Skip to main content

Advertisement

Log in

Ketamine Exhibits Different Neuroanatomical Profile After Mammalian Target of Rapamycin Inhibition in the Prefrontal Cortex: the Role of Inflammation and Oxidative Stress

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Studies indicated that mammalian target of rapamycin (mTOR), oxidative stress, and inflammation are involved in the pathophysiology of major depressive disorder (MDD). Ketamine, an N-methyl-d-aspartate (NMDA) receptor antagonist, has been identified as a novel MDD therapy; however, the antidepressant mechanism is not fully understood. In addition, the effects of ketamine after mTOR inhibition have not been fully investigated. In the present study, we examined the behavioral and biochemical effects of ketamine in the prefrontal cortex (PFC), hippocampus, amygdala, and nucleus accumbens after inhibition of mTOR signaling in the PFC. Male adult Wistar rats received pharmacological mTOR inhibitor, rapamycin (0.2 nmol) or vehicle into the PFC and then a single dose of ketamine (15 mg/kg, i.p.). Immobility was assessed in forced swimming tests, and then oxidative stress parameters and inflammatory markers were evaluated in the brain and periphery. mTOR activation in the PFC was essential to ketamine’s antidepressant-like effects. Ketamine increased lipid damage in the PFC, hippocampus, and amygdala. Protein carbonyl was elevated in the PFC, amygdala, and NAc after ketamine administration. Ketamine also increased nitrite/nitrate in the PFC, hippocampus, amygdala, and NAc. Myeloperoxidase activity increased in the hippocampus and NAc after ketamine administration. The activities of superoxide dismutase and catalase were reduced after ketamine administration in all brain areas studied. Inhibition of mTOR signaling pathways by rapamycin in the PFC was required to protect against oxidative stress by reducing damage and increasing antioxidant enzymes. Finally, the TNF-α level was increased in serum by ketamine; however, the rapamycin plus treatment group was not able to block this increase. Activation of mTOR in the PFC is involved in the antidepressant-like effects of ketamine; however, the inhibition of this pathway was able to protect certain brain areas against oxidative stress, without affecting inflammation parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. World Health Organization (2008) The global burden of disease: 2004 update. WHO, Geneva

    Google Scholar 

  2. Zarate C, Duman RS, Liu G, Sartori S, Quiroz J, Murck H (2013) New paradigms for treatment-resistant depression. Ann N Y Acad Sci 1292:21–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, Li XY, Aghajanian G, Duman RS (2010) mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329:959–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Trivedi MH, Rush AJ, Wisniewski SR, Nierenberg AA, Warden D, Ritz L, Norquist G, Howland RH, Lebowitz B, McGrath PJ, Shores-Wilson K, Biggs MM, Balasubramani GK, Fava M, STAR*D Study Team (2006) Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am J Psychiatry 163:28–40

    Article  PubMed  Google Scholar 

  5. DeWilde KE, Levitch CF, Murrough JW, Mathew SJ, Iosifescu DV (2015) The promise of ketamine for treatment-resistant depression: current evidence and future directions. Ann N Y Acad Sci 1345:47–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Harrison NL, Simmonds MA (1985) Quantitative studies on some antagonists of N-methyl D-aspartate in slices of rat cerebral cortex. Br J Pharmacol 84:381–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chaturvedi HK, Chandra D, Bapna JS (1999) Interaction between N-methyl-D-aspartate receptor antagonists and imipramine in shock-induced depression. Indian J Exp Biol 37:952–958

    CAS  PubMed  Google Scholar 

  8. Maeng S, Zarate CA Jr, Du J, et al. (2008) Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry 63:349–352

    Article  CAS  PubMed  Google Scholar 

  9. Engin E, Treit D, Dickson CT (2009) Anxiolytic- and antidepressant-like properties of ketamine in behavioral and neurophysiological animal models. Neuroscience 161:359–369

    Article  CAS  PubMed  Google Scholar 

  10. Réus GZ, Carlessi AS, Titus SE, Abelaira HM, Ignácio ZM, da Luz JR, Matias BI, Bruchchen L, Florentino D, Vieira A, Petronilho F, Quevedo J (2015a) A single dose of S-ketamine induces long-term antidepressant effects and decreases oxidative stress in adulthood rats following maternal deprivation. Dev Neurobiol 75:1268–1281

