Skip to main content
Log in

Creatine Prevents Corticosterone-Induced Reduction in Hippocampal Proliferation and Differentiation: Possible Implication for Its Antidepressant Effect

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The benefits of creatine supplementation have been reported in a broad range of central nervous system diseases, including depression, although the mechanisms underlying these effects remain to be understood. In the present study, we investigated the ability of creatine to counteract the morphological and behavioral effects elicited by chronic administration of corticosterone (CORT, 20 mg/kg, p.o.) for 21 days to mice, a pharmacological model of depression that mimics exposure to stress. CORT treatment increased immobility time in the tail suspension test (TST) and forced swim test (FST), as well as latency to immobility in the FST, and decreased the sucrose consumption in the sucrose preference test (SPT). These behavioral effects were associated with decreased hippocampal cell proliferation and neuronal differentiation and increased glial fibrillary acid protein (GFAP) immunostaining (suggestive of astrogliosis) in dentate gyrus (DG) of the hippocampus. These CORT-induced alterations were abolished by treatment with either fluoxetine (a conventional antidepressant) or creatine for 21 days (both 10 mg/kg, p.o.). In addition, fluoxetine, but not creatine, was able to reverse the CORT-induced reduction in serum CORT levels. Collectively, our results suggest that creatine produces morphological alterations that contribute to the improvement of depressive-like behaviors triggered by chronic CORT administration in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Akt/PKB:

Protein kinase B

ANOVA:

Analysis of variance

BDNF:

Brain-derived neurotrophic factor

CaMK-II:

Ca2+/calmodulin-dependent protein kinase II

CORT:

Corticosterone

DAB:

2,2-Diaminobenzidine

DG:

Dentate gyrus

DMSO:

Dimethyl sulfoxide

FST:

Forced swimming test

GFAP:

Glial fibrillary acid protein

HPA:

Hypothalamic–pituitary–adrenal

MEK1/2:

Mitogen-activated protein kinase kinase 1/2

mTOR:

Mammalian target of rapamycin

NeuroD:

Neurogenic differentiation protein

NHS:

Normal horse serum

OFT:

Open field test

p.o.:

Per os (oral route)

PBS:

Phosphate-buffered saline

PBS-Tx:

Phosphate buffer saline-Triton X-100

PI3K:

Phosphatidylinositol-3-kinase

PKA:

Protein kinase A

PKC:

Protein kinase C

S.E.M.:

Standard error of the mean

SCT:

Sucrose consumption test

SGZ:

Subgranular zone

SSRIs:

Selective serotonin reuptake inhibitors

SVZ:

Subventricular zone

TBS:

Tris-buffered saline

TST:

Tail suspension test

References

  1. Greenberg PE, Kessler RC, Birnbaum HG, Leong SA, Lowe SW, Berglund PA, Corey-Lisle PK (2003) The economic burden of depression in the United States: how did it change between 1990 and 2000? J Clin Psychiatry 64(12):1465–1475. doi:10.4088/JCP.14m09298

    Article  PubMed  Google Scholar 

  2. Viana MC, Gruber MJ, Shahly V, Alhamzawi A, Alonso J, Andrade LH, Angermeyer MC, Benjet C, Bruffaerts R, Caldas-de-Almeida JM, Girolamo G, Jonge P, Ferry F, Florescu S, Gureje O, Haro JM, Hinkov H, Hu C, Karam EG, Lepine JP, Levinson D, Posada-Villa J, Sampson NA, Kessler RC (2013) Family burden related to mental and physical disorders in the world: results from the WHO World Mental Health (WMH) surveys. Rev Bras Psiquiatr 35(2):115–125. doi:10.1590/1516-4446-2012-0919

    Article  PubMed  Google Scholar 

  3. Nakajima S, Suzuki T, Watanabe K, Kashima H, Uchida H (2010) Accelerating response to antidepressant treatment in depression: a review and clinical suggestions. Prog Neuro-Psychopharmacol Biol Psychiatry 34(2):259–264. doi:10.1016/j.pnpbp.2009.12.001

