Skip to main content
Log in

Role of STAT3 in Genesis and Progression of Human Malignant Gliomas

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Signal transducer and activator of transcription 3 (STAT3) is aberrantly activated in glioblastoma and has been identified as a relevant therapeutic target in this disease and many other human cancers. After two decades of intensive research, there is not yet any approved STAT3-based glioma therapy. In addition to the canonical activation by tyrosine 705 phosphorylation, concordant reports described a potential therapeutic relevance of other post-translational modifications including mainly serine 727 phosphorylation. Such reports reinforce the need to refine the strategy of targeting STAT3 in each concerned disease. This review focuses on the role of serine 727 and tyrosine 705 phosphorylation of STAT3 in glioma. It explores their contribution to glial cell transformation and to the mechanisms that make glioma escape to both immune control and standard treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Louis DN, Perry A, Reifenberger G, et al. (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol (Berl) 131:803–820. doi:10.1007/s00401-016-1545-1

    Article  Google Scholar 

  2. Ricard D, Idbaih A, Ducray F, et al. (2012) Primary brain tumours in adults. Lancet Lond Engl 379:1984–1996. doi:10.1016/S0140-6736(11)61346-9

    Article  Google Scholar 

  3. Ohgaki H, Kleihues P (2013) The definition of primary and secondary glioblastoma. Clin Cancer Res 19:764–772. doi:10.1158/1078-0432.CCR-12-3002

    Article  CAS  PubMed  Google Scholar 

  4. Stupp R, Mason WP, van den Bent MJ, et al. (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996. doi:10.1056/NEJMoa043330

    Article  CAS  PubMed  Google Scholar 

  5. Chan JL, Lee SW, Fraass BA, et al. (2002) Survival and failure patterns of high-grade gliomas after three-dimensional conformal radiotherapy. J Clin Oncol 20:1635–1642. doi:10.1200/JCO.20.6.1635

    Article  PubMed  Google Scholar 

  6. Yin A, Cheng J, Zhang X, Liu B (2013) The treatment of glioblastomas: a systematic update on clinical Phase III trials. Crit Rev Oncol Hematol 87:265–282. doi:10.1016/j.critrevonc.2013.01.007

    Article  PubMed  Google Scholar 

  7. Galli R, Binda E, Orfanelli U, et al. (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021. doi:10.1158/0008-5472.CAN-04-1364

    Article  CAS  PubMed  Google Scholar 

  8. Singh SK, Clarke ID, Terasaki M, et al. (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    CAS  PubMed  Google Scholar 

  9. Lee J, Son MJ, Woolard K, et al. (2008) Epigenetic-mediated dysfunction of the bone morphogenetic protein developmental pathway inhibits differentiation of human glioblastoma tumor initiating cells. Cancer Cell 13:69–80. doi:10.1016/j.ccr.2007.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang Y, Yang J, Zheng H, et al. (2009) Expression of mutant p53 proteins implicates a lineage relationship between neural stem cells and malignant astrocytic glioma in a murine model. Cancer Cell 15:514–526. doi:10.1016/j.ccr.2009.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Young GS, Macklin EA, Setayesh K, et al. (2011) Longitudinal MRI evidence for decreased survival among periventricular glioblastoma. J Neuro-Oncol 104:261–269. doi:10.1007/s11060-010-0477-1

    Article  Google Scholar 

  12. Jafri NF, Clarke JL, Weinberg V, et al. (2013) Relationship of glioblastoma multiforme to the subventricular zone is associated with survival. Neuro-. Oncologia 15:91–96. doi:10.1093/neuonc/nos268

    Article  CAS  Google Scholar 

  13. Network CGAR (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068. doi:10.1038/nature07385

    Article  CAS  Google Scholar 

  14. Brantley EC, Benveniste EN (2008) STAT-3: a molecular hub for signaling pathways in gliomas. Mol Cancer Res MCR. doi:10.1158/1541-7786.MCR-07-2180

    PubMed  Google Scholar 

  15. Wegenka UM, Buschmann J, Lütticken C, et al. (1993) Acute-phase response factor, a nuclear factor binding to acute-phase response elements, is rapidly activated by interleukin-6 at the posttranslational level. Mol Cell Biol 13:276–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Darnell JE, Kerr IM, Stark GR (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264:1415–1421

    Article  CAS  PubMed  Google Scholar 

  17. Hervas-Stubbs S, Perez-Gracia JL, Rouzaut A, et al. (2011) Direct effects of type I interferons on cells of the immune system. Clin Cancer Res 17:2619–2627. doi:10.1158/1078-0432.CCR-10-1114

    Article  CAS  PubMed  Google Scholar 

  18. Vallières L, Rivest S (2000) L’interleukine-6 dans le système nerveux central. médecine/sciences 16:936. doi:10.4267/10608/1761

    Article  Google Scholar 

  19. Miklossy G, Hilliard TS, Turkson J (2013) Therapeutic modulators of STAT signalling for human diseases. Nat Rev Drug Discov 12:611–629. doi:10.1038/nrd4088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Szeląg M, Czerwoniec A, Wesoly J, Bluyssen HAR (2014) Comparative screening and validation as a novel tool to identify STAT-specific inhibitors. Eur J Pharmacol 740:417–420. doi:10.1016/j.ejphar.2014.05.047

    Article  PubMed  CAS  Google Scholar 

  21. Yang J, Huang J, Dasgupta M, et al. (2010) Reversible methylation of promoter-bound STAT3 by histone-modifying enzymes. Proc Natl Acad Sci U S A 107:21499–21504. doi:10.1073/pnas.1016147107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. O’Shea JJ, Kanno Y, Chen X, Levy DE (2005) Stat acetylation—a key facet of cytokine signaling? Science 307:217–218. doi:10.1126/science.1108164

    Article  PubMed  CAS  Google Scholar 

  23. Ray S, Boldogh I, Brasier AR (2005) STAT3 NH2-terminal acetylation is activated by the hepatic acute-phase response and required for IL-6 induction of angiotensinogen. Gastroenterology 129:1616–1632. doi:10.1053/j.gastro.2005.07.055

    Article  CAS  PubMed  Google Scholar 

  24. Yuan Z, Guan Y, Chatterjee D, Chin YE (2005) Stat3 dimerization regulated by reversible acetylation of a single lysine residue. Science 307:269–273. doi:10.1126/science.1105166

    Article  CAS  PubMed  Google Scholar 

  25. Fan X, Khaki L, Zhu TS, et al. (2010) NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells 28:5–16. doi:10.1002/stem.254

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Qin HR, Kim H-J, Kim J-Y, et al. (2008) Activation of Stat3 through a phosphomimetic serine727 promotes prostate tumorigenesis independent of tyrosine705 phosphorylation. Cancer Res 68:7736–7741. doi:10.1158/0008-5472.CAN-08-1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Villalva C, Martin-Lannerée S, Cortes U, et al. (2011) STAT3 is essential for the maintenance of neurosphere-initiating tumor cells in patients with glioblastomas: a potential for targeted therapy? Int J Cancer 128:826–838. doi:10.1002/ijc.25416

    Article  CAS  PubMed  Google Scholar 

  28. Furqan M, Mukhi N, Lee B, Liu D (2013) Dysregulation of JAK-STAT pathway in hematological malignancies and JAK inhibitors for clinical application. Biomark Res 1. doi:10.1186/2050-7771-1-5

  29. Ren Z, Mao X, Mertens C, et al. (2008) Crystal structure of unphosphorylated STAT3 core fragment. Biochem Biophys Res Commun 374:1–5. doi:10.1016/j.bbrc.2008.04.049