    Article  PubMed  Google Scholar 

  11. Réus GZ, Nacif MP, Abelaira HM, Tomaz DB, dos Santos MA, Carlessi AS, da Luz JR, Gonçalves RC, Vuolo F, Dal-Pizzol F, Carvalho AF, Quevedo J (2015b) Ketamine ameliorates depressive-like behaviors and immune alterations in adult rats following maternal deprivation. Neurosci Lett 584:83–87

    Article  PubMed  Google Scholar 

  12. Zarate CA Jr, Singh JB, Carlson PJ, et al. (2006) A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63:856–864

    Article  CAS  PubMed  Google Scholar 

  13. Sos P, Klirova M, Novak T, Kohutova B, Horacek J, Palenicek T (2013) Relationship of ketamine’s antidepressant and psychotomimetic effects in unipolar depression. Neuroendocrinol Lett 34:287–293

    CAS  PubMed  Google Scholar 

  14. Meric-Bernstam F, Gonzalez-Angulo AM (2009) Targeting the mTOR signaling network for cancer therapy. J Clin Oncol 27:2278–2287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hoeffer CA, Klann E (2010) mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci 33:67–75

    Article  CAS  PubMed  Google Scholar 

  16. Jernigan CS, Goswami DB, Austin MC, Iyo AH, Chandran A, Stockmeier CA, et al. (2011) The mTOR signaling pathway in the prefrontal cortex is compromised in major depressive disorder. Prog Neuro-Psychopharmacol Biol Psychiatry 35:1774–1779

    Article  CAS  Google Scholar 

  17. Chang CH, Chen MC, Lu J (2015) Effect of antidepressant drugs on the vmPFC-limbic circuitry. Neuropharmacology 92:116–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fuster JM (2001) The prefrontal cortex—an update: time is of the essence. Neuron 30:319–333

    Article  CAS  PubMed  Google Scholar 

  19. Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202

    Article  CAS  PubMed  Google Scholar 

  20. Laroche S, Davis S, Jay TM (2000) Plasticity at hippocampal to prefrontal cortex synapses: dual roles in working memory and consolidation. Hippocampus 10:438–446

    Article  CAS  PubMed  Google Scholar 

  21. Preston AR, Eichenbaum H (2013) Interplay of hippocampus and prefrontal cortex in memory. Curr Biol 23:R764–R773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. JY Y, Frank LM (2015) Hippocampal-cortical interaction in decision making. Neurobiol Learn Mem 117:34–41

    Article  Google Scholar 

  23. Marek R, Strobel C, Bredy TW, Sah P (2013) The amygdala and medial prefrontal cortex: partners in the fear circuit. J Physiol 10:2381–2391

    Article  Google Scholar 

  24. Phillips ML, Drevets WC, Rauch SL, Lane R (2003) Neurobiology of emotion perception I: the neural basis of normal emotion perception. Biol Psychiatry 54:504–514

    Article  PubMed  Google Scholar 

  25. Cole MW, Repovš G, Anticevic A (2014) The frontoparietal control system: a central role in mental health. Neuroscientist 20:652–664

    Article  PubMed  PubMed Central  Google Scholar 

  26. Godsil BP, Kiss JP, Spedding M, Jay TM (2013) The hippocampal-prefrontal pathway: the weak link in psychiatric disorders? Eur Neuropsychopharmacol 23:1165–1181

    Article  CAS  PubMed  Google Scholar 

  27. Austin MP, Mitchell P, Goodwin GM (2001) Cognitive deficits in depression: possible implications for functional neuropathology. Br J Psychiatry 178:200–206

    Article  CAS  PubMed  Google Scholar 

  28. Park S, Holzman PS (1992) Schizophrenics show spatial working memory deficits. Arch Gen Psychiatry 49:975–982

    Article  CAS  PubMed  Google Scholar 

  29. Lee J, Park S (2005) Working memory impairments in schizophrenia: a meta-analysis. J Abnorm Psychol 114:599–611

    Article  PubMed  Google Scholar 

  30. Blechert J, Michael T, Vriends N, Margraf J, Wilhelm FH (2007) Fear conditioning in posttraumatic stress disorder: evidence for delayed extinction of autonomic, experiential, and behavioural responses. Behav Res Ther 45:2019–2033

    Article  PubMed  Google Scholar 

  31. Johnstone T, van Reekum CM, Urry HL, Kalin NH, Davidson RJ (2007) Failure to regulate: counterproductive recruitment of top-down prefrontal-subcortical circuitry in major depression. J Neurosci 27:8877–8884

    Article  CAS  PubMed  Google Scholar 

  32. Drevets WC, Price JL, Simpson JR Jr, et al. (1997) Subgenual prefrontal cortex abnormalities in mood disorders. Nature 386:824–827

    Article  CAS  PubMed  Google Scholar 

  33. Liberzon I, Martis B (2006) Neuroimaging studies of emotional responses in PTSD. Ann N Y Acad Sci 1071:87–109

    Article  PubMed  Google Scholar 

  34. Liberzon I, Phan KL (2003) Brain-imaging studies of posttraumatic stress disorder. CNS Spectrums 8:641–650

    Article  PubMed  Google Scholar 

  35. Ferrarelli F, Massimini M, Peterson MJ, et al. (2008) Reduced evoked gamma oscillations in the frontal cortex in schizophrenia patients: a TMS/EEG study. Am J Psychiatry 165:996–1005

    Article  PubMed  Google Scholar 

  36. Genzel L, Dresler M, Cornu M, et al. (2015) Medial prefrontal-hippocampal connectivity and motor memory consolidation in depression and schizophrenia. Biol Psychiatry 77:177–186

    Article  PubMed  Google Scholar 

  37. Yu Y, Shen H, Zeng LL, Ma Q, Hu D (2013) Convergent and divergent functional connectivity patterns in schizophrenia and depression. PLoS One 8(7):e68250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vai B, Sferrazza Papa G, Poletti S, et al. (2015) Abnormal cortico-limbic connectivity during emotional processing correlates with symptom severity in schizophrenia. European Psychiatry 30:590–597

    Article  CAS  PubMed  Google Scholar 

  39. Lucca G, Comim CM, Valvassori SS, Réus GZ, Vuolo F, Petronilho F, et al. (2009) Effects of chronic mild stress on the oxidative parameters in the rat brain. Neurochem Int 54:358–362

    Article  CAS  PubMed  Google Scholar 

  40. Réus GZ, Vieira FG, Abelaira HM, Michels M, Tomaz DB, dos Santos MA, et al. (2014) MAPK signaling correlates with the antidepressant effects of ketamine. J Psychiatr Res 55:15–21

    Article  PubMed  Google Scholar 

  41. Abelaira HM, Réus GZ, Ribeiro KF, Steckert AV, Mina F, Rosa DV, et al. (2013) Effects of lamotrigine on behavior, oxidative parameters and signaling cascades in rats exposed to the chronic mild stress model. Neurosci Res 75:324–330

    Article  CAS  PubMed  Google Scholar 

  42. Della FP, Abelaira HM, Réus GZ, Antunes AR, Dos Santos MA, Zappelinni G, et al. (2012) Tianeptine exerts neuroprotective effects in the brain tissue of rats exposed to the chronic stress model. Pharmacol Biochem Behav 10:395–402

    Article  Google Scholar 

  43. Ghedim FV, Fraga Dde B, Deroza PF, Oliveira MB, Valvassori SS, Steckert AV, et al. (2012) Evaluation of behavioral and neurochemical changes induced by ketamine in rats: implications as an animal model of mania. J Psychiatr Res 46:1569–1575

    Article  PubMed  Google Scholar 

  44. Park SW, Lee JG, Seo MK, Lee CH, Cho HY, Lee BJ, et al. (2014) Differential effects of antidepressant drugs on mTOR signaling in rat hippocampal neurons. Int J Neuropsychopharmacol 17:1831–1846

    Article  CAS  PubMed  Google Scholar 

  45. Abelaira HM, Réus GZ, Petronilho F, Barichello T, Quevedo J (2014) Neuroimmunomodulation in depression: a review of inflammatory cytokines involved in this process. Neurochem Res 39:1634–1639 Review

    Article  CAS  PubMed  Google Scholar 

  46. Lopresti AL, Maker GL, Hood SD, Drummond PD (2014) A review of peripheral biomarkers in major depression: the potential of inflammatory and oxidative stress biomarkers. Prog Neuro-Psychopharmacol Biol Psychiatry 48:102–111

    Article  Google Scholar 

  47. Réus GZ, Fries GR, Stertz L, Badawy M, Passos IC, Barichello T, Kapczinski F, Quevedo J (2015c) The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders. Neuroscience 300:141–154

    Article  PubMed  Google Scholar 

  48. Hughes MM, Connor TJ, Harkin A (2016) Stress-related immune markers in depression: implications for treatment. Int J Neuropsychopharmacol. doi:10.1093/ijnp/pyw001

  49. Réus GZ, Nacif MP, Abelaira HM, Tomaz DB, dos Santos MA, Carlessi AS, da Luz JR, Gonçalves RC, Vuolo F, Dal-Pizzol F, Carvalho AF, Quevedo J (2014) Ketamine ameliorates depressive-like behaviors and immune alterations in adult rats following maternal deprivation. Neurosci Lett 584:83–87

    Article  PubMed  Google Scholar 

  50. Paxinos G, Watson C (1986) The rat brain: stereotaxic coordinates, Second edn. Academic Press, Australia

    Google Scholar 

  51. Detke MJ, Rickels M, Lucki I (1995) Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants. Psychopharmacology 121:66–72

    Article  CAS  PubMed  Google Scholar 

  52. Garcia LS, Comim CM, Valvassori SS, Réus GZ, Barbosa LM, Andreazza AC, Stertz L, Fries GR, Gavioli EC, Kapczinski F, Quevedo J (2008a) Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases BDNF levels in the rat hippocampus. Prog Neuro-Psychopharmacol Biol Psychiatry 32:140–144

    Article  CAS  Google Scholar 

  53. Garcia LS, Comim CM, Valvassori SS, Réus GZ, Andreazza AC, Stertz L, Fries GR, Gavioli EC, Kapczinski F, Quevedo J (2008) Chronic administration of ketamine elicits antidepressant-like effects in rats without affecting hippocampal brain-derived neurotrophic factor protein levels. Basic Clin Pharmacol Toxicol 103:502–506

    Article  CAS  PubMed  Google Scholar 

  54. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  55. De Young LM, Kheifets JB, Ballaron SJ, Young JM (1989) Edema and cell infiltration in the phorbol ester-treated mouse ear are temporally separate and can be differentially modulated by pharmacologic agents. Agents Actions 26:335–341

    Article  CAS  PubMed  Google Scholar 

  56. Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421

    Article  CAS  PubMed  Google Scholar 

  57. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    Article  CAS  PubMed  Google Scholar 

  58. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 126:131–138

    Article  CAS  PubMed  Google Scholar 

  59. Bannister JV, Calabrese L (1987) Assays for superoxide dismutase. Methods Biochem Anal 32:279–312

    Article  CAS  PubMed  Google Scholar 

  60. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  61. Dazert E, Hall MN (2011) mTOR signaling in disease. Curr Opin Cell Biol 23:744–755

    Article  CAS  PubMed  Google Scholar 

  62. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Goswami DB, Jernigan CS, Chandran A, Iyo AH, May WL, Austin MC, Stockmeier CA, Karolewicz B (2013) Gene expression analysis of novel genes in the prefrontal cortex of major depressive disorder subjects. Prog Neuro-Psychopharmacol Biol Psychiatry 43:126–133

    Article  CAS  Google Scholar 

  64. Erlich S, Alexandrovich A, Shohami E, Pinkas-Kramarski R (2007) Rapamycin is a neuroprotective treatment for traumatic brain injury. Neurobiol Dis 26:86e93

    Article  Google Scholar 

  65. Vignot S, Faivre S, Aguirre D, Raymond E (2005) mTOR-targeted therapy of cancer with rapamycin derivatives. Ann Oncol 16:525–537

    Article  CAS  PubMed  Google Scholar 

  66. Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung M, Bruns CJ, Zuelke C, Farkas S, Anthuber M, Jauch KW, Geissler EK (2002) Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med 8:128–135

    Article  CAS  PubMed  Google Scholar 

  67. Koehl GE, Andrassy J, Guba M, Richter S, Kroemer A, Scherer MN, Steinbauer M, Graeb C, Schlitt HJ, Jauch KW, Geissler EK (2004) Rapamycin protects allografts from rejection while simultaneously attacking tumors in immunosuppressed mice. Transplantation 77:1319–1326

    Article  CAS  PubMed  Google Scholar 

  68. Sousa JE, Sousa AG, Costa MA, Abizaid AC, Feres F (2003) Use of rapamycin-impregnated stents in coronary arteries. Transplant Proc 35:165S–170S

    Article  CAS  PubMed  Google Scholar 

  69. Bove J, Martinez-Vicente M, Vila M (2011) Fighting neurodegeneration with rapamycin: mechanistic insights. Nat Rev Neurosci 12:437–452