    Article  CAS  Google Scholar 

  4. Covington HE 3rd, Vialou V, Nestler EJ (2010) From synapse to nucleus: novel targets for treating depression. Neuropharmacology 58(4–5):683–693. doi:10.1016/j.neuropharm.2009.12.004

    Article  CAS  PubMed  Google Scholar 

  5. Tanti A, Belzung C (2013) Neurogenesis along the septo-temporal axis of the hippocampus: are depression and the action of antidepressants region-specific? Neuroscience 252:234–252. doi:10.1016/j.neuroscience.2013.08.017

    Article  CAS  PubMed  Google Scholar 

  6. Lie DC, Song H, Colamarino SA, Ming GL, Gage FH (2004) Neurogenesis in the adult brain: new strategies for central nervous system diseases. Annu Rev Pharmacol Toxicol 44:399–421. doi:10.1146/annurev.pharmtox.44.101802.121631

    Article  CAS  PubMed  Google Scholar 

  7. Kempermann G, Wiskott L, Gage FH (2004) Functional significance of adult neurogenesis. Curr Opin Neurobiol 14(2):186–191. doi:10.1016/j.conb.2004.03.001

    Article  CAS  PubMed  Google Scholar 

  8. Eisch AJ, Petrik D (2012) Depression and hippocampal neurogenesis: a road to remission? Science 338(6103):72–75. doi:10.1126/science.1222941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cunha MP, Martin-de-Saavedra MD, Romero A, Egea J, Ludka FK, Tasca CI, Farina M, Rodrigues AL, Lopez MG (2014) Both creatine and its product phosphocreatine reduce oxidative stress and afford neuroprotection in an in vitro Parkinson's model. ASN neuro 6 (6). doi:10.1177/1759091414554945

  10. Cunha MP, Pazini FL, Ludka FK, Rosa JM, Oliveira A, Budni J, Ramos-Hryb AB, Lieberknecht V, Bettio LE, Martin-de-Saavedra MD, Lopez MG, Tasca CI, Rodrigues AL (2015) The modulation of NMDA receptors and L-arginine/nitric oxide pathway is implicated in the anti-immobility effect of creatine in the tail suspension test. Amino Acids 47(4):795–811. doi:10.1007/s00726-014-1910-0

    Article  CAS  PubMed  Google Scholar 

  11. Cunha MP, Machado DG, Capra JC, Jacinto J, Bettio LEB, Rodrigues ALS (2012) Antidepressant-like effect of creatine in mice involves dopaminergic activation. J Psychopharmacol 26(11):1489–1501. doi:10.1177/0269881112447989

    Article  PubMed  Google Scholar 

  12. Pazini FL, Cunha MP, Rosa JM, Colla AR, Lieberknecht V, Oliveira A, Rodrigues AL (2015) Creatine, similar to ketamine, counteracts depressive-like behavior induced by corticosterone via PI3K/Akt/mTOR pathway. Mol Neurobiol. doi:10.1007/s12035-015-9580-9

    Google Scholar 

  13. Kondo DG, Sung YH, Hellem TL, Fiedler KK, Shi X, Jeong EK, Renshaw PF (2011) Open-label adjunctive creatine for female adolescents with SSRI-resistant major depressive disorder: a 31-phosphorus magnetic resonance spectroscopy study. J Affect Disord 135(1–3):354–361. doi:10.1016/j.jad.2011.07.010

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lyoo IK, Yoon S, Kim TS, Hwang J, Kim JE, Won W, Bae S, Renshaw PF (2012) A randomized, double-blind placebo-controlled trial of oral creatine monohydrate augmentation for enhanced response to a selective serotonin reuptake inhibitor in women with major depressive disorder. Am J Psychiatry 169(9):937–945. doi:10.1176/appi.ajp.2012.12010009

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sterner EY, Kalynchuk LE (2010) Behavioral and neurobiological consequences of prolonged glucocorticoid exposure in rats: relevance to depression. Prog Neuro-Psychopharmacol Biol Psychiatry 34(5):777–790. doi:10.1016/j.pnpbp.2010.03.005

