Advertisement

Molecular Neurobiology

, Volume 54, Issue 6, pp 4813–4819 | Cite as

Chronic Postnatal Stress Induces Depressive-like Behavior in Male Mice and Programs second-Hit Stress-Induced Gene Expression Patterns of OxtR and AvpR1a in Adulthood

  • Alexandra Lesse
  • Kathy Rether
  • Nicole Gröger
  • Katharina Braun
  • Jörg BockEmail author
Article

Abstract

Chronic stress (CS) during early life represents a major risk factor for the development of mental disorders, including depression. According to the Two/Multiple-Hit hypothesis, the etiology of neuropsychiatric disorders usually involves multiple stressors experienced subsequently during different phases of life. However, the molecular and cellular mechanisms modulating neuronal and behavioral changes induced by multiple stress experiences are just poorly understood. Since the oxytocinergic and vasopressinergic systems are neuroendocrine modulators involved in environmentally driven adaptations of stress sensitivity we hypothesized that postnatal CS programs oxytocinergic and vasopressinergic receptor expression changes in response to a second stress exposure in young adulthood. First we investigated if postnatal CS (maternal separation + social isolation) induces depressive-like behavior and alters oxytocin receptor (OxtR) and arginine vasopressin receptor type 1a (AvpR1a) gene expression in the hippocampus (HC) of male mice and (2) if a second single stressor (forced swimming, FS) in young adulthood affects gene expression of OxtR and AvpR1a at adulthood dependent on CS pre-experience. We found that postnatal CS induced depressive-like behavior and enhanced AvpR1a expression in HC at young adulthood. Moreover, in line with our hypothesis, only combined stress exposure (CS + FS), but not CS or FS alone, resulted in increased gene expression of OxtR in HC at adulthood. In contrast, AvpR1a expression was decreased in both adult FS and CS + FS animals. Overall, our results provide evidence that CS programs neuroendocrine systems and thereby influences stress responses in later life periods.

Keywords

Early-life stress Depression Limbic Two-hit Neuropeptide 

Notes

Acknowledgments

This study was supported by grants from the Bundesministerium für Bildung und Forschung (BMBF; Transgen 01KR1304B to KB and UBICA 01KR1207D to JB). The authors declare no conflict of interest.

References

  1. 1.
    Bock J, Wainstock T, Braun K, Segal M (2015) Stress in utero: prenatal programming of brain plasticity and cognition. Biol Psychiatry 78:1–12. doi: 10.1016/j.biopsych.2015.02.036 CrossRefGoogle Scholar
  2. 2.
    Bock J, Rether K, Gröger N, et al. (2014) Perinatal programming of emotional brain circuits: an integrative view from systems to molecules. Front Neurosci 8:1–16. doi: 10.3389/fnins.2014.00011 CrossRefGoogle Scholar
  3. 3.
    Heim C, Shugart M, Craighead WE, Nemeroff CB (2010) Neurobiological and psychiatric consequences of child abuse and neglect. Dev Psychobiol 52:671–690. doi: 10.1002/dev.20494 CrossRefPubMedGoogle Scholar
  4. 4.
    Yam K, Naninck EFG, Schmidt M V, et al (2015) Stress : The International Journal on the Biology of Stress Early-life adversity programs emotional functions and the neuroendocrine stress system : the contribution of nutrition, metabolic hormones and epigenetic mechanisms Early-life adversity programs. doi:  10.3109/10253890.2015.1064890
  5. 5.
    Pryce CR, Rüedi-Bettschen D, Dettling AC, et al. (2005) Long-term effects of early-life environmental manipulations in rodents and primates: potential animal models in depression research. Neurosci Biobehav Rev 29:649–674. doi: 10.1016/j.neubiorev.2005.03.011 CrossRefPubMedGoogle Scholar
  6. 6.
    Heim C, Binder EB (2012) Current research trends in early life stress and depression: review of human studies on sensitive periods, gene–environment interactions, and epigenetics. Exp Neurol 233:102–111. doi: 10.1016/j.expneurol.2011.10.032 CrossRefPubMedGoogle Scholar
  7. 7.
    Lupien SJ, McEwen BS, Gunnar MR, Heim C (2009) Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci 10:434–445. doi: 10.1038/nrn2639 CrossRefPubMedGoogle Scholar
  8. 8.
    Nederhof E, Schmidt MV (2012) Mismatch or cumulative stress: toward an integrated hypothesis of programming effects. Physiol Behav 106:691–700. doi: 10.1016/j.physbeh.2011.12.008 CrossRefPubMedGoogle Scholar
  9. 9.
    McEwen BS (1998) Stress, adaptation, and disease. Ann New York Acad Sci:33–44. doi: 10.1080/01422419908228843
  10. 10.
    Monroe SM, Simons AD (1991) Diathesis-stress theories in the context of life stress research: implications for the depressive disorders. Psychol Bull 110(3):406–425CrossRefPubMedGoogle Scholar
  11. 11.
    Mc Elroy S, Hevey D (2014) Relationship between adverse early experiences, stressors, psychosocial resources and wellbeing. Child Abuse Negl 38:65–75. doi: 10.1016/j.chiabu.2013.07.017 CrossRefPubMedGoogle Scholar
  12. 12.
    Bakermans-Kranenburg MJ, van IJzendoorn MH (2015) The hidden efficacy of interventions: Gene × Environment experiments from a differential susceptibility perspective. Annu Rev Psychol 66:381–409. doi:  10.1146/annurev-psych-010814-015407
  13. 13.
    Worlein JM (2014) Nonhuman primate models of depression: effects of early experience and stress. ILAR J 55:259–273. doi: 10.1093/ilar/ilu030 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hill RA, Von Soly SK, Ratnayake U, et al. (2014) Long-term effects of combined neonatal and adolescent stress on brain-derived neurotrophic factor and dopamine receptor expression in the rat forebrain. Biochim Biophys Acta - Mol Basis Dis 1842:2126–2135CrossRefGoogle Scholar
  15. 15.
    Hill RA, Klug M, Von Soly K, Szerenke B, Michele D, Hannan AJ, van den Buuse M (2014) Sex-specific disruptions in spatial memory and anhedonia in a “two hit” rat model correspond with alterations in hippocampal brain-derived neurotrophic factor expression and signaling. Hippocampus 24:1197–1211. doi: 10.1002/hipo.22302 CrossRefPubMedGoogle Scholar
  16. 16.
    Horovitz O, Tsoory MM, Yovell Y (2014) A rat model of pre-puberty ( Juvenile ) stress- induced predisposition to stress-related disorders : Sex similarities and sex differences in effects and symptoms A rat model of pre-puberty ( Juvenile ) stress-induced predisposition. World J Biol Psychiatry 36–48. doi:  10.3109/15622975.2012.745604
  17. 17.
    Tsoory M, Cohen H, Richter-Levin G (2007) Juvenile stress induces a predisposition to either anxiety or depressive-like symptoms following stress in adulthood. Eur Neuropsychopharmacol 17:245–256. doi: 10.1016/j.euroneuro.2006.06.007 CrossRefPubMedGoogle Scholar
  18. 18.
    Daskalakis NP, Bagot RC, Parker KJ, et al. (2013) The three-hit concept of vulnerability and resilience: toward understanding adaptation to early-life adversity outcome. Psychoneuroendocrinology 38:1858–1873. doi: 10.1016/j.psyneuen.2013.06.008 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    McEwen BS (2003) Early life influences on life-long patterns of behavior and health. Ment Retard Dev Disabil Res Rev 9:149–154. doi: 10.1002/mrdd.10074 CrossRefPubMedGoogle Scholar
  20. 20.
    McEwen BS (2012) Brain on stress: how the social environment gets under the skin. Proc Natl Acad Sci 109:17180–17185. doi: 10.1073/pnas.1121254109 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Nishi M, Horii-Hayashi N, Sasagawa T (2014) Effects of early life adverse experiences on the brain: implications from maternal separation models in rodents. Front Neurosci 8:1–6. doi: 10.3389/fnins.2014.00166 CrossRefGoogle Scholar
  22. 22.
    Millstein RA, Holmes A (2007) Effects of repeated maternal separation on anxiety- and depression-related phenotypes in different mouse strains. Neurosci Biobehav Rev 31:3–17. doi: 10.1016/j.neubiorev.2006.05.003 CrossRefPubMedGoogle Scholar
  23. 23.
    Meaney MJ (2001) Maternal care gene expression, and the transmission of individual differences in stress reactivity across generations. Annu Rev Neurosci 24:1161–1192CrossRefPubMedGoogle Scholar
  24. 24.
    Heim C, Newport DJ, Mletzko T, et al (2008) The link between childhood trauma and depression : Insights from HPA axis studies in humans. Psychoneuroendocrinology 693–710. doi:  10.1016/j.psyneuen.2008.03.008
  25. 25.
    Grimm S, Pestke K, Feeser M, et al. (2014) Early life stress modulates oxytocin effects on limbic system during acute psychosocial stress. Soc Cogn Affect Neurosci 9:1828–1835. doi: 10.1093/scan/nsu020 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Fan Y, Pestke K, Feeser M, et al. (2015) Amygdala–hippocampal connectivity changes during acute psychosocial stress: joint effect of early life stress and oxytocin. Neuropsychopharmacology 40:2736–2744. doi: 10.1038/npp.2015.123 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Murgatroyd C, Wu Y, Bockmühl Y, Spengler D (2010) Genes learn from stress: how infantile trauma programs us for depression. Epigenetics 5:194–199. doi: 10.4161/epi.5.3.11375 CrossRefPubMedGoogle Scholar
  28. 28.
    Murgatroyd CA, Nephew BC (2013) Effects of early life social stress on maternal behavior and neuroendocrinology. Psychoneuroendocrinology 38:219–228. doi: 10.1016/j.psyneuen.2012.05.020 CrossRefPubMedGoogle Scholar
  29. 29.
    Veenema AH (2012) Toward understanding how early-life social experiences alter oxytocin- and vasopressin-regulated social behaviors. Horm Behav 61:304–312. doi: 10.1016/j.yhbeh.2011.12.002 CrossRefPubMedGoogle Scholar
  30. 30.
    Neumann ID, Landgraf R (2012) Balance of brain oxytocin and vasopressin: implications for anxiety, depression, and social behaviors. Trends Neurosci 35:649–659. doi: 10.1016/j.tins.2012.08.004 CrossRefPubMedGoogle Scholar
  31. 31.
    Landgraf R, Neumann ID (2004) Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Front Neuroendocrinol 25:150–176. doi: 10.1016/j.yfrne.2004.05.001 CrossRefPubMedGoogle Scholar
  32. 32.
    Rutherford HJV, Williams SK, Moy S, et al. (2011) Disruption of maternal parenting circuitry by addictive process: rewiring of reward and stress systems. Front Psychiatry 2:1–17. doi: 10.3389/fpsyt.2011.00037 CrossRefGoogle Scholar
  33. 33.
    Feldman R, Monakhov M, Pratt M, Ebstein RP (2015) Oxytocin pathway genes: evolutionary ancient system impacting on human affiliation, sociality, and psychopathology. Biol Psychiatry. doi: 10.1016/j.biopsych.2015.08.008 PubMedGoogle Scholar
  34. 34.
    Grinevich V, Sophie Knobloch-Bollmann H, Eliava M, et al (2015) Assembling the Puzzle: Pathways of Oxytocin Signaling in the Brain. Biol Psychiatry 1–10. doi:  10.1016/j.biopsych.2015.04.013
  35. 35.
    Liberzon I, Young EA (1997) Effects of stress and glucocorticoids on CNS oxytocin receptor binding. Psychoneuroendocrinology 22:411–422. doi: 10.1016/S0306-4530(97)00045-0 CrossRefPubMedGoogle Scholar
  36. 36.
    Grace CE, Kim SJ, Rogers JM (2011) Maternal influences on epigenetic programming of the developing hypothalamic-pituitary-adrenal axis. Birth Defects Res Part A - Clin Mol Teratol 91:797–805. doi: 10.1002/bdra.20824 CrossRefPubMedGoogle Scholar
  37. 37.
    Gray JD, Rubin TG, Hunter RG, McEwen BS (2014) Hippocampal gene expression changes underlying stress sensitization and recovery. Mol Psychiatry 19:1171–1178. doi: 10.1038/mp.2013.175 CrossRefPubMedGoogle Scholar
  38. 38.
    Olazábal DE, Alsina-Llánes M (2015) Are age and sex differences in brain oxytocin receptors related to maternal and infanticidal behavior in naïve mice? Horm Behav. doi: 10.1016/j.yhbeh.2015.04.006 PubMedGoogle Scholar
  39. 39.
    Neumann ID (2002) Chapter 12 Involvement of the brain oxytocin system in stress coping: interactions with the hypothalamo-pituitary-adrenal axis. In: Research BT-P in B (ed) Vasopressin Oxytocin From Genes to Clin. Appl. Elsevier, pp 147–162Google Scholar
  40. 40.
    Kirsch P, Esslinger C, Chen Q, et al. (2005) Oxytocin modulates neural circuitry for social cognition and fear in humans. J Neurosci 25:11489–11493. doi: 10.1523/JNEUROSCI.3984-05.2005 CrossRefPubMedGoogle Scholar
  41. 41.
    Engelmann M, Landgraf R, Wotjak CT (2004) The hypothalamic-neurohypophysial system regulates the hypothalamic- pituitary-adrenal axis under stress: an old concept revisited. Front Neuroendocrinol 25:132–149. doi: 10.1016/j.yfrne.2004.09.001 CrossRefPubMedGoogle Scholar
  42. 42.
    Gutkowska J, Jankowski M (2012) Oxytocin revisited: its role in cardiovascular regulation. J Neuroendocrinol 24:599–608. doi: 10.1111/j.1365-2826.2011.02235.x CrossRefPubMedGoogle Scholar
  43. 43.
    Onaka T, Takayanagi Y, Yoshida M (2012) Roles of oxytocin neurones in the control of stress, energy metabolism, and social behaviour. J Neuroendocrinol 24:587–598. doi: 10.1111/j.1365-2826.2012.02300.x CrossRefPubMedGoogle Scholar
  44. 44.
    Bichet DG (2014) Central vasopressin: dendritic and axonal secretion and renal actions. Clin Kidney J 7:242–247. doi: 10.1093/ckj/sfu050 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Knobloch HS, Grinevich V (2014) Evolution of oxytocin pathways in the brain of vertebrates. Front Behav Neurosci 8:31. doi: 10.3389/fnbeh.2014.00031 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Sofroniew MV (1983) Morphology of vasopressin and oxytocin neurones and their central and vascular projections. Prog Brain Res 60:101–114CrossRefPubMedGoogle Scholar
  47. 47.
    Mühlethaler M, Charpak S, Dreifuss JJ (1984) Contrasting effects of neurohypophysial peptides on pyramidal and non-pyramidal neurones in the rat hippocampus. Brain Res 308:97–107. doi: 10.1016/0006-8993(84)90921-1 CrossRefPubMedGoogle Scholar
  48. 48.
    Zaninetti M, Raggenbass M (2000) Oxytocin receptor agonists enhance inhibitory synaptic transmission in the rat hippocampus by activating interneurons in stratum pyramidale. Eur J Neurosci 12:3975–3984. doi: 10.1046/j.1460-9568.2000.00290.x CrossRefPubMedGoogle Scholar
  49. 49.
    Owen SF, Tuncdemir SN, Bader PL, et al. (2013) Oxytocin enhances hippocampal spike transmission by modulating fast-spiking interneurons. Nature 500:458–462. doi: 10.1038/nature12330 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Zhang L, Hernández VS (2013) Synaptic innervation to rat hippocampus by vasopressin-immuno-positive fibres from the hypothalamic supraoptic and paraventricular nuclei. Neuroscience 228:139–162. doi: 10.1016/j.neuroscience.2012.10.010 CrossRefPubMedGoogle Scholar
  51. 51.
    Lukas M, Bredewold R, Neumann ID, Veenema AH (2010) Maternal separation interferes with developmental changes in brain vasopressin and oxytocin receptor binding in male rats. Neuropharmacology 58:78–87. doi: 10.1016/j.neuropharm.2009.06.020 CrossRefPubMedGoogle Scholar
  52. 52.
    Chepkova AN, Kapai NA, Skrebitskii VG (2001) Arginine vasopressin fragment AVP4-9 facilitates induction of long-term potentiation in the hippocampus. Bull Exp Biol Med 131:136–138. doi: 10.1023/A:1017583626625 CrossRefPubMedGoogle Scholar
  53. 53.
    Dubrovsky B, Tatarinov A, Gijsbers K, et al. (2003) Effects of arginine-vasopressin (AVP) on long-term potentiation in intact anesthetized rats. Brain Res Bull 59:467–472. doi: 10.1016/S0361-9230(02)00961-9 CrossRefPubMedGoogle Scholar
  54. 54.
    Gray M, Innala L, Viau V (2012) Central vasopressin V1 A receptor blockade impedes hypothalamic–pituitary–adrenal habituation to repeated restraint stress exposure in adult male rats. Neuropsychopharmacology 37:2712–2719. doi: 10.1038/npp.2012.136 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Ebner K, Wotjak CT, Landgraf R, Engelmann M (2002) Forced swimming triggers vasopressin release within the amygdala to modulate stress-coping strategies in rats. Eur J Neurosci 15:384–388. doi: 10.1046/j.0953-816x.2001.01869.x CrossRefPubMedGoogle Scholar
  56. 56.
    Wotjak CT, Naruo T, Muraoka S, et al. (2001) Forced swimming stimulates the expression of vasopressin and oxytocin in magnocellular neurons of the rat hypothalamic paraventricular nucleus. Eur J Neurosci 13:2273–2281CrossRefPubMedGoogle Scholar
  57. 57.
    Csaba G (1980) Phylogeny and ontogeny of hormone receptors: the selection theory of receptor formation and hormonal imprinting. Biol Rev 55:47–63. doi: 10.1111/j.1469-185X.1980.tb00687.x CrossRefPubMedGoogle Scholar
  58. 58.
    Csaba G (2011) The biological basis and clinical significance of hormonal imprinting, an epigenetic process. Clin Epigenetics 2:187–196. doi: 10.1007/s13148-011-0024-8 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Csaba G (2013) Hormonal imprinting in the central nervous system: causes and consequences. Orv Hetil 154:128–135. doi: 10.1556/OH.2013.29533 CrossRefPubMedGoogle Scholar
  60. 60.
    Hashemi F, Tekes K, Laufer R, et al. (2013) Effect of a single neonatal oxytocin treatment (hormonal imprinting) on the biogenic amine level of the adult rat brain: could oxytocin-induced labor cause pervasive developmental diseases? Reprod Sci 20:1255–1263. doi: 10.1177/1933719113483010 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Alexandra Lesse
    • 1
  • Kathy Rether
    • 1
  • Nicole Gröger
    • 1
  • Katharina Braun
    • 1
    • 2
  • Jörg Bock
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Zoology and Developmental Neurobiology, Institute of BiologyOtto von Guericke UniversityMagdeburgGermany
  2. 2.Center for Behavioral Brain ScienceOtto von Guericke UniversityMagdeburgGermany
  3. 3.Research Group Epigenetics & Structural Plasticity, Institute of BiologyOtto von Guericke UniversityMagdeburgGermany

Personalised recommendations