    Article  CAS  PubMed  Google Scholar 

  70. Malagelada C, Jin ZH, Jackson-Lewis V, Przedborski S, Greene LA (2010) Rapamycin protects against neuron death in in vitro and in vivo models of Parkinson's disease. J Neurosci 30:1166–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pan T, Rawal P, Wu Y, Xie W, Jankovic J, Le W (2009) Rapamycin protects against rotenone-induced apoptosis through autophagy induction. Neuroscience 164:541–551

    Article  CAS  PubMed  Google Scholar 

  72. Chiu CT, Scheuing L, Liu G, Liao HM, Linares GR, Lin D, Chuang DM (2014) The mood stabilizer lithium potentiates the antidepressant-like effects and ameliorates oxidative stress induced by acute ketamine in a mouse model of stress. Int J Neuropsychopharmacol 18(6). doi:10.1093/ijnp/pyu102

  73. Vasconcelos GS, Ximenes NC, de Sousa CN, Oliveira TQ, Lima LL, de Lucena DF, et al. (2015) Alpha-lipoic acid alone and combined with clozapine reverses schizophrenia-like symptoms induced by ketamine in mice: participation of antioxidant, nitrergic and neurotrophic mechanisms. Schizophr Res S0920-9964:00190–00195

    Google Scholar 

  74. da Silva FC, do Carmo de Oliveira Cito M, da Silva MI, Moura BA, de Aquino Neto MR, Feitosa ML, et al. (2010) Behavioral alterations and pro-oxidant effect of a single ketamine administration to mice. Brain Res Bull 83:9–15

    Article  PubMed  Google Scholar 

  75. Rotte A, Pasham V, Bhandaru M, Bobbala D, Zelenak C, Lang F (2012) Rapamycin sensitive ROS formation and Na(+)/H(+) exchanger activity in dendritic cells. Cell Physiol Biochem 29:543–550

    Article  CAS  PubMed  Google Scholar 

  76. Slomovitz BM, Coleman RL (2012) The PI3K/AKT/mTOR pathway as a therapeutic target in endometrial cancer. Clin Cancer Res 18:5856–5864

    Article  CAS  PubMed  Google Scholar 

  77. Zhang Y, Yang JH (2013) Activation of the PI3K/Akt pathway by oxidative stress mediates high glucose-induced increase of adipogenic differentiation in primary rat osteoblasts. J Cell Biochem 114:2595–2602

    Article  CAS  PubMed  Google Scholar 

  78. Hambright HG, Meng P, Kumar AP, Ghosh R (2015) Inhibition of PI3K/AKT/mTOR axis disrupts oxidative stress-mediated survival of melanoma cells. Oncotarget 6:7195–7208

    Article  PubMed  PubMed Central  Google Scholar 

  79. Culmsee C, Monnig J, Kemp BE, Mattson MP (2001) AMP activated protein kinase is highly expressed in neurons in the developing rat brain and promotes neuronal survival following glucose deprivation. J Mol Neurosci 17:45–58

    Article  CAS  PubMed  Google Scholar 

  80. Tain LS, Mortiboys H, Tao RN, Ziviani E, Bandmann O, Whitworth AJ (2009) Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss. Nat Neurosci 12:1129–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chiba T, Kayahara T, Nakano K (2001) Efferent projections of infralimbic and prelimbic areas of the medial prefrontal cortex in the Japanese monkey, Macaca fuscata. Brain Res 888:83–101

    Article  CAS  PubMed  Google Scholar 

  82. Uylings HBM, Groenewegen HJ, Kolb B (2003) Do rats have a prefrontal cortex? Behav Brain Res 146:3–17

    Article  PubMed  Google Scholar 

  83. Uylings HBM, Van Eden CG (1990) The prefrontal cortex: its structure, function, and pathology. In: Proceedings of the 16th International Summer School of. Brain Res 85

  84. Gazal M, Valente MR, Acosta BA, Kaufmann FN, Braganhol E, Lencina CL, Stefanello FM, Ghisleni G, Kaster MP (2014) Neuroprotective and antioxidant effects of curcumin in a ketamine-induced model of mania in rats. Eur J Pharmacol 724:132–139

    Article  CAS  PubMed  Google Scholar 

  85. Hou Y, Zhang H, Xie G, Cao X, Zhao Y, Liu Y, Mao Z, Yang J, Wu C (2013) Neuronal injury, but not microglia activation, is associated with ketamine-induced experimental schizophrenic model in mice. Prog Neuro-Psychopharmacol Biol Psychiatry 45:107–116