    Article  CAS  PubMed  Google Scholar 

  30. Shuai K, Stark GR, Kerr IM, Darnell JE (1993) A single phosphotyrosine residue of Stat91 required for gene activation by interferon-gamma. Science 261:1744–1746

    Article  CAS  PubMed  Google Scholar 

  31. Caldenhoven E, van Dijk TB, Solari R, et al. (1996) STAT3β, a splice variant of transcription factor STAT3, is a dominant negative regulator of transcription. J Biol Chem 271:13221–13227. doi:10.1074/jbc.271.22.13221

    Article  CAS  PubMed  Google Scholar 

  32. Chakraborty A, White SM, Schaefer TS, et al. (1996) Granulocyte colony-stimulating factor activation of Stat3 alpha and Stat3 beta in immature normal and leukemic human myeloid cells. Blood 88:2442–2449

    CAS  PubMed  Google Scholar 

  33. Schaefer TS, Sanders LK, Nathans D (1995) Cooperative transcriptional activity of Jun and Stat3 beta, a short form of Stat3. Proc Natl Acad Sci U S A 92:9097–9101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hoey T, Zhang S, Schmidt N, et al. (2003) Distinct requirements for the naturally occurring splice forms Stat4α and Stat4β in IL-12 responses. EMBO J 22:4237–4248. doi:10.1093/emboj/cdg393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang D, Stravopodis D, Teglund S, et al. (1996) Naturally occurring dominant negative variants of Stat5. Mol Cell Biol 16:6141–6148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ripperger JA, Fritz S, Richter K, et al. (1995) Transcription factors Stat3 and Stat5b are present in rat liver nuclei late in an acute phase response and bind interleukin-6 response elements. J Biol Chem 270:29998–30006

    Article  CAS  PubMed  Google Scholar 

  37. Patel BKR, Pierce JH, LaRochelle WJ (1998) Regulation of interleukin 4-mediated signaling by naturally occurring dominant negative and attenuated forms of human Stat6. Proc Natl Acad Sci U S A 95:172–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chakraborty A, Tweardy DJ (1998) Granulocyte colony-stimulating factor activates a 72-kDa isoform of STAT3 in human neutrophils. J Leukoc Biol 64:675–680

    CAS  PubMed  Google Scholar 

  39. Azam M, Lee C, Strehlow I, Schindler C (1997) Functionally distinct isoforms of STAT5 are generated by protein processing. Immunity 6:691–701. doi:10.1016/S1074-7613(00)80445-8

    Article  CAS  PubMed  Google Scholar 

  40. Caldenhoven E, van Dijk TB, Raaijmakers JA, et al. (1999) Activation of a functionally distinct 80-kDa STAT5 isoform by IL-5 and GM-CSF in human eosinophils and neutrophils. Mol Cell Biol Res Commun MCBRC 1:95–101. doi:10.1006/mcbr.1999.0114

    Article  CAS  PubMed  Google Scholar 

  41. Sherman MA, Powell DR, Brown MA (2002) IL-4 induces the proteolytic processing of mast cell STAT6. J Immunol 169:3811–3818. doi:10.4049/jimmunol.169.7.3811

    Article  CAS  PubMed  Google Scholar 

  42. Ilaria RL, Hawley RG, Etten RAV (1999) Dominant negative mutants implicate STAT5 in myeloid cell proliferation and neutrophil differentiation. Blood 93:4154–4166

    CAS  PubMed  Google Scholar 

  43. Piazza F, Valens J, Lagasse E, Schindler C (2000) Myeloid differentiation of FdCP1 cells is dependent on Stat5 processing. Blood 96:1358–1365

    CAS  PubMed  Google Scholar 

  44. Furqan M, Akinleye A, Mukhi N, et al. (2013) STAT inhibitors for cancer therapy. J Hematol Oncol 6:90. doi:10.1186/1756-8722-6-90

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Lavecchia A, Di Giovanni C, Novellino E (2011) STAT-3 inhibitors: state of the art and new horizons for cancer treatment. Curr Med Chem 18:2359–2375

    Article  CAS  PubMed  Google Scholar 

  46. Yu H, Jove R (2004) The STATs of cancer—new molecular targets come of age. Nat Rev Cancer 4:97–105. doi:10.1038/nrc1275

    Article  CAS  PubMed  Google Scholar 

  47. Catlett-Falcone R, Landowski TH, Oshiro MM, et al. (1999) Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 10:105–115

    Article  CAS  PubMed  Google Scholar 

  48. Kim JE, Patel M, Ruzevick J, et al. (2014) STAT3 activation in glioblastoma: biochemical and therapeutic implications. Cancers 6:376–395. doi:10.3390/cancers6010376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhong Z, Wen Z, Darnell JE Jr (1994) Stat3 and Stat4: members of the family of signal transducers and activators of transcription. Proc Natl Acad Sci U S A 91:4806–4810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Takeda K, Noguchi K, Shi W, et al. (1997) Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc Natl Acad Sci U S A 94:3801–3804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Buckley RH, Wray BB, Belmaker EZ (1972) Extreme hyperimmunoglobulinemia E and undue susceptibility to infection. Pediatrics 49:59–70

    CAS  PubMed  Google Scholar 

  52. Davis SD, Schaller J, Wedgwood RJ (1966) Job’s syndrome. Recurrent, “cold”, staphylococcal abscesses. Lancet 1:1013–1015

    Article  CAS  PubMed  Google Scholar 

  53. Holland SM, DeLeo FR, Elloumi HZ, et al. (2007) STAT3 mutations in the hyper-IgE syndrome. N Engl J Med 357:1608–1619. doi:10.1056/NEJMoa073687

    Article  CAS  PubMed  Google Scholar 

  54. Kane A, Deenick EK, Ma CS, et al. (2014) STAT3 is a central regulator of lymphocyte differentiation and function. Curr Opin Immunol 28:49–57. doi:10.1016/j.coi.2014.01.015

    Article  CAS  PubMed  Google Scholar 

  55. Minegishi Y, Saito M, Tsuchiya S, et al. (2007) Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature 448:1058–1062. doi:10.1038/nature06096

    Article  CAS  PubMed  Google Scholar 

  56. Haapaniemi EM, Kaustio M, Rajala HLM, et al. (2014) Autoimmunity, hypogammaglobulinemia, lymphoproliferation and mycobacterial disease in patients with dominant activating mutations in STAT3. Blood blood 2014(04):570101. doi:10.1182/blood-2014-04-570101

    Google Scholar 

  57. Milner JD, Vogel TP, Forbes L, et al. (2015) Early-onset lymphoproliferation and autoimmunity caused by germline STAT3 gain-of-function mutations. Blood 125:591–599. doi:10.1182/blood-2014-09-602763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jerez A, Clemente MJ, Makishima H, et al. (2012) STAT3 mutations unify the pathogenesis of chronic lymphoproliferative disorders of NK cells and T-cell large granular lymphocyte leukemia. Blood 120:3048–3057. doi:10.1182/blood-2012-06-435297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Koskela HLM, Eldfors S, Ellonen P, et al. (2012) Somatic STAT3 mutations in large granular lymphocytic leukemia. N Engl J Med 366:1905–1913. doi:10.1056/NEJMoa1114885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Malek RL, Halvorsen SW (1999) Ciliary neurotrophic factor and phorbol ester each decrease selected STAT3 pools in neuroblastoma cells by proteasome-dependent mechanisms. Cytokine 11:192–199. doi:10.1006/cyto.1998.0421

    Article  CAS  PubMed  Google Scholar 

  61. Nie X, Ou-yang J, Xing Y, et al. (2015) Paeoniflorin inhibits human glioma cells via STAT3 degradation by the ubiquitin-proteasome pathway. Drug Des Devel Ther 9:5611–5622. doi:10.2147/DDDT.S93912

    PubMed  PubMed Central  Google Scholar 

  62. Mandal T, Bhowmik A, Chatterjee A, et al. (2014) Reduced phosphorylation of Stat3 at Ser-727 mediated by casein kinase 2—protein phosphatase 2A enhances Stat3 Tyr-705 induced tumorigenic potential of glioma cells. Cell Signal 26:1725–1734. doi:10.1016/j.cellsig.2014.04.003

    Article  CAS  PubMed  Google Scholar 

  63. Akira S, Nishio Y, Inoue M, et al. (1994) Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell 77:63–71

    Article  CAS  PubMed  Google Scholar 

  64. Zhong Z, Wen Z, Darnell JE (1994) Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 264:95–98

    Article  CAS  PubMed  Google Scholar 

  65. Grandis JR, Drenning SD, Chakraborty A, et al. (1998) Requirement of Stat3 but not Stat1 activation for epidermal growth factor receptor-mediated cell growth in vitro. J Clin Invest 102:1385–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sartor CI, Dziubinski ML, C-L Y, et al. (1997) Role of epidermal growth factor receptor and STAT-3 activation in autonomous proliferation of SUM-102PT human breast cancer cells. Cancer Res 57:978–987

    CAS  PubMed  Google Scholar 

  67. Vignais ML, Sadowski HB, Watling D, et al. (1996) Platelet-derived growth factor induces phosphorylation of multiple JAK family kinases and STAT proteins. Mol Cell Biol 16:1759–1769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. CL Y, Meyer DJ, Campbell GS, et al. (1995) Enhanced DNA-binding activity of a Stat3-related protein in cells transformed by the src oncoprotein. Science 269:81–83

    Article  Google Scholar 

  69. Saharinen P, Ekman N, Sarvas K, et al. (1997) The Bmx tyrosine kinase induces activation of the stat signaling pathway, which is specifically inhibited by protein kinase Cδ. Blood 90:4341–4353

    CAS  PubMed  Google Scholar 

  70. Wen X, Lin HH, Shih H-M, et al. (1999) Kinase activation of the non-receptor tyrosine kinase Etk/BMX alone is sufficient to transactivate STAT-mediated gene expression in salivary and lung epithelial cells. J Biol Chem 274:38204–38210. doi:10.1074/jbc.274.53.38204

    Article  CAS  PubMed  Google Scholar 

  71. Allen JC, Talab F, Zuzel M, et al. (2011) c-Abl regulates Mcl-1 gene expression in chronic lymphocytic leukemia cells. Blood 117:2414–2422. doi:10.1182/blood-2010-08-301176

    Article  CAS  PubMed  Google Scholar 

  72. Coppo P, Dusanter-Fourt I, Millot G, et al. (2003) Constitutive and specific activation of STAT3 by BCR-ABL in embryonic stem cells. Oncogene 22:4102–4110. doi:10.1038/sj.onc.1206607

    Article  CAS  PubMed  Google Scholar 

  73. Chung J, Uchida E, Grammer TC, Blenis J (1997) STAT3 serine phosphorylation by ERK-dependent and -independent pathways negatively modulates its tyrosine phosphorylation. Mol Cell Biol 17:6508–6516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lim CP, Cao X (1999) Serine phosphorylation and negative regulation of Stat3 by JNK. J Biol Chem 274:31055–31061. doi:10.1074/jbc.274.43.31055

    Article  CAS  PubMed  Google Scholar 

  75. Wen Z, Darnell JE (1997) Mapping of Stat3 serine phosphorylation to a single residue (727) and evidence that serine phosphorylation has no influence on DNA binding of Stat1 and Stat3. Nucleic Acids Res 25:2062–2067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jain N, Zhang T, Kee WH, et al. (1999) Protein kinase C δ associates with and phosphorylates Stat3 in an interleukin-6-dependent manner. J Biol Chem 274:24392–24400. doi:10.1074/jbc.274.34.24392

    Article  CAS  PubMed  Google Scholar 

  77. Aziz MH, Hafeez BB, Sand JM, et al. (2010) Protein kinase C? mediates Stat3Ser727 phosphorylation, Stat3-regulated gene expression and cell invasion in various human cancer cell lines via integration with MAPK cascade (RAF-1, MEK1/2, and ERK1/2. Oncogene 29:3100–3109. doi:10.1038/onc.2010.63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Aziz MH, Manoharan HT, Church DR, et al. (2007) Protein kinase Cε interacts with signal transducers and activators of transcription 3 (Stat3), phosphorylates Stat3Ser727, and regulates its constitutive activation in prostate cancer. Cancer Res 67:8828–8838. doi:10.1158/0008-5472.CAN-07-1604

    Article  CAS  PubMed  Google Scholar 

  79. Xu Y, Li Z, Zhang C, et al. (2014) Knockdown of PKCε expression inhibits growth, induces apoptosis and decreases invasiveness of human glioma cells partially through Stat3. J Mol Neurosci:1–11. doi:10.1007/s12031-014-0341-4

  80. Lam E, Choi SH, Pareek TK, et al. (2015) Cyclin-dependent kinase 5 represses Foxp3 gene expression and Treg development through specific phosphorylation of Stat3 at serine 727. Mol Immunol 67:317–324. doi:10.1016/j.molimm.2015.06.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Turkson J, Bowman T, Garcia R, et al. (1998) Stat3 activation by src induces specific gene regulation and is required for cell transformation. Mol Cell Biol 18:2545–2552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Miyakoshi M, Yamamoto M, Tanaka H, Ogawa K (2014) Serine 727 phosphorylation of STAT3: an early change in mouse hepatocarcinogenesis induced by neonatal treatment with diethylnitrosamine. Mol Carcinog 53:67–76. doi:10.1002/mc.21949

    Article  CAS  PubMed  Google Scholar 

  83. Sherry MM, Reeves A, Wu JK, Cochran BH (2009) STAT3 is required for proliferation and maintenance of multipotency in glioblastoma stem cells. Stem Cells 27:2383–2392. doi:10.1002/stem.185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jiang Y, Janku F, Subbiah V, et al. (2013) Germline PTPRD mutations in Ewing sarcoma: biologic and clinical implications. Oncotarget 4:884–889

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ostman A, Hellberg C, Böhmer FD (2006) Protein-tyrosine phosphatases and cancer. Nat Rev Cancer 6:307–320. doi:10.1038/nrc1837

    Article  PubMed  CAS  Google Scholar 

  86. Hou J, Xu J, Jiang R, et al. (2013) Estrogen-sensitive PTPRO expression represses hepatocellular carcinoma progression by control of STAT3. Hepatology 57:678–688. doi:10.1002/hep.25980

    Article  CAS  PubMed  Google Scholar 

  87. Lund IK, Hansen JA, Andersen HS, et al. (2005) Mechanism of protein tyrosine phosphatase 1B-mediated inhibition of leptin signalling. J Mol Endocrinol 34:339–351. doi:10.1677/jme.1.01694

    Article  CAS  PubMed  Google Scholar 

  88. Lee H, Morales LD, Slaga TJ, Kim DJ (2015) Activation of T-cell protein-tyrosine phosphatase suppresses keratinocyte survival and proliferation following UVB irradiation. J Biol Chem 290:13–24. doi:10.1074/jbc.M114.611681

    Article  CAS  PubMed  Google Scholar 

  89. Yamamoto T, Sekine Y, Kashima K, et al. (2002) The nuclear isoform of protein-tyrosine phosphatase TC-PTP regulates interleukin-6-mediated signaling pathway through STAT3 dephosphorylation. Biochem Biophys Res Commun 297:811–817. doi:10.1016/S0006-291X(02)02291-X

    Article  CAS  PubMed  Google Scholar 

  90. Phromnoi K, Prasad S, Gupta SC, et al. (2011) Dihydroxypentamethoxyflavone down-regulates constitutive and inducible signal transducers and activators of transcription-3 through the induction of tyrosine phosphatase SHP-1. Mol Pharmacol 80:889–899. doi:10.1124/mol.111.073676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yin S, Wu H, Lv J, et al. (2014) SHP-1 arrests mouse early embryo development through downregulation of nanog by dephosphorylation of STAT3. PLoS One. doi:10.1371/journal.pone.0086330

    Google Scholar 

  92. Bu Y, Su F, Wang X, et al. (2014) Protein tyrosine phosphatase PTPN9 regulates erythroid cell development through STAT3 dephosphorylation in zebrafish. J Cell Sci 127:2761–2770. doi:10.1242/jcs.145367

    Article  CAS  PubMed  Google Scholar 

  93. Su F, Ren F, Rong Y, et al. (2012) Protein tyrosine phosphatase Meg2 dephosphorylates signal transducer and activator of transcription 3 and suppresses tumor growth in breast cancer. Breast Cancer Res BCR 14:R38. doi:10.1186/bcr3134

    Article  CAS  PubMed  Google Scholar 

  94. Kim DJ, Tremblay ML, DiGiovanni J (2010) Protein tyrosine phosphatases, TC-PTP, SHP1, and SHP2, cooperate in rapid dephosphorylation of Stat3 in keratinocytes following UVB irradiation. PLoS One. doi:10.1371/journal.pone.0010290

    Google Scholar 

  95. Su Z, Tian H, Song H, et al. (2013) PTPN12 inhibits oral squamous epithelial carcinoma cell proliferation and invasion and can be used as a prognostic marker. Med Oncol Northwood Lond Engl 30:618. doi:10.1007/s12032-013-0618-4

    Article  CAS  Google Scholar 

  96. Wakahara R, Kunimoto H, Tanino K, et al. (2012) Phospho-Ser727 of STAT3 regulates STAT3 activity by enhancing dephosphorylation of phospho-Tyr705 largely through TC45. Genes Cells 17:132–145. doi:10.1111/j.1365-2443.2011.01575.x

    Article  CAS  PubMed  Google Scholar 

  97. Z-S X, Zhang H-X, Zhang Y-L, et al. (2016) PASD1 promotes STAT3 activity and tumor growth by inhibiting TC45-mediated dephosphorylation of STAT3 in the nucleus. J Mol Cell Biol 8:221–231. doi:10.1093/jmcb/mjw005

    Article  Google Scholar 

  98. Seshacharyulu P, Pandey P, Datta K, Batra SK (2013) Phosphatase: PP2A structural importance, regulation and its aberrant expression in cancer. Cancer Lett. doi:10.1016/j.canlet.2013.02.036

    PubMed  PubMed Central  Google Scholar 

  99. Zhang J, Chen F, Li W, et al. (2012) 14-3-3ζ interacts with Stat3 and regulates its constitutive activation in multiple myeloma cells. PLoS One. doi:10.1371/journal.pone.0029554

    Google Scholar 

  100. Ren F, Su F, Ning H, et al. (2013) SIPAR negatively regulates STAT3 signaling and inhibits progression of melanoma. Cell Signal 25:2272–2280. doi:10.1016/j.cellsig.2013.07.023

    Article  CAS  PubMed  Google Scholar 

  101. Wang P, Xue Y, Han Y, et al. (2014) The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science 344:310–313. doi:10.1126/science.1251456

    Article  CAS  PubMed  Google Scholar 

  102. Chung CD, Liao J, Liu B, et al. (1997) Specific inhibition of Stat3 signal transduction by PIAS3. Science 278:1803–1805. doi:10.1126/science.278.5344.1803

    Article  CAS  PubMed  Google Scholar 

  103. Palvimo JJ (2007) PIAS proteins as regulators of small ubiquitin-related modifier (SUMO) modifications and transcription. Biochem Soc Trans 35:1405–1408. doi:10.1042/BST0351405

    Article  CAS  PubMed  Google Scholar 

  104. Starr R, Willson TA, Viney EM, et al. (1997) A family of cytokine-inducible inhibitors of signalling. Nature 387:917–921. doi:10.1038/43206

    Article  CAS  PubMed  Google Scholar 

  105. Lee D, Wang Y-H, Kalaitzidis D, et al. (2016) Endogenous transmembrane protein UT2 inhibits pSTAT3 and suppresses hematological malignancy. J Clin Invest 126:1300–1310. doi:10.1172/JCI84620

    Article  PubMed  PubMed Central  Google Scholar 

  106. Dasgupta M, Unal H, Willard B, et al. (2014) Critical role for lysine 685 in gene expression mediated by transcription factor unphosphorylated STAT3. J Biol Chem 289:30763–30771. doi:10.1074/jbc.M114.603894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yang J, Liao X, Agarwal MK, et al. (2007) Unphosphorylated STAT3 accumulates in response to IL-6 and activates transcription by binding to NFκB. Genes Dev 21:1396–1408. doi:10.1101/gad.1553707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gunaje JJ, Jayarama Bhat G (2001) Involvement of tyrosine phosphatase PTP1D in the inhibition of interleukin-6-induced Stat3 signaling by α-thrombin. Biochem Biophys Res Commun 288:252–257. doi:10.1006/bbrc.2001.5759

    Article  CAS  PubMed  Google Scholar 

  109. Lin S, Saxena NK, Ding X, et al. (2006) Leptin increases tissue inhibitor of metalloproteinase I (TIMP-1) gene expression by a specificity protein 1/signal transducer and activator of transcription 3 mechanism. Mol Endocrinol Baltim Md 20:3376–3388. doi:10.1210/me.2006-0177

    Article  CAS  Google Scholar 

  110. Wang LH, Yang XY, Zhang X, et al. (2004) Transcriptional inactivation of STAT3 by PPARγ suppresses IL-6-responsive multiple myeloma cells. Immunity 20:205–218. doi:10.1016/S1074-7613(04)00030-5

    Article  CAS  PubMed  Google Scholar 

  111. Nakashima K, Yanagisawa M, Arakawa H, et al. (1999) Synergistic signaling in fetal brain by STAT3-Smad1 complex bridged by p300. Science 284:479–482. doi:10.1126/science.284.5413.479

    Article  CAS  PubMed  Google Scholar 

  112. Matsuda T, Junicho A, Yamamoto T, et al. (2001) Cross-talk between signal transducer and activator of transcription 3 and androgen receptor signaling in prostate carcinoma cells. Biochem Biophys Res Commun 283:179–187. doi:10.1006/bbrc.2001.4758

