlein T, Kettmann R (2006) New role for hPar-1 kinases EMK and C-TAK1 in regulating localization and activity of class IIa histone deacetylases. Mol Cell Biol 26(19):7086–7102. doi:10.1128/MCB.00231-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gu X, Lin L, Zheng X, Zhang T, Song X, Wang J, Li X, Li P, Chen G, Wu J, Wu L, Liu J (2007) High prevalence of NTDs in Shanxi Province: a combined epidemiological approach. Birth Defects Res A Clin Mol Teratol 79(10):702–707. doi:10.1002/bdra.20397

    Article  CAS  PubMed  Google Scholar 

  38. Chen X, Shen Y, Gao Y, Zhao H, Sheng X, Zou J, Lip V, Xie H, Guo J, Shao H, Bao Y, Shen J, Niu B, Gusella JF, BL W, Zhang T (2013) Detection of copy number variants reveals association of cilia genes with neural tube defects. PLoS One 8(1):e54492. doi:10.1371/journal.pone.0054492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, Hanna J, Lodato MA, Frampton GM, Sharp PA, Boyer LA, Young RA, Jaenisch R (2010) Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A 107(50):21931–21936. doi:10.1073/pnas.1016071107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Guillemette B, Drogaris P, Lin HH, Armstrong H, Hiragami-Hamada K, Imhof A, Bonneil E, Thibault P, Verreault A, Festenstein RJ (2011) H3 lysine 4 is acetylated at active gene promoters and is regulated by H3 lysine 4 methylation. PLoS Genet 7(3):e1001354. doi:10.1371/journal.pgen.1001354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang T, Xin R, Gu X, Wang F, Pei L, Lin L, Chen G, Wu J, Zheng X (2009) Maternal serum vitamin B12, folate and homocysteine and the risk of neural tube defects in the offspring in a high-risk area of China. Public Health Nutr 12(5):680–686. doi:10.1017/S1368980008002735

    Article  PubMed  Google Scholar 

  42. Wang F, Wang J, Guo J, Chen X, Guan Z, Zhao H, Xie H, Liu C, Bao Y, Zou J, Niu B, Zhang T (2013) PCMT1 gene polymorphisms, maternal folate metabolism, and neural tube defects: a case-control study in a population with relatively low folate intake. Genes Nutr 8(6):581–587. doi:10.1007/s12263-013-0355-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang J, Wang X, Guan T, Xiang Q, Wang M, Zhang Z, Guan Z, Wang G, Zhu Z, Xie Q, Li G, Guo J, Wang F, Zhang Z, Niu B, Zhang T (2014) Analyses of copy number variation reveal putative susceptibility loci in MTX-induced mouse neural tube defects. Dev Neurobiol 74(9):877–893. doi:10.1002/dneu.22170

    Article  CAS  PubMed  Google Scholar 

  44. Vega RB, Matsuda K, Oh J, Barbosa AC, Yang X, Meadows E, McAnally J, Pomajzl C, Shelton JM, Richardson JA, Karsenty G, Olson EN (2004) Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell 119(4):555–566. doi:10.1016/j.cell.2004.10.024

    Article  CAS  PubMed  Google Scholar 

  45. DeLaurier A, Nakamura Y, Braasch I, Khanna V, Kato H, Wakitani S, Postlethwait JH, Kimmel CB (2012) Histone deacetylase-4 is required during early cranial neural crest development for generation of the zebrafish palatal skeleton. BMC Dev Biol 12:16. doi:10.1186/1471-213X-12-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ronan JL, Wu W, Crabtree GR (2013) From neural development to cognition: unexpected roles for chromatin. Nat Rev Genet 14(5):347–359. doi:10.1038/nrg3413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Davila JL, Goff LA, Ricupero CL, Camarillo C, Oni EN, Swerdel MR, Toro-Ramos AJ, Li J, Hart RP (2014) A positive feedback mechanism that regulates expression of miR-9 during neurogenesis. PLoS One 9(4):e94348. doi:10.1371/journal.pone.0094348

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lu D, Bao D, Dong W, Liu N, Zhang X, Gao S, Ge W, Gao X, Zhang L (2016) Dkk3 prevents familial dilated cardiomyopathy development through Wnt pathway. Lab Investig 96(2):239–248. doi:10.1038/labinvest.2015.145

    Article  CAS  PubMed  Google Scholar 

  49. Copp AJ, Greene ND (2010) Genetics and development of neural tube defects. J Pathol 220(2):217–230. doi:10.1002/path.2643

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Atta CA, Fiest KM, Frolkis AD, Jette N, Pringsheim T, St Germaine-Smith C, Rajapakse T, Kaplan GG, Metcalfe A (2016) Global birth prevalence of spina bifida by folic acid fortification status: a systematic review and meta-analysis. Am J Public Health 106(1):e24–e34. doi:10.2105/AJPH.2015.302902

    Article  PubMed  Google Scholar 

  51. Ichi S, Nakazaki H, Boshnjaku V, Singh RM, Mania-Farnell B, Xi G, McLone DG, Tomita T, Mayanil CS (2012) Fetal neural tube stem cells from Pax3 mutant mice proliferate, differentiate, and form synaptic connections when stimulated with folic acid. Stem Cells Dev 21(2):321–330. doi:10.1089/scd.2011.0100

    Article  CAS  PubMed  Google Scholar 

  52. Liu H, Huang GW, Zhang XM, Ren DL, XW J (2010) Folic acid supplementation stimulates notch signaling and cell proliferation in embryonic neural stem cells. J Clin Biochem Nutr 47(2):174–180. doi:10.3164/jcbn.10-47

    Article  PubMed  PubMed Central  Google Scholar 

  53. Yu M, Li W, Luo S, Zhang Y, Liu H, Gao Y, Wang X, Wilson JX, Huang G (2014) Folic acid stimulation of neural stem cell proliferation is associated with altered methylation profile of PI3K/Akt/CREB. J Nutr Biochem 25(4):496–502. doi:10.1016/j.jnutbio.2013.12.010

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We appreciate help from Dr. Jonathan J. Wilde (Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children’s Hospital Colorado) with the language editing. This study is supported by the National Natural Science Foundation of China, Beijing, China (No. 81471163; No. 81300489), National “973” project (2013CB945404), the National Science & Technology Pillar Program during the 12th Five-year Plan Period (2013BAI12B00).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huili Li or Ting Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Shuyuan Chen and Qin Zhang equally contributed to this work.

Electronic Supplementary Material

ESM 1

(PDF 158 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Zhang, Q., Bai, B. et al. MARK2/Par1b Insufficiency Attenuates DVL Gene Transcription via Histone Deacetylation in Lumbosacral Spina Bifida. Mol Neurobiol 54, 6304–6316 (2017). https://doi.org/10.1007/s12035-016-0164-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0164-0

Keywords

Navigation