    Article  CAS  Google Scholar 

  16. Mao QQ, Huang Z, Zhong XM, Xian YF, Ip SP (2014) Piperine reverses the effects of corticosterone on behavior and hippocampal BDNF expression in mice. Neurochem Int 74:36–41. doi:10.1016/j.neuint.2014.04.017

    Article  CAS  PubMed  Google Scholar 

  17. Zhao Y, Xie W, Dai J, Wang Z, Huang Y (2009) The varying effects of short-term and long-term corticosterone injections on depression-like behavior in mice. Brain Res 1261:82–90. doi:10.1016/j.brainres.2008.12.083

    Article  CAS  PubMed  Google Scholar 

  18. Zhao Y, Ma R, Shen J, Su H, Xing D, Du L (2008) A mouse model of depression induced by repeated corticosterone injections. Eur J Pharmacol 581(1–2):113–120. doi:10.1016/j.ejphar.2007.12.005

    Article  CAS  PubMed  Google Scholar 

  19. Porsolt RD, Bertin A, Jalfre M (1977) Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229(2):327–336. doi:10.1016/0014-2999(78)90414-4

    CAS  PubMed  Google Scholar 

  20. Kaster MP, Gadotti VM, Calixto JB, Santos AR, Rodrigues AL (2012) Depressive-like behavior induced by tumor necrosis factor-alpha in mice. Neuropharmacology 62(1):419–426. doi:10.1016/j.neuropharm.2011.08.018

    Article  CAS  PubMed  Google Scholar 

  21. Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85(3):367–370

    Article  CAS  PubMed  Google Scholar 

  22. Rodrigues AL, Rocha JB, Mello CF, Souza DO (1996) Effect of perinatal lead exposure on rat behaviour in open-field and two-way avoidance tasks. Pharmacol Toxicol 79(3):150–156. doi:10.1111/j.1600-0773.1996.tb00259.x

    Article  CAS  PubMed  Google Scholar 

  23. Takatsu-Coleman AL, Patti CL, Zanin KA, Zager A, Carvalho RC, Borcoi AR, Ceccon LM, Berro LF, Tufik S, Andersen ML, Frussa-Filho R (2013) Short-term social isolation induces depressive-like behaviour and reinstates the retrieval of an aversive task: mood-congruent memory in male mice? J Psychiatr Neurosci : JPN 38(4):259–268. doi:10.1503/jpn.120050

    Article  Google Scholar 

  24. Weiss JM (1997) Does decreased sucrose intake indicate loss of preference in CMS model? Psychopharmacology 134(4):368–370. doi:10.1007/s002130050472

    Article  CAS  PubMed  Google Scholar 

  25. Kee N, Sivalingam S, Boonstra R, Wojtowicz JM (2002) The utility of Ki-67 and BrdU as proliferative markers of adult neurogenesis. J Neurosci Meth 115(1):97–105. doi:10.1016/S0165-0270(02)00007-9

    Article  CAS  Google Scholar 

  26. Miyata T, Maeda T, Lee JE (1999) NeuroD is required for differentiation of the granule cells in the cerebellum and hippocampus. Gene Dev 13(13):1647–1652. doi:10.1101/gad.13.13.1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Paxinos G, Franklin KBJ, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates, 2nd edn. Academic Press, San Diego

    Google Scholar 

  28. Gil-Mohapel J, Brocardo PS, Choquette W, Gothard R, Simpson JM, Christie BR (2013) Hippocampal neurogenesis levels predict WATERMAZE search strategies in the aging brain. PLoS One 8(9):e75125. doi:10.1371/journal.pone.0075125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. de Oliveira J, Moreira EL, dos Santos DB, Piermartiri TC, Dutra RC, Pinton S, Tasca CI, Farina M, Prediger RD, de Bem AF (2014) Increased susceptibility to amyloid-beta-induced neurotoxicity in mice lacking the low-density lipoprotein receptor. J Alzheimers Dis: JAD 41(1):43–60. doi:10.3233/JAD-132228

    PubMed  Google Scholar 

  30. Cryan JF, Page ME, Lucki I (2005) Differential behavioral effects of the antidepressants reboxetine, fluoxetine, and moclobemide in a modified forced swim test following chronic treatment. Psychopharmacology 182(3):335–344. doi:10.1007/s00213-005-0093-5

    Article  CAS  PubMed  Google Scholar 

  31. Kelly KA, Miller DB, Bowyer JF, O'Callaghan JP (2012) Chronic exposure to corticosterone enhances the neuroinflammatory and neurotoxic responses to methamphetamine. J Neurochem 122(5):995–1009. doi:10.1111/j.1471-4159.2012.07864.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chatterjee S, Sikdar SK (2013) Corticosterone treatment results in enhanced release of peptidergic vesicles in astrocytes via cytoskeletal rearrangements. Glia 61(12):2050–2062. doi:10.1002/glia.22576

    Article  PubMed  Google Scholar 

  33. Hill AS, Sahay A, Hen R (2015) Increasing adult hippocampal neurogenesis is sufficient to reduce anxiety and depression-like behaviors. Neuropsychopharmacology ACNP 40(10):2368–2378. doi:10.1038/npp.2015.85

    Article  CAS  Google Scholar 

  34. Jacobson L, Sapolsky R (1991) The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. Endocr Rev 12(2):118–134. doi:10.1210/edrv-12-2-118

    Article  CAS  PubMed  Google Scholar 

  35. Brummelte S, Galea LA (2010) Chronic high corticosterone reduces neurogenesis in the dentate gyrus of adult male and female rats. Neuroscience 168(3):680–690. doi:10.1016/j.neuroscience.2010.04.023

    Article  CAS  PubMed  Google Scholar 

  36. Gilhooley MJ, Pinnock SB, Herbert J (2011) Rhythmic expression of per1 in the dentate gyrus is suppressed by corticosterone: implications for neurogenesis. Neurosci Lett 489(3):177–181. doi:10.1016/j.neulet.2010.12.011

    Article  CAS  PubMed  Google Scholar 

  37. Hanson ND, Owens MJ, Nemeroff CB (2011) Depression, antidepressants, and neurogenesis: a critical reappraisal. Neuropsychopharmacology 36(13):2589–2602. doi:10.1038/npp.2011.220

    Article  PubMed  PubMed Central  Google Scholar 

  38. Freitas AE, Egea J, Buendia I, Gomez-Rangel V, Parada E, Navarro E, Casas AI, Wojnicz A, Ortiz JA, Cuadrado A, Ruiz-Nuno A, Rodrigues AL, Lopez MG (2016) Agmatine, by improving neuroplasticity markers and inducing Nrf2, prevents corticosterone-induced depressive-like behavior in mice. Mol Neurobiol 53(5):3030–3045. doi:10.1007/s12035-015-9182-6

    Article  CAS  PubMed  Google Scholar 

  39. Gourley SL, Kiraly DD, Howell JL, Olausson P, Taylor JR (2008) Acute hippocampal brain-derived neurotrophic factor restores motivational and forced swim performance after corticosterone. Biol Psychiatry 64(10):884–890. doi:10.1016/j.biopsych.2008.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. David DJ, Samuels BA, Rainer Q, Wang JW, Marsteller D, Mendez I, Drew M, Craig DA, Guiard BP, Guilloux JP, Artymyshyn RP, Gardier AM, Gerald C, Antonijevic IA, Leonardo ED, Hen R (2009) Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron 62(4):479–493. doi:10.1016/j.neuron.2009.04.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gourley SL, Taylor JR (2009) Recapitulation and reversal of a persistent depression-like syndrome in rodents. Current protocols in neuroscience/editorial board, Jacqueline N Crawley [et al] Chapter 9: Unit 9 32. doi:10.1002/0471142301.ns093 2 s49

  42. Surget A, Saxe M, Leman S, Ibarguen-Vargas Y, Chalon S, Griebel G, Hen R, Belzung C (2008) Drug-dependent requirement of hippocampal neurogenesis in a model of depression and of antidepressant reversal. Biol Psychiatry 64(4):293–301. doi:10.1016/j.biopsych.2008.02.022

    Article  CAS  PubMed  Google Scholar 

  43. Morgan VA, Mitchell PB, Jablensky AV (2005) The epidemiology of bipolar disorder: sociodemographic, disability and service utilization data from the Australian National Study of Low Prevalence (Psychotic) Disorders. Bipolar Disord 7(4):326–337. doi:10.1111/j.1399-5618.2005.00229.x

