Abstract
The presence and functional role of tumor stem cells in benign tumors, and in human pituitary adenomas in particular, is a debated issue that still lacks a definitive formal demonstration. Fifty-six surgical specimens of human pituitary adenomas were processed to establish tumor stem-like cultures by selection and expansion in stem cell-permissive medium or isolating CD133-expressing cells. Phenotypic and functional characterization of these cells was performed (1) ex vivo, by immunohistochemistry analysis on paraffin-embedded tissues; (2) in vitro, attesting marker expression, proliferation, self-renewal, differentiation, and drug sensitivity; and (3) in vivo, using a zebrafish model. Within pituitary adenomas, we identified rare cell populations expressing stem cell markers but not pituitary hormones; we isolated and expanded in vitro these cells, obtaining fibroblast-free, stem-like cultures from 38 pituitary adenoma samples. These cells grow as spheroids, express stem cell markers (Oct4, Sox2, CD133, and nestin), show sustained in vitro proliferation as compared to primary cultures of differentiated pituitary adenoma cells, and are able to differentiate in hormone-expressing pituitary cells. Besides, pituisphere cells, apparently not tumorigenic in mice, engrafted in zebrafish embryos, inducing pro-angiogenic and invasive responses. Finally, pituitary adenoma stem-like cells express regulatory pituitary receptors (D2R, SSTR2, and SSTR5), whose activation by a dopamine/somatostatin chimeric agonist exerts antiproliferative effects. In conclusion, we provide evidence that human pituitary adenomas contain a subpopulation fulfilling biological and phenotypical signatures of tumor stem cells that may represent novel therapeutic targets for therapy-resistant tumors.
This is a preview of subscription content,
to check access.






References
Florio T, Barbieri F (2012) The status of the art of human malignant glioma management: the promising role of targeting tumor-initiating cells. Drug Discov Today 17(19–20):1103–1110. doi:10.1016/j.drudis.2012.06.001
Adorno-Cruz V, Kibria G, Liu X, Doherty M, Junk DJ, Guan D, Hubert C, Venere M et al (2015) Cancer stem cells: targeting the roots of cancer, seeds of metastasis, and sources of therapy resistance. Cancer Res 75(6):924–929. doi:10.1158/0008-5472.CAN-14-3225
Sell S (2005) Leukemia: stem cells, maturation arrest, and differentiation therapy. Stem Cell Rev 1(3):197–205. doi:10.1385/SCR:1:3:197
Skibinski A, Kuperwasser C (2015) The origin of breast tumor heterogeneity. Oncogene 34:5309–5316. doi:10.1038/onc.2014.475
Melmed S (2011) Pathogenesis of pituitary tumors. Nat Rev Endocrinol 7(5):257–266
Holdaway IM, Rajasoorya RC, Gamble GD (2004) Factors influencing mortality in acromegaly. J Clin Endocrinol Metab 89(2):667–674. doi:10.1210/jc.2003-031199
Levy A (2002) Physiological implications of pituitary trophic activity. J Endocrinol 174(2):147–155
Florio T (2011) Adult pituitary stem cells: from pituitary plasticity to adenoma development. Neuroendocrinology 94(4):265–277. doi:10.1159/000330857
Garcia-Lavandeira M, Diaz-Rodriguez E, Bahar D, Garcia-Rendueles AR, Rodrigues JS, Dieguez C, Alvarez CV (2015) Pituitary cell turnover: from adult stem cell recruitment through differentiation to death. Neuroendocrinology 101(3):175–192. doi:10.1159/000375502
Garcia-Lavandeira M, Quereda V, Flores I, Saez C, Diaz-Rodriguez E, Japon MA, Ryan AK, Blasco MA et al (2009) A GRFa2/Prop1/stem (GPS) cell niche in the pituitary. PLoS One 4(3):e4815
Garcia-Lavandeira M, Saez C, Diaz-Rodriguez E, Perez-Romero S, Senra A, Dieguez C, Japon MA, Alvarez CV (2012) Craniopharyngiomas express embryonic stem cell markers (SOX2, OCT4, KLF4, and SOX9) as pituitary stem cells but do not coexpress RET/GFRA3 receptors. J Clin Endocrinol Metab 97(1):E80–E87. doi:10.1210/jc.2011-2187
Florio T (2014) Adult pituitary stem cells. In: Tursken K (ed) Adult stem cells. 2nd Edition, Humana Press-Springer, NYC, pp 91–109. doi:10.1007/978-1-4614-9569-7_5
Rizzoti K, Akiyama H, Lovell-Badge R (2013) Mobilized adult pituitary stem cells contribute to endocrine regeneration in response to physiological demand. Cell Stem Cell 13(4):419–432. doi:10.1016/j.stem.2013.07.006