    Article  CAS  Google Scholar 

  86. Réus GZ, Nacif MP, Abelaira HM, Tomaz DB, dos Santos MA, Carlessi AS, Matias BI, da Luz JR, Steckert AV, Jeremias GC, Scaini G, Morais MO, Streck EL, Quevedo J (2015d) Ketamine treatment partly reverses alterations in brain derived-neurotrophic factor, oxidative stress and energy metabolism parameters induced by an animal model of depression. Curr Neurovasc Res 12:73–84

    Article  PubMed  Google Scholar 

  87. Calap-Quintana P, Soriano S, Llorens JV, Al-Ramahi I, Botas J, Moltó MD, Martínez-Sebastián MJ (2015) TORC1 inhibition by rapamycin promotes antioxidant defences in a Drosophila model of Friedreich’s ataxia. PLoS One 10:e0132376

    Article  PubMed  PubMed Central  Google Scholar 

  88. Schmidt FM, Kirkby KC, Lichtblau N (2016) Inflammation and immune regulation as potential drug targets in antidepressant treatment. Curr Neuropharmacol (in press)

  89. De Kock M, Loix S, Lavand’homme P (2013) Ketamine and peripheral inflammation. CNS Neurosci Ther 19:403–410

    Article  CAS  PubMed  Google Scholar 

  90. Kimura F, Shimizu H, Yoshidome H, et al. (2012) Immunosuppression following surgical and traumatic injury. Surg Today 12:793–808

    Google Scholar 

  91. Marik PE, Flemmer M (2012) The immune response to surgery and trauma: implications for treatment. J Trauma Acute Care Surg 73:801–808

    Article  CAS  PubMed  Google Scholar 

  92. Kawasaki C, Kawasaki T, Ogata M, Nandate K, Shigematsu A (2001) Ketamine isomers suppress superantigen-induced proinflammatory cytokine production in human whole blood. Can J Anaesth 48:819–823

    Article  CAS  PubMed  Google Scholar 

  93. Taniguchi T, Kanakura H, Takemoto Y, Kidani Y, Yamamoto K (2003) Effects of ketamine and propofol on the ratio of interleukin-6 to interleukin-10 during endotoxemia in rats. Tohoku J Exp Med 200:85–92

    Article  CAS  PubMed  Google Scholar 

  94. Lankveld DPK, Bull S, Van Dijk P, Fink-Gremmels J, Hellebrekers LJ (2005) Ketamine inhibits LPS-induced TNFalpha and interleukin-6 in an equine macrophage cell line. Vet Res 36:257–262

    Article  CAS  PubMed  Google Scholar 

  95. Thomson AW, Turnquist HR, Raimondi G (2009) Immunoregulatory functions of mTOR inhibition. Nature reviews. Immunology 9:324–337

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Lai ZW, Borsuk R, Shadakshari A, et al. (2013) mTOR activation triggers IL-4 production and necrotic death of double-negative T cells in patients with systemic lupus eryhthematosus. J Immunol 191:2236–2246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sieling PA, Porcelli SA, Duong BT, et al. (2000) Human double-negative T cells in systemic lupus erythematosus provide help for IgGand are restricted by CD1c. J Immunol 165:5338–5344

    Article  CAS  PubMed  Google Scholar 

  98. Fernandez DR, Telarico T, Bonilla E, et al. (2009) Activation of mTOR controls the loss of TCR in lupus T cells through HRES-1/Rab4-regulated lysosomal degradation. J Immunol 182:2063–2073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Fernandez D, Bonilla E, Mirza N, et al. (2006) Rapamycin reduces disease activity and normalizes T-cell activation induced calcium fluxing in patients with systemic lupus erythematosus. Arthritis Rheum 54:2983–2988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Laboratory of Neurosciences (Brazil) is a center within the National Institute for Molecular Medicine (INCT-MM) and a member of the Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC). This research was supported by grants from CNPq (JQ and GZR), FAPESC (JQ), and Instituto Cérebro e Mente, UNESC (JQ). JQ, FP, and AFC are CNPq Research Fellows. HMA has CAPES studentship. Center for Translational Psychiatry (USA) is funded by the Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gislaine Z. Réus.

Ethics declarations

Conflict of Interest

The authors have no potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abelaira, H.M., Réus, G.Z., Ignácio, Z.M. et al. Ketamine Exhibits Different Neuroanatomical Profile After Mammalian Target of Rapamycin Inhibition in the Prefrontal Cortex: the Role of Inflammation and Oxidative Stress. Mol Neurobiol 54, 5335–5346 (2017). https://doi.org/10.1007/s12035-016-0071-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0071-4

Keywords

Navigation