    Article  CAS  PubMed  Google Scholar 

  113. Yu Z, Zhang W, Kone BC (2002) Signal transducers and activators of transcription 3 (STAT3) inhibits transcription of the inducible nitric oxide synthase gene by interacting with nuclear factor kappaB. Biochem J 367:97–105. doi:10.1042/BJ20020588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhang X, Wrzeszczynska MH, Horvath CM, Darnell JE (1999) Interacting regions in Stat3 and c-Jun that participate in cooperative transcriptional activation. Mol Cell Biol 19:7138–7146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Frattini V, Trifonov V, Chan JM, et al. (2013) The integrated landscape of driver genomic alterations in glioblastoma. Nat Genet 45:1141–1149. doi:10.1038/ng.2734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lo H-W, Cao X, Zhu H, Ali-Osman F (2008) Constitutively activated STAT3 frequently coexpresses with epidermal growth factor receptor in high-grade gliomas and targeting STAT3 sensitizes them to Iressa and alkylators. Clin Cancer Res 14:6042–6054. doi:10.1158/1078-0432.CCR-07-4923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chua CY, Liu Y, Granberg KJ, et al. (2016) IGFBP2 potentiates nuclear EGFR-STAT3 signaling. Oncogene 35:738–747. doi:10.1038/onc.2015.131

    Article  CAS  PubMed  Google Scholar 

  118. Chiou G-Y, Chien C-S, Wang M-L, et al. (2013) Epigenetic regulation of the miR142-3p/interleukin-6 circuit in glioblastoma. Mol Cell 52:693–706. doi:10.1016/j.molcel.2013.11.009

    Article  CAS  PubMed  Google Scholar 

  119. Tchirkov A, Khalil T, Chautard E, et al. (2007) Interleukin-6 gene amplification and shortened survival in glioblastoma patients. Br J Cancer 96:474–476. doi:10.1038/sj.bjc.6603586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Tchirkov A, Rolhion C, Bertrand S, et al. (2001) IL-6 gene amplification and expression in human glioblastomas. Br J Cancer 85:518–522. doi:10.1054/bjoc.2001.1942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Heinrich PC, Behrmann I, Muller-Newen G, et al. (1998) Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J 334:297–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chen S-H, Benveniste EN (2004) Oncostatin M: a pleiotropic cytokine in the central nervous system. Cytokine Growth Factor Rev 15:379–391. doi:10.1016/j.cytogfr.2004.06.002

    Article  CAS  PubMed  Google Scholar 

  123. Grant SL, Begley CG (1999) The oncostatin M signalling pathway: reversing the neoplastic phenotype? Mol Med Today 5:406–412. doi:10.1016/S1357-4310(99)01540-3

    Article  CAS  PubMed  Google Scholar 

  124. Natesh K, Bhosale D, Desai A, et al. (2015) Oncostatin-M differentially regulates mesenchymal and proneural signature genes in gliomas via STAT3 signaling. Neoplasia N Y N 17:225–237. doi:10.1016/j.neo.2015.01.001

    Article  CAS  Google Scholar 

  125. Jahani-Asl A, Yin H, Soleimani VD, et al. (2016) Control of glioblastoma tumorigenesis by feed-forward cytokine signaling. Nat Neurosci 19:798–806. doi:10.1038/nn.4295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wang H, Lathia JD, Wu Q, et al. (2009) Targeting interleukin 6 signaling suppresses glioma stem cell survival and tumor growth. Stem Cells Dayt Ohio 27:2393–2404. doi:10.1002/stem.188

    Article  CAS  Google Scholar 

  127. Liu Q, Li G, Li R, et al. (2010) IL-6 promotion of glioblastoma cell invasion and angiogenesis in U251 and T98G cell lines. J Neuro-Oncol 100:165–176. doi:10.1007/s11060-010-0158-0

    Article  CAS  Google Scholar 

  128. Akil H, Abbaci A, Lalloué F, et al. (2015) IL22/IL-22R pathway induces cell survival in human glioblastoma cells. PLoS One 10:e0119872. doi:10.1371/journal.pone.0119872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Loeffler S, Fayard B, Weis J, Weissenberger J (2005) Interleukin-6 induces transcriptional activation of vascular endothelial growth factor (VEGF) in astrocytes in vivo and regulates VEGF promoter activity in glioblastoma cells via direct interaction between STAT3 and Sp1. Int J Cancer 115:202–213. doi:10.1002/ijc.20871

    Article  CAS  PubMed  Google Scholar 

  130. Xu Q, Briggs J, Park S, et al. (2005) Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways. Oncogene 24:5552–5560. doi:10.1038/sj.onc.1208719

    Article  CAS  PubMed  Google Scholar 

  131. Dong Y, Jia L, Wang X, et al. (2011) Selective inhibition of PDGFR by imatinib elicits the sustained activation of ERK and downstream receptor signaling in malignant glioma cells. Int J Oncol 38(2):555–569. doi:10.3892/ijo.2010.861

  132. Guryanova OA, Wu Q, Cheng L, et al. (2011) Non-receptor tyrosine kinase BMX maintains self-renewal and tumorigenic potential of glioblastoma stem cells by activating STAT3. Cancer Cell 19:498–511. doi:10.1016/j.ccr.2011.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sharif TR, Sharif M (1999) Overexpression of protein kinase C epsilon in astroglial brain tumor derived cell lines and primary tumor samples. Int J Oncol. doi:10.3892/ijo.15.2.237

    Google Scholar 

  134. Androutsellis-Theotokis A, Leker RR, Soldner F, et al. (2006) Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442:823–826. doi:10.1038/nature04940

    Article  CAS  PubMed  Google Scholar 

  135. Garner JM, Fan M, Yang CH, et al. (2013) Constitutive activation of signal transducer and activator of transcription 3 (STAT3) and nuclear factor κB signaling in glioblastoma cancer stem cells regulates the notch pathway. J Biol Chem 288:26167–26176. doi:10.1074/jbc.M113.477950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Brantley EC, Nabors LB, Gillespie GY, et al. (2008) Loss of PIAS3 expression in glioblastoma multiforme tumors: implications for STAT-3 activation and gene expression. Clin Cancer Res Off J Am Assoc Cancer Res. doi:10.1158/1078-0432.CCR-08-0618

    Google Scholar 

  137. Yasukawa H, Sasaki A, Yoshimura A (2000) Negative regulation of cytokine signaling pathways. Annu Rev Immunol 18:143–164. doi:10.1146/annurev.immunol.18.1.143

    Article  CAS  PubMed  Google Scholar 

  138. Yoshimura A, Naka T, Kubo M (2007) SOCS proteins, cytokine signalling and immune regulation. Nat Rev Immunol 7:454–465. doi:10.1038/nri2093

    Article  CAS  PubMed  Google Scholar 

  139. Sutherland KD, Lindeman GJ, Choong DYH, et al. (2004) Differential hypermethylation of SOCS genes in ovarian and breast carcinomas. Oncogene 23:7726–7733. doi:10.1038/sj.onc.1207787

    Article  CAS  PubMed  Google Scholar 

  140. Zhou H, Miki R, Eeva M, et al. (2007) Reciprocal regulation of SOCS 1 and SOCS3 enhances resistance to ionizing radiation in glioblastoma multiforme. Clin Cancer Res 13:2344–2353. doi:10.1158/1078-0432.CCR-06-2303