Castinetti F, Davis SW, Brue T, Camper SA (2011) Pituitary stem cell update and potential implications for treating hypopituitarism. Endocr Rev 32(4):453–471. doi:10.1210/er.2010-0011
Zhu X, Tollkuhn J, Taylor H, Rosenfeld MG (2015) Notch-dependent pituitary SOX2(+) stem cells exhibit a timed functional extinction in regulation of the postnatal gland. Stem Cell Reports 5(6):1196–1209. doi:10.1016/j.stemcr.2015.11.001
Andoniadou CL, Matsushima D, Mousavy Gharavy SN, Signore M, Mackintosh AI, Schaeffer M, Gaston-Massuet C, Mollard P et al (2013) Sox2(+) stem/progenitor cells in the adult mouse pituitary support organ homeostasis and have tumor-inducing potential. Cell Stem Cell 13(4):433–445. doi:10.1016/j.stem.2013.07.004
Barbieri F, Bajetto A, Stumm R, Pattarozzi A, Porcile C, Zona G, Dorcaratto A, Ravetti JL et al (2008) Overexpression of stromal cell-derived factor 1 and its receptor CXCR4 induces autocrine/paracrine cell proliferation in human pituitary adenomas. Clin Cancer Res 14(16):5022–5032
Rostene W, Guyon A, Kular L, Godefroy D, Barbieri F, Bajetto A, Banisadr G, Callewaere C et al (2011) Chemokines and chemokine receptors: new actors in neuroendocrine regulations. Front Neuroendocrinol 32(1):10–24
Barbero S, Bonavia R, Bajetto A, Porcile C, Pirani P, Ravetti JL, Zona GL, Spaziante R et al (2003) Stromal cell-derived factor 1alpha stimulates human glioblastoma cell growth through the activation of both extracellular signal-regulated kinases 1/2 and Akt. Cancer Res 63(8):1969–1974
Porcile C, Bajetto A, Barbieri F, Barbero S, Bonavia R, Biglieri M, Pirani P, Florio T et al (2005) Stromal cell-derived factor-1alpha (SDF-1alpha/CXCL12) stimulates ovarian cancer cell growth through the EGF receptor transactivation. Exp Cell Res 308(2):241–253. doi:10.1016/j.yexcr.2005.04.024
Barbieri F, Bajetto A, Porcile C, Pattarozzi A, Schettini G, Florio T (2007) Role of stromal cell-derived factor 1 (SDF1/CXCL12) in regulating anterior pituitary function. J Mol Endocrinol 38(3):383–389
Florio T, Casagrande S, Diana F, Bajetto A, Porcile C, Zona G, Thellung S, Arena S et al (2006) Chemokine stromal cell-derived factor 1alpha induces proliferation and growth hormone release in GH4C1 rat pituitary adenoma cell line through multiple intracellular signals. Mol Pharmacol 69(2):539–546
Massa A, Casagrande S, Bajetto A, Porcile C, Barbieri F, Thellung S, Arena S, Pattarozzi A et al (2006) SDF-1 controls pituitary cell proliferation through the activation of ERK1/2 and the Ca2+-dependent, cytosolic tyrosine kinase Pyk2. Ann N Y Acad Sci 1090:385–398. doi:10.1196/annals.1378.042
Mathioudakis N, Sundaresh R, Larsen A, Ruff W, Schiller J, Guerrero-Cazares H, Burger P, Salvatori R et al (2015) Expression of the pituitary stem/progenitor marker GFRalpha2 in human pituitary adenomas and normal pituitary. Pituitary 18(1):31–41. doi:10.1007/s11102-014-0553-1
Soeda A, Inagaki A, Oka N, Ikegame Y, Aoki H, Yoshimura S, Nakashima S, Kunisada T et al (2008) Epidermal growth factor plays a crucial role in mitogenic regulation of human brain tumor stem cells. J Biol Chem 283(16):10958–10966. doi:10.1074/jbc.M704205200
Xu Q, Yuan X, Tunici P, Liu G, Fan X, Xu M, Hu J, Hwang JY et al (2009) Isolation of tumour stem-like cells from benign tumours. Br J Cancer 101(2):303–311
Chen L, Ye H, Wang X, Tang X, Mao Y, Zhao Y, Wu Z, Mao XO et al (2014) Evidence of brain tumor stem progenitor-like cells with low proliferative capacity in human benign pituitary adenoma. Cancer Lett 349(1):61–66. doi:10.1016/j.canlet.2014.03.031
Orciani M, Davis S, Appolloni G, Lazzarini R, Mattioli-Belmonte M, Ricciuti RA, Boscaro M, Di Primio R et al (2015) Isolation and characterization of progenitor mesenchymal cells in human pituitary tumors. Cancer Gene Ther 22(1):9–16. doi:10.1038/cgt.2014.63
Mertens FM, Gremeaux L, Chen J, Fu Q, Willems C, Roose H, Govaere O, Roskams T et al (2015) Pituitary tumors contain a side population with tumor stem cell-associated characteristics. Endocr Relat Cancer 22(4):481–504. doi:10.1530/ERC-14-0546
Donangelo I, Ren SG, Eigler T, Svendsen C, Melmed S (2014) Sca1(+) murine pituitary adenoