Abstract
Three early signals of asymmetry have been described to occur in a single neurite of neurons at stage 2 of differentiation (before polarization) and shown to be essential for neuronal polarization: (i) accumulation of stable microtubules, (ii) enrichment of the plasma membrane with activatable IGF-1r, and (iii) polarized transport of the microtubular motor KIF5C. Here, we studied the possible relationship between these three phenomena. Our results show that the activatable (membrane-inserted) IGF-1r and stable microtubules accumulate in the same neurite of cells at stage 2. The polarized insertion of IGF-1r depends on microtubule dynamics as shown using drugs which modify microtubule stability. Silencing of KIF5C expression prevents the polarized insertion of IGF-1r into the neuronal plasmalemma and neuronal polarization. Syntaxin 6 and VAMP4, necessary for the polarized insertion of the IGF-1r, are associated to vesicles carried by the microtubular motor KIF5C and is transported preferentially to the neurite where KIF5C accumulates. We conclude that the enrichment of stable microtubules in the future axon enhances KIF5C-mediated vesicular transport of syntaxin 6 and VAMP4, which in turn mediates the polarized insertion of IGF-1r in the plasmalemma, a key step for neuronal polarization. We herewith establish a mechanistic link between three early polarity events necessary for the establishment of neuronal polarity.
This is a preview of subscription content,
to check access.







Similar content being viewed by others
References
de Anda FC, Meletis K, Ge X, Rei D, Tsai LH (2010) Centrosome motility is essential for initial axon formation in the neocortex. J Neurosci 30(31):10391–10406. doi:10.1523/JNEUROSCI.0381-10.2010
Sosa L, Dupraz S, Laurino L, Bollati F, Bisbal M, Caceres A, Pfenninger KH, Quiroga S (2006) IGF-1 receptor is essential for the establishment of hippocampal neuronal polarity. Nat Neurosci 9(8):993–995. doi:10.1038/nn1742
Caceres A, Ye B, Dotti CG (2012) Neuronal polarity: demarcation, growth and commitment. Curr Opin Cell Biol 24(4):547–553. doi:10.1016/j.ceb.2012.05.011
Shi SH, Jan LY, Jan YN (2003) Hippocampal neuronal polarity specified by spatially localized mPar3/mPar6 and PI 3-kinase activity. Cell 112(1):63–75
Nishimura T, Yamaguchi T, Kato K, Yoshizawa M, Nabeshima Y, Ohno S, Hoshino M, Kaibuchi K (2005) PAR-6-PAR-3 mediates Cdc42-induced Rac activation through the Rac GEFs STEF/Tiam1. Nat Cell Biol 7(3):270–277. doi:10.1038/ncb1227
Dupraz S, Grassi D, Bernis ME, Sosa L, Bisbal M, Gastaldi L, Jausoro I, Caceres A et al (2009) The TC10-Exo70 complex is essential for membrane expansion and axonal specification in developing neurons. J Neurosci 29(42):13292–13301. doi:10.1523/jneurosci.3907-09.2009
Grassi D, Plonka FB, Oksdath M, Guil AN, Sosa LJ, Quiroga S (2015) Selected SNARE proteins are essential for the polarized membrane insertion of igf-1 receptor and the regulation of initial axonal outgrowth in neurons. Cell Discovery 1:15023. doi:10.1038/celldisc.2015.23 http://www.nature.com/articles/celldisc201523#supplementary-information
Witte H, Neukirchen D, Bradke F (2008) Microtubule stabilization specifies initial neuronal polarization. J Cell Biol 180(3):619–632. doi:10.1083/jcb.200707042
Jacobson C, Schnapp B, Banker GA (2006) A change in the selective translocation of the Kinesin-1 motor domain marks the initial specification of the axon. Neuron 49(6):797–804. doi:10.1016/j.neuron.2006.02.005
Nakata T, Hirokawa N (2003) Microtubules provide directional cues for polarized axonal transport through interaction with kinesin motor head. J Cell Biol 162(6):1045–1055. doi:10.1083/jcb.200302175
Quiroga S, Garofalo RS, Pfenninger KH (1995) Insulin-like growth factor I receptors of fetal brain are enriched in nerve growth cones and contain a beta-subunit variant. Proc Natl Acad Sci U S A 92(10):4309–4312
Bernis ME, Oksdath M, Dupraz S, Nieto Guil A, Fernandez MM, Malchiodi EL, Rosso SB, Quiroga S (2013) Wingless-type family member 3A triggers neuronal polarization via cross-activation of the insulin-like growth factor-1 receptor pathway. Front Cell Neurosci 7. doi:10.3389/fncel.2013.00194
Morfini G, Quiroga S, Rosa A, Kosik K, Caceres A (1997) Suppression of KIF2 in PC12 cells alters the distribution of a growth cone nonsynaptic membrane receptor and inhibits neurite extension. J Cell Biol 138(3):657–669
Xu XH, Deng CY, Liu Y, He M, Peng J, Wang T, Yuan L, Zheng ZS et al (2014) MARCKS regulates membrane targeting of Rab10 vesicles to promote axon development. Cell Res 24(5):576–594. doi:10.1038/cr.2014.33
Petersen JD, Kaech S, Banker G (2014) Selective microtubule-based transport of dendritic membrane proteins arises in concert with axon specification. J Neurosci 34(12):4135–4147. doi:10.1523/JNEUROSCI.3779-13.2014