    Article  PubMed  Google Scholar 

  44. Conrad CD, McLaughlin KJ, Harman JS, Foltz C, Wieczorek L, Lightner E, Wright RL (2007) Chronic glucocorticoids increase hippocampal vulnerability to neurotoxicity under conditions that produce CA3 dendritic retraction but fail to impair spatial recognition memory. J Neurosci 27(31):8278–8285. doi:10.1523/JNEUROSCI.2121-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bjornebekk A, Mathe AA, Brene S (2005) The antidepressant effect of running is associated with increased hippocampal cell proliferation. Int J Neuropsychopharmacol 8(3):357–368. doi:10.1017/S1461145705005122

    Article  CAS  PubMed  Google Scholar 

  46. Malberg JE, Eisch AJ, Nestler EJ, Duman RS (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 20(24):9104–9110

    CAS  PubMed  Google Scholar 

  47. Bettio LE, Cunha MP, Budni J, Pazini FL, Oliveira A, Colla AR, Rodrigues AL (2012) Guanosine produces an antidepressant-like effect through the modulation of NMDA receptors, nitric oxide-cGMP and PI3K/mTOR pathways. Behav Brain Res 234(2):137–148. doi:10.1016/j.bbr.2012.06.021

    Article  CAS  PubMed  Google Scholar 

  48. Antonijevic IA (2006) Depressive disorders - is it time to endorse different pathophysiologies? Psychoneuroendocrinology 31(1):1–15. doi:10.1016/j.psyneuen.2005.04.004

    Article  PubMed  Google Scholar 

  49. Heuser IJE, Schweiger U, Gotthardt U, Schmider J, Lammers CH, Dettling M, Yassouridis A, Holsboer F (1996) Pituitary-adrenal-system regulation and psychopathology during amitriptyline treatment in elderly depressed patients and normal comparison subjects. Am J Psychiatry 153(1):93–99. doi:10.1176/ajp.153.1.93

    Article  CAS  PubMed  Google Scholar 

  50. Holsboertrachsler E, Stohler R, Hatzinger M (1991) Repeated administration of the combined dexamethasone-human corticotropin releasing hormone stimulation test during treatment of depression. Psychiatry Res 38(2):163–171. doi:10.1016/0165-1781(91)90041-M

    Article  CAS  Google Scholar 

  51. Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA (2011) Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature 476(7361):458–U112. doi:10.1038/nature10287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Surget A, Tanti A, Leonardo ED, Laugeray A, Rainer Q, Touma C, Palme R, Griebel G, Ibarguen-Vargas Y, Hen R, Belzung C (2011) Antidepressants recruit new neurons to improve stress response regulation. Mol Psychiatry 16(12):1177–1188. doi:10.1038/mp.2011.48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sahay A, Hen R (2007) Adult hippocampal neurogenesis in depression. Nature Neurosci 10(9):1110–1115. doi:10.1038/nn1969

    Article  CAS  PubMed  Google Scholar 

  54. Diniz L, dos Santos TB, Britto LR, Cespedes IC, Garcia MC, Spadari-Bratfisch RC, Medalha CC, de Castro GM, Montesano FT, Viana MB (2013) Effects of chronic treatment with corticosterone and imipramine on fos immunoreactivity and adult hippocampal neurogenesis. Behav Brain Res 238:170–177. doi:10.1016/j.bbr.2012.10.024

    Article  CAS  PubMed  Google Scholar 

  55. Rainer Q, Xia L, Guilloux JP, Gabriel C, Mocaer E, Hen R, Enhamre E, Gardier AM, David DJ (2012) Beneficial behavioural and neurogenic effects of agomelatine in a model of depression/anxiety. Int J Neuropsychopharmacol 15(3):321–335. doi:10.1017/S1461145711000356

    Article  CAS  PubMed  Google Scholar 

  56. Robertson DA, Beattie JE, Reid IC, Balfour DJ (2005) Regulation of corticosteroid receptors in the rat brain: the role of serotonin and stress. Eur J Neurosci 21(6):1511–1520. doi:10.1111/j.1460-9568.2005.03990.x

    Article  CAS  PubMed  Google Scholar 

  57. Lin YL, Lin SY, Wang S (2012) Prenatal lipopolysaccharide exposure increases anxiety-like behaviors and enhances stress-induced corticosterone responses in adult rats. Brain Behav Immun 26(3):459–468. doi:10.1016/j.bbi.2011.12.003

    Article  CAS  PubMed  Google Scholar 

  58. Westenbroek C, Den Boer JA, Veenhuis M, Ter Horst GJ (2004) Chronic stress and social housing differentially affect neurogenesis in male and female rats. Brain Res Bull 64(4):303–308. doi:10.1016/j.brainresbull.2004.08.006

    Article  PubMed  Google Scholar 

  59. Paizanis E, Renoir T, Lelievre V, Saurini F, Melfort M, Gabriel C, Barden N, Mocaer E, Hamon M, Lanfumey L (2010) Behavioural and neuroplastic effects of the new-generation antidepressant agomelatine compared to fluoxetine in glucocorticoid receptor-impaired mice. Int J Neuropsychopharmacol 13(6):759–774. doi:10.1017/S1461145709990514

    Article  PubMed  Google Scholar 

  60. Lehmann ML, Brachman RA, Martinowich K, Schloesser RJ, Herkenham M (2013) Glucocorticoids orchestrate divergent effects on mood through adult neurogenesis. J Neurosci 33(7):2961–2972. doi:10.1523/JNEUROSCI.3878-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nollet M, Gaillard P, Tanti A, Girault V, Belzung C, Leman S (2012) Neurogenesis-independent antidepressant-like effects on behavior and stress axis response of a dual orexin receptor antagonist in a rodent model of depression. Neuropsychopharmacology 37(10):2210–2221. doi:10.1038/npp.2012.70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tanti A, Rainer Q, Minier F, Surget A, Belzung C (2012) Differential environmental regulation of neurogenesis along the septo-temporal axis of the hippocampus. Neuropharmacology 63(3):374–384. doi:10.1016/j.neuropharm.2012.04.022

    Article  CAS  PubMed  Google Scholar 

  63. Memberg SP, Hall AK (1995) Proliferation, differentiation, and survival of rat sensory neuron precursors in vitro require specific trophic factors. Mol Cel Neurosci 6(4):323–335. doi:10.1006/mcne.1995.1025

    Article  CAS  Google Scholar 

  64. Palmer TD, Takahashi J, Gage FH (1997) The adult rat hippocampus contains primordial neural stem cells. Mol Cel Neurosci 8(6):389–404. doi:10.1006/mcne.1996.0595

    Article  CAS  Google Scholar 

  65. Takahashi J, Palmer TD, Gage FH (1999) Retinoic acid and neurotrophins collaborate to regulate neurogenesis in adult-derived neural stem cell cultures. J Neurobiol 38(1):65–81. doi:10.1002/(SICI)1097

    Article  CAS  PubMed  Google Scholar 

  66. Mao QQ, Xian YF, Ip SP, Tsai SH, Che CT (2010) Long-term treatment with peony glycosides reverses chronic unpredictable mild stress-induced depressive-like behavior via increasing expression of neurotrophins in rat brain. Behav Brain Res 210(2):171–177. doi:10.1016/j.bbr.2010.02.026

    Article  CAS  PubMed  Google Scholar 

  67. Cunha MP, Budni J, Pazini FL, Oliveira A, Rosa JM, Lopes MW, Leal RB, Rodrigues AL (2014) Involvement of PKA, PKC, CAMK-II and MEK1/2 in the acute antidepressant-like effect of creatine in mice. Pharmacol Rep : PR 66(4):653–659. doi:10.1016/j.pharep.2014.03.004

    Article  CAS  PubMed  Google Scholar 

  68. Cunha MP, Budni J, Ludka FK, Pazini FL, Rosa JM, Oliveira A, Lopes MW, Tasca CI, Leal RB, Rodrigues AL (2016) Involvement of PI3K/Akt signaling pathway and its downstream intracellular targets in the antidepressant-like effect of creatine. Mol Neurobiol 53(5):2954–2968. doi:10.1007/s12035-015-9192-4

    Article  CAS  PubMed  Google Scholar 

  69. Robel S, Sontheimer H (2015) Glia as drivers of abnormal neuronal activity. Nature neurosci 19(1):28–33. doi:10.1038/nn.4184

    Article  Google Scholar 

  70. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35. doi:10.1007/s00401-009-0619-8

    Article  PubMed  Google Scholar 

  71. Kreisel T, Frank MG, Licht T, Reshef R, Ben-Menachem-Zidon O, Baratta MV, Maier SF, Yirmiya R (2014) Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Mol Psychiatry 19(6):699–709. doi:10.1038/mp.2013.155

    Article  CAS  PubMed  Google Scholar 

  72. Laping NJ, Teter B, Nichols NR, Rozovsky I, Finch CE (1994) Glial fibrillary acidic protein: regulation by hormones, cytokines, and growth factors. Brain Pathol 4(3):259–275. doi:10.1111/j.1750-3639.1994.tb00841.x

    Article  CAS  PubMed  Google Scholar 

  73. Leite MC, Brolese G, de Almeida LMV, Pinero CC, Gottfried C, Goncalves CA (2006) Ammonia-induced alteration in S100B secretion in astrocytes is not reverted by creatine addition. Brain Res Bull 70(2):179–185. doi:10.1016/j.brainresbull.2006.05.003

    Article  CAS  PubMed  Google Scholar 

  74. Lensman M, Korzhevskii DE, Mourovets VO, Kostkin VB, Izvarina N, Perasso L, Gandolfo C, Otellin VA, Polenov SA, Balestrino M (2006) Intracerebroventricular administration of creatine protects against damage by global cerebral ischemia in rat. Brain Res 1114:187–194. doi:10.1016/j.brainres.2006.06.103

    Article  CAS  PubMed  Google Scholar 

  75. Rajkowska G, Stockmeier CA (2013) Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue. Curr Drug Targets 14(11):1225–1236. doi:10.2174/13894501113149990156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Valera E, Ubhi K, Mante M, Rockenstein E, Masliah E (2014) Antidepressants reduce neuroinflammatory responses and astroglial alpha-synuclein accumulation in a transgenic mouse model of multiple system atrophy. Glia 62(2):317–337. doi:10.1002/glia.22610

    Article  PubMed  Google Scholar 

  77. Czeh B, Simon M, Schmelting B, Hiemke C, Fuchs E (2006) Astroglial plasticity in the hippocampus is affected by chronic psychosocial stress and concomitant fluoxetine treatment. Neuropsychopharmacology 31(8):1616–1626. doi:10.1038/sj.npp.1300982

    Article  CAS  PubMed  Google Scholar 

  78. Araya-Callis C, Hiemke C, Abumaria N, Flugge G (2012) Chronic psychosocial stress and citalopram modulate the expression of the glial proteins GFAP and NDRG2 in the hippocampus. Psychopharmacology 224(1):209–222. doi:10.1007/s00213-012-2741-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

J.G.M. and A.L.S.R. acknowledge funding from the Science Without Borders funding program [Programa Ciência Sem Fronteiras/Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Project no. 403120/2012-8] of the Brazilian Federal Government. This study was also supported by grants from CNPq (no. 308723/2013-9, no. 449436/2014-4) and Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES), NENASC Project (PRONEX-FAPESC/CNPq) no. 1262/2012-9. A.L.S.R. is CNPq Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Lúcia S. Rodrigues.

Ethics declarations

Conflict of Interest

The authors declare that no financial support or compensation has been received from any individual or corporate entity over the past 3 years for research or professional service and there are no personal financial holding that could be perceived as constituting a potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pazini, F.L., Cunha, M.P., Azevedo, D. et al. Creatine Prevents Corticosterone-Induced Reduction in Hippocampal Proliferation and Differentiation: Possible Implication for Its Antidepressant Effect. Mol Neurobiol 54, 6245–6260 (2017). https://doi.org/10.1007/s12035-016-0148-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0148-0

Keywords

Navigation