    Article  CAS  PubMed  Google Scholar 

  141. Solomon DA, Kim J-S, Cronin JC, et al. (2008) Mutational inactivation of PTPRD in glioblastoma multiforme and malignant melanoma. Cancer Res 68:10300–10306. doi:10.1158/0008-5472.CAN-08-3272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Veeriah S, Brennan C, Meng S, et al. (2009) The tyrosine phosphatase PTPRD is a tumor suppressor that is frequently inactivated and mutated in glioblastoma and other human cancers. Proc Natl Acad Sci U S A 106:9435–9440. doi:10.1073/pnas.0900571106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ortiz B, Fabius AWM, WH W, et al. (2014) Loss of the tyrosine phosphatase PTPRD leads to aberrant STAT3 activation and promotes gliomagenesis. Proc Natl Acad Sci 111:8149–8154. doi:10.1073/pnas.1401952111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lee K, Byun K, Hong W, et al. (2013) Proteome-wide discovery of mislocated proteins in cancer. Genome Res 23:1283–1294. doi:10.1101/gr.155499.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Abou-Ghazal M, Yang DS, Qiao W, et al. (2008) The incidence, correlation with tumor-infiltrating inflammation, and prognosis of phosphorylated STAT3 expression in human gliomas. Clin Cancer Res 14:8228–8235. doi:10.1158/1078-0432.CCR-08-1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kohsaka S, Wang L, Yachi K, et al. (2012) STAT3 inhibition overcomes temozolomide resistance in glioblastoma by downregulating MGMT expression. Mol Cancer Ther 11:1289–1299. doi:10.1158/1535-7163.MCT-11-0801

    Article  CAS  PubMed  Google Scholar 

  147. Mizoguchi M, Betensky RA, Batchelor TT, et al. (2006) Activation of STAT3, MAPK, and AKT in malignant astrocytic gliomas: correlation with EGFR status, tumor grade, and survival. J Neuropathol Exp Neurol 65:1181–1188. doi:10.1097/01.jnen.0000248549.14962.b2

    Article  CAS  PubMed  Google Scholar 

  148. Wang H, Wang H, Zhang W, et al. (2004) Analysis of the activation status of Akt, NFκB, and Stat3 in human diffuse gliomas. Lab Investig 84:941–951. doi:10.1038/labinvest.3700123

    Article  CAS  PubMed  Google Scholar 

  149. Birner P, Toumangelova-Uzeir K, Natchev S, Guentchev M (2010) STAT3 tyrosine phosphorylation influences survival in glioblastoma. J Neuro-Oncol 100:339–343. doi:10.1007/s11060-010-0195-8

    Article  CAS  Google Scholar 

  150. Schaefer LK, Ren Z, Fuller GN, Schaefer TS (2002) Constitutive activation of Stat3alpha in brain tumors: localization to tumor endothelial cells and activation by the endothelial tyrosine kinase receptor (VEGFR-2. Oncogene 21:2058–2065. doi:10.1038/sj.onc.1205263

    Article  CAS  PubMed  Google Scholar 

  151. Aoki H, Iwado E, Eller MS, et al. (2007) Telomere 3′ overhang-specific DNA oligonucleotides induce autophagy in malignant glioma cells. FASEB J 21:2918–2930. doi:10.1096/fj.06-6941com

    Article  PubMed  Google Scholar 

  152. Lin G-S, Chen Y-P, Lin Z-X, et al. (2014) STAT3 serine 727 phosphorylation influences clinical outcome in glioblastoma. Int J Clin Exp Pathol 7:3141–3149

    PubMed  PubMed Central  Google Scholar 

  153. Ouédraogo ZG, Müller-Barthélémy M, Kemeny J-L, et al. (2016) STAT3 serine 727 phosphorylation: a relevant target to radiosensitize human glioblastoma. Brain Pathol Zurich Switz 26:18–30. doi:10.1111/bpa.12254

    Article  CAS  Google Scholar 

  154. Alvarez JV, Mukherjee N, Chakravarti A, et al. (2007) A STAT3 gene expression signature in gliomas is associated with a poor prognosis. Transl Oncogenomics 2:99–105

    PubMed  PubMed Central  Google Scholar 

  155. Carro MS, Lim WK, Alvarez MJ, et al. (2010) The transcriptional network for mesenchymal transformation of brain tumors. Nature 463:318–325. doi:10.1038/nature08712

    Article  CAS  PubMed  Google Scholar 

  156. Cooper LAD, Gutman DA, Chisolm C, et al. (2012) The tumor microenvironment strongly impacts master transcriptional regulators and gene expression class of glioblastoma. Am J Pathol 180:2108–2119. doi:10.1016/j.ajpath.2012.01.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Lin G-S, Yang L-J, Wang X-F, et al. (2014) STAT3 Tyr705 phosphorylation affects clinical outcome in patients with newly diagnosed supratentorial glioblastoma. Med Oncol 31:1–7. doi:10.1007/s12032-014-0924-5

    Google Scholar 

  158. Smilowitz HM, Weissenberger J, Weis J, et al. (2007) Orthotopic transplantation of v-src-expressing glioma cell lines into immunocompetent mice: establishment of a new transplantable in vivo model for malignant glioma. J Neurosurg 106:652–659. doi:10.3171/jns.2007.106.4.652

    Article  PubMed  Google Scholar 

  159. Weissenberger J, Steinbach JP, Malin G, et al. (1997) Development and malignant progression of astrocytomas in GFAP-v-src transgenic mice. Oncogene 14:2005–2013. doi:10.1038/sj.onc.1201168

    Article  CAS  PubMed  Google Scholar 

  160. Schlessinger K, Levy DE (2005) Malignant transformation but not normal cell growth depend on STAT3. Cancer Res 65:5828–5834. doi:10.1158/0008-5472.CAN-05-0317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Bromberg JF, Horvath CM, Besser D, et al. (1998) Stat3 activation is required for cellular transformation by v-src. Mol Cell Biol 18:2553–2558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Bromberg JF, Wrzeszczynska MH, Devgan G, et al. (1999) Stat3 as an oncogene. Cell 98:295–303. doi:10.1016/S0092-8674(00)81959-5

    Article  CAS  PubMed  Google Scholar 

  163. Dechow TN, Pedranzini L, Leitch A, et al. (2004) Requirement of matrix metalloproteinase-9 for the transformation of human mammary epithelial cells by Stat3-C. Proc Natl Acad Sci U S A 101:10602–10607. doi:10.1073/pnas.0404100101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Macias E, Rao D, Carbajal S, et al. (2014) Stat3 binds to mtDNA and regulates mitochondrial gene expression in keratinocytes. J Invest Dermatol 134:1971–1980. doi:10.1038/jid.2014.68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Capron C, Jondeau K, Casetti L, et al. (2014) Viability and stress protection of chronic lymphoid leukemia cells involves overactivation of mitochondrial phosphoSTAT3Ser727. Cell Death Dis 5:e1451. doi:10.1038/cddis.2014.393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Yu C, Huo X, Agoston AT, et al. (2015) Mitochondrial STAT3 contributes to transformation of Barrett’s epithelial cells that express oncogenic Ras in a p53-independent fashion. Am J Physiol Gastrointest Liver Physiol 309:G146–G161. doi:10.1152/ajpgi.00462.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. de la Iglesia N, Konopka G, Lim KL, et al. (2008) Deregulation of a STAT3-IL8 signaling pathway promotes human glioblastoma cell proliferation and invasiveness. J Neurosci 28:5870–5878. doi:10.1523/JNEUROSCI.5385-07.2008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Konnikova L, Kotecki M, Kruger MM, Cochran BH (2003) Knockdown of STAT3 expression by RNAi induces apoptosis in astrocytoma cells. BMC Cancer 3:23. doi:10.1186/1471-2407-3-23

    Article  PubMed  PubMed Central  Google Scholar 

  169. Rahaman SO, Harbor PC, Chernova O, et al. (2002) Inhibition of constitutively active Stat3 suppresses proliferation and induces apoptosis in glioblastoma multiforme cells. Oncogene 21:8404–8413. doi:10.1038/sj.onc.1206047