Ozdinler PH, Macklis JD (2006) IGF-I specifically enhances axon outgrowth of corticospinal motor neurons. Nat Neurosci 9(11):1371–1381. doi:10.1038/nn1789
Conde C, Caceres A (2009) Microtubule assembly, organization and dynamics in axons and dendrites. Nat Rev Neurosci 10(5):319–332. doi:10.1038/nrn2631
Hirokawa N, Niwa S, Tanaka Y (2010) Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68(4):610–638. doi:10.1016/j.neuron.2010.09.039
Stiess M, Bradke F (2011) Neuronal polarization: the cytoskeleton leads the way. Dev Neurobiol 71(6):430–444. doi:10.1002/dneu.20849
Sakakibara A, Ando R, Sapir T, Tanaka T (2013) Microtubule dynamics in neuronal morphogenesis. Open Biol 3(7):130061. doi:10.1098/rsob.130061
Nakata T, Hirokawa N (2007) Neuronal polarity and the kinesin superfamily proteins. Sci STKE 2007(372):pe6. doi:10.1126/stke.3722007pe6
Bradke F, Dotti CG (1999) The role of local actin instability in axon formation. Science 283(5409):1931–1934
Oliva AA Jr, Atkins CM, Copenagle L, Banker GA (2006) Activated c-Jun N-terminal kinase is required for axon formation. J Neurosci 26(37):9462–9470. doi:10.1523/JNEUROSCI.2625-06.2006
Benitez MJ, Sanchez-Ponce D, Garrido JJ, Wandosell F (2014) Hsp90 activity is necessary to acquire a proper neuronal polarization. Biochim Biophys Acta 1843(2):245–252. doi:10.1016/j.bbamcr.2013.11.013
Poirier K, Lebrun N, Broix L, Tian G, Saillour Y, Boscheron C, Parrini E, Valence S et al (2013) Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of cortical development and microcephaly. Nat Genet 45(6):639–647. doi:10.1038/ng.2613
Sadler JB, Bryant NJ, Gould GW (2015) Characterization of VAMP isoforms in 3T3-L1 adipocytes: implications for GLUT4 trafficking. Mol Biol Cell 26(3):530–536. doi:10.1091/mbc.E14-09-1368
Wang S, Liu Y, Adamson CL, Valdez G, Guo W, Hsu SC (2004) The mammalian exocyst, a complex required for exocytosis, inhibits tubulin polymerization. J Biol Chem 279(34):35958–35966. doi:10.1074/jbc.M313778200
Brymora A, Valova VA, Larsen MR, Roufogalis BD, Robinson PJ (2001) The brain exocyst complex interacts with RalA in a GTP-dependent manner: identification of a novel mammalian Sec3 gene and a second Sec15 gene. J Biol Chem 276(32):29792–29797. doi:10.1074/jbc.C100320200
Walter AM, Kurps J, de Wit H, Schoning S, Toft-Bertelsen TL, Lauks J, Ziomkiewicz I, Weiss AN et al (2014) The SNARE protein vti1a functions in dense-core vesicle biogenesis. EMBO J 33(15):1681–1697. doi:10.15252/embj.201387549
Golebiewska EM, Harper MT, Williams CM, Savage JS, Goggs R, Fischer von Mollard G, Poole AW (2015) Syntaxin 8 regulates platelet dense granule secretion, aggregation, and thrombus stability. J Biol Chem 290(3):1536–1545. doi:10.1074/jbc.M114.602615
Tanabe K, Tachibana T, Yamashita T, Che YH, Yoneda Y, Ochi T, Tohyama M, Yoshikawa H et al (2000) The small GTP-binding protein TC10 promotes nerve elongation in neuronal cells, and its expression is induced during nerve regeneration in rats. J Neurosci 20(11):4138–4144
Khan IA, Luduena RF (1996) Phosphorylation of beta III-tubulin. Biochemistry 35(12):3704–3711. doi:10.1021/bi951247p
An S, Tsai C, Ronecker J, Bayly A, Herzog ED (2012) Spatiotemporal distribution of vasoactive intestinal polypeptide receptor 2 in mouse suprachiasmatic nucleus. J Comp Neurol 520(12):2730–2741. doi:10.1002/cne.23078
Kreis TE (1987) Microtubules containing detyrosinated tubulin are less dynamic. EMBO J 6(9):2597–2606
Beirowski B, Gustin J, Armour SM, Yamamoto H, Viader A, North BJ, Michan S, Baloh RH et al (2011) Sir-two-homolog 2 (Sirt2) modulates peripheral myelination through polarity protein Par-3/atypical protein kinase C (aPKC) signaling. Proc Natl Acad Sci U S A 108(43):E952–E961. doi:10.1073/pnas.1104969108
Acknowledgments
This work was supported by grants from the Agencia Nacional de Promoción Científica y Tecnológica, Argentina, PICT 1554 and 1646 (to SQ) and by the Secretaría de Ciencia y Técnica de la Universidad Nacional de Córdoba (SECYT-UNC-to SQ). We are indebted to Dr. Jennifer Petersen and Dr. Daniel Choquet for their help with the spinning disk microscopy experiments and to Dr. Corinne Lasmezas for critical reading of the manuscript.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing Interests
The authors declare that they have no competing interests.
Additional information
Alvaro F. Nieto Guil and Diego Grassi contributed equally in this article.
Electronic supplementary material
ESM 1
(GIF 140 kb)
Rights and permissions
About this article
Cite this article
Oksdath, M., Guil, A.F.N., Grassi, D. et al. The Motor KIF5C Links the Requirements of Stable Microtubules and IGF-1 Receptor Membrane Insertion for Neuronal Polarization. Mol Neurobiol 54, 6085–6096 (2017). https://doi.org/10.1007/s12035-016-0144-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12035-016-0144-4