    Article  CAS  PubMed  Google Scholar 

  170. Shen J, Li R, Li G (2009) Inhibitory effects of decoy-ODN targeting activated STAT3 on human glioma growth in vivo. Vivo Athens Greece 23:237–243

    CAS  Google Scholar 

  171. Dasgupta A, Raychaudhuri B, Haqqi T, et al. (2009) Stat3 activation is required for the growth of U87 cell-derived tumours in mice. Eur J Cancer 45:677–684. doi:10.1016/j.ejca.2008.11.027

    Article  CAS  PubMed  Google Scholar 

  172. Yue P, Lopez-Tapia F, Paladino D, et al. (2016) Hydroxamic acid and benzoic acid-based STAT3 inhibitors suppress human glioma and breast cancer phenotypes in vitro and in vivo. Cancer Res 76:652–663. doi:10.1158/0008-5472.CAN-14-3558

    Article  CAS  PubMed  Google Scholar 

  173. Peng T, Zhou L, Zuo L, Luan Y (2016) MiR-506 functions as a tumor suppressor in glioma by targeting STAT3. Oncol Rep 35:1057–1064. doi:10.3892/or.2015.4406

    Article  CAS  PubMed  Google Scholar 

  174. Hong L, Ya-Wei L, Hai W, et al. (2016) MiR-519a functions as a tumor suppressor in glioma by targeting the oncogenic STAT3 pathway. J Neuro-Oncol 128:35–45. doi:10.1007/s11060-016-2095-z

    Article  CAS  Google Scholar 

  175. Yuan X, Du J, Hua S, et al. (2015) Suppression of autophagy augments the radiosensitizing effects of STAT3 inhibition on human glioma cells. Exp Cell Res 330:267–276. doi:10.1016/j.yexcr.2014.09.006

    Article  CAS  PubMed  Google Scholar 

  176. Zou M, Hu C, You Q, et al. (2015) Oroxylin a induces autophagy in human malignant glioma cells via the mTOR-STAT3-notch signaling pathway. Mol Carcinog 54:1363–1375. doi:10.1002/mc.22212

    Article  CAS  PubMed  Google Scholar 

  177. Gulati N, Karsy M, Albert L, et al. (2009) Involvement of mTORC1 and mTORC2 in regulation of glioblastoma multiforme growth and motility Int J Oncol 35(4):731–740

  178. Senft C, Priester M, Polacin M, et al. (2011) Inhibition of the JAK-2/STAT3 signaling pathway impedes the migratory and invasive potential of human glioblastoma cells. J Neuro-Oncol 101:393–403. doi:10.1007/s11060-010-0273-y

    Article  CAS  Google Scholar 

  179. R L (2010) IL-6 augments the invasiveness of U87MG human glioblastoma multiforme cells via up-regulation of MMP-2 and fascin-1. Oncol Rep. doi:10.3892/or_00000795

    Google Scholar 

  180. Priester M, Copanaki E, Vafaizadeh V, et al. (2013) STAT3 silencing inhibits glioma single cell infiltration and tumor growth. Neuro-. Oncologia 15:840–852. doi:10.1093/neuonc/not025

    CAS  Google Scholar 

  181. Kesanakurti D, Chetty C, Maddirela DR, et al. (2013) Essential role of cooperative NF-?B and Stat3 recruitment to ICAM-1 intronic consensus elements in the regulation of radiation-induced invasion and migration in glioma. Oncogene. doi:10.1038/onc.2012.546

    Google Scholar 

  182. Singh SK, Bhardwaj R, Wilczynska KM, et al. (2011) A complex of nuclear factor I-X3 and STAT3 regulates astrocyte and glioma migration through the secreted glycoprotein YKL-40. J Biol Chem 286:39893–39903. doi:10.1074/jbc.M111.257451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Xu L, Xiao H, Xu M, et al. (2011) Glioma-derived T cell immunoglobulin- and mucin domain-containing molecule-4 (TIM4) contributes to tumor tolerance. J Biol Chem 286:36694–36699. doi:10.1074/jbc.M111.292540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. See AP, Han JE, Phallen J, et al. (2012) The role of STAT3 activation in modulating the immune microenvironment of GBM. J Neuro-Oncol 110:359–368. doi:10.1007/s11060-012-0981-6

    Article  CAS  Google Scholar 

  185. Oosterhoff D, Lougheed S, van de Ven R, et al. (2012) Tumor-mediated inhibition of human dendritic cell differentiation and function is consistently counteracted by combined p38 MAPK and STAT3 inhibition. Oncoimmunology 1:649–658. doi:10.4161/onci.20365

    Article  PubMed  PubMed Central  Google Scholar 

  186. Wei J, Barr J, Kong L-Y, et al. (2010) Glioblastoma cancer-initiating cells inhibit T cell proliferation and effector responses by the STAT3 pathway. Mol Cancer Ther 9:67–78. doi:10.1158/1535-7163.MCT-09-0734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Wu A, Wei J, Kong L-Y, et al. (2010) Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro Oncol 12:1113–1125. doi:10.1093/neuonc/noq082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Fujita M, Zhu X, Sasaki K, et al. (2008) Inhibition of STAT3 promotes the efficacy of adoptive transfer therapy using type-1 CTLs by modulation of the immunological microenvironment in a murine intracranial glioma. J Immunol 180:2089–2098. doi:10.4049/jimmunol.180.4.2089

    Article  CAS  PubMed  Google Scholar 

  189. Yao Y, Ye H, Qi Z, et al. (2016) B7-H4(B7x)-mediated cross-talk between glioma-initiating cells and macrophages via the IL6/JAK/STAT3 pathway lead to poor prognosis in glioma patients. Clin Cancer Res 22:2778–2790. doi:10.1158/1078-0432.CCR-15-0858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Wei J, Wu A, Kong L-Y, et al. (2011) Hypoxia potentiates glioma-mediated immunosuppression. PLoS One. doi:10.1371/journal.pone.0016195

    Google Scholar 

  191. Hussain SF, Kong L-Y, Jordan J, et al. (2007) A novel small molecule inhibitor of signal transducers and activators of transcription 3 reverses immune tolerance in malignant glioma patients. Cancer Res 67:9630–9636. doi:10.1158/0008-5472.CAN-07-1243

    Article  CAS  PubMed  Google Scholar 

  192. van Cruijsen H, Oosterhoff D, Lindenberg JJ, et al. (2011) Glioblastoma-induced inhibition of Langerhans cell differentiation from CD34(+) precursors is mediated by IL-6 but unaffected by JAK2/STAT3 inhibition. Immunotherapy 3:1051–1061. doi:10.2217/imt.11.107

    Article  PubMed  CAS  Google Scholar 

  193. Ferguson SD, Srinivasan VM, Heimberger AB (2015) The role of STAT3 in tumor-mediated immune suppression. J Neuro-Oncol 123:385–394. doi:10.1007/s11060-015-1731-3

    Article  CAS  Google Scholar 

  194. Kang S-H, MO Y, Park K-J, et al. (2010) Activated STAT3 regulates hypoxia-induced angiogenesis and cell migration in human glioblastoma. Neurosurgery 67:1386–1395 . doi:10.1227/NEU.0b013e3181f1c0cddiscussion 1395

    Article  PubMed  Google Scholar 

  195. Yuan G, Yan S, Xue H, et al. (2015) JSI-124 suppresses invasion and angiogenesis of glioblastoma cells in vitro. PLoS One 10:e0118894. doi:10.1371/journal.pone.0118894

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Miyazaki T, Taketomi Y, Saito Y, et al. (2015) Calpastatin counteracts pathological angiogenesis by inhibiting suppressor of cytokine signaling 3 degradation in vascular endothelial cells. Circ Res 116:1170–1181. doi:10.1161/CIRCRESAHA.116.305363

    Article  CAS  PubMed  Google Scholar 

  197. MO Y, Park K-J, Park D-H, et al. (2015) Reactive oxygen species production has a critical role in hypoxia-induced Stat3 activation and angiogenesis in human glioblastoma. J Neuro-Oncol 125:55–63. doi:10.1007/s11060-015-1889-8

    Article  CAS  Google Scholar 

  198. Chinot OL, Wick W, Cloughesy T (2014) Bevacizumab for newly diagnosed glioblastoma. N Engl J Med 370:2049

    Article  PubMed  CAS  Google Scholar 

  199. Gilbert MR, Dignam JJ, Armstrong TS, et al. (2014) A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 370:699–708. doi:10.1056/NEJMoa1308573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Batchelor TT, Mulholland P, Neyns B, et al. (2013) Phase III randomized trial comparing the efficacy of cediranib as monotherapy, and in combination with lomustine, versus lomustine alone in patients with recurrent glioblastoma. J Clin Oncol Off J Am Soc Clin Oncol 31:3212–3218. doi:10.1200/JCO.2012.47.2464

    Article  CAS  Google Scholar 

  201. Gerstner ER, Ye X, Duda DG, et al. (2015) A phase I study of cediranib in combination with cilengitide in patients with recurrent glioblastoma. Neuro-. Oncologia 17:1386–1392. doi:10.1093/neuonc/nov085

    CAS  Google Scholar 

  202. Kaneko S, Nakatani Y, Takezaki T, et al. (2015) Ceacam1L modulates STAT3 signaling to control the proliferation of glioblastoma-initiating cells. Cancer Res 75:4224–4234. doi:10.1158/0008-5472.CAN-15-0412

    Article  CAS  PubMed  Google Scholar 

  203. Yin J, Park G, Kim TH, et al. (2015) Pigment epithelium-derived factor (PEDF) expression induced by EGFRvIII promotes self-renewal and tumor progression of glioma stem cells. PLoS Biol 13:e1002152. doi:10.1371/journal.pbio.1002152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Talukdar S, Das SK, Pradhan AK, et al. (2016) Novel function of MDA-9/syntenin (SDCBP) as a regulator of survival and stemness in glioma stem cells. Oncotarget. doi:10.18632/oncotarget.10851

    Google Scholar 

  205. Hossain A, Gumin J, Gao F, et al. (2015) Mesenchymal stem cells isolated from human gliomas increase proliferation and maintain stemness of glioma stem cells through the IL-6/gp130/STAT3 pathway. Stem Cells Dayt Ohio 33:2400–2415. doi:10.1002/stem.2053

    Article  CAS  Google Scholar 

  206. Hart MG, Garside R, Rogers G, et al (1996) Temozolomide for high grade glioma. Cochrane Database Syst. Rev.

  207. Kunwar S, Chang S, Westphal M, et al. (2010) Phase III randomized trial of CED of IL13-PE38QQR vs Gliadel wafers for recurrent glioblastoma. Neuro Oncol 12:871–881. doi:10.1093/neuonc/nop054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Hegi ME, Diserens A-C, Gorlia T, et al. (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003. doi:10.1056/NEJMoa043331

    Article  CAS  PubMed  Google Scholar 

  209. Weller M, Stupp R, Reifenberger G, et al. (2010) MGMT promoter methylation in malignant gliomas: ready for personalized medicine? Nat Rev Neurol 6:39–51. doi:10.1038/nrneurol.2009.197

    Article  CAS  PubMed  Google Scholar 

  210. Zhang K, Pang B, Xin T, et al. (2011) Increased signal transducer and activator of transcription 3 (STAT3) and decreased cyclin D1 in recurrent astrocytic tumours compared with paired primary astrocytic tumours. J Int Med Res 39:2103–2109. doi:10.1177/147323001103900606

    Article  CAS  PubMed  Google Scholar 

  211. Lee E-S, Ko K-K, Joe YA, et al. (2011) Inhibition of STAT3 reverses drug resistance acquired in temozolomide-resistant human glioma cells. Oncol Lett 2:115–121. doi:10.3892/ol.2010.210

    CAS  PubMed  Google Scholar 

  212. Kang C (2011) Inhibition of STAT3 reverses alkylator resistance through modulation of the AKT and β-catenin signaling pathways. Oncol Rep. doi:10.3892/or.2011.1396

    PubMed Central  Google Scholar 

  213. Yang Y-P, Chang Y-L, Huang P-I, et al. (2012) Resveratrol suppresses tumorigenicity and enhances radiosensitivity in primary glioblastoma tumor initiating cells by inhibiting the STAT3 axis. J Cell Physiol 227:976–993. doi:10.1002/jcp.22806

    Article  CAS  PubMed  Google Scholar 

  214. Lau J, Ilkhanizadeh S, Wang S, et al. (2015) STAT3 blockade inhibits radiation-induced malignant progression in glioma. Cancer Res 75:4302–4311. doi:10.1158/0008-5472.CAN-14-3331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Chautard E, Loubeau G, Tchirkov A, et al. (2010) Akt signaling pathway: a target for radiosensitizing human malignant glioma. Neuro Oncol 12:434–443. doi:10.1093/neuonc/nop059

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Burel SA, Han S-R, Lee H-S, et al. (2013) Preclinical evaluation of the toxicological effects of a novel constrained ethyl modified antisense compound targeting signal transducer and activator of transcription 3 in mice and cynomolgus monkeys. Nucleic Acid Ther 23:213–227. doi:10.1089/nat.2013.0422

    Article  CAS  PubMed  Google Scholar 

  217. Hong D, Kurzrock R, Kim Y, et al. (2015) AZD9150, a next-generation antisense oligonucleotide inhibitor of STAT3 with early evidence of clinical activity in lymphoma and lung cancer. Sci Transl Med 7:–314ra185. doi:10.1126/scitranslmed.aac5272

  218. Ogura M, Uchida T, Terui Y, et al. (2015) Phase I study of OPB-51602, an oral inhibitor of signal transducer and activator of transcription 3, in patients with relapsed/refractory hematological malignancies. Cancer Sci 106:896–901. doi:10.1111/cas.12683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Wong AL, Soo RA, Tan DS, et al. (2015) Phase I and biomarker study of OPB-51602, a novel signal transducer and activator of transcription (STAT) 3 inhibitor, in patients with refractory solid malignancies. Ann Oncol Off J Eur Soc Med Oncol ESMO 26:998–1005. doi:10.1093/annonc/mdv026

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The CREaT/ EA7283-Auvergne University research team was supported by the Ligue Nationale Contre le Cancer (Comité du Puy-De-Dôme) of the Institut National du Cancer and by the Auvergne Region. ZG.O. was the recipient of a fellowship from the Ministère des Enseignements Secondaire et Supérieur, Burkina Faso.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Chautard.

Ethics declarations

Funding

This work was supported by the Ligue Nationale Contre le Cancer (Comité du Puy-De-Dôme) by the Institut National du Cancer and by the Region Auvergne. ZG.O. was the recipient of a fellowship from the Ministère des Enseignements Secondaire et Supérieur, Burkina Faso.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouédraogo, Z.G., Biau, J., Kemeny, JL. et al. Role of STAT3 in Genesis and Progression of Human Malignant Gliomas. Mol Neurobiol 54, 5780–5797 (2017). https://doi.org/10.1007/s12035-016-0103-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0103-0

Keywords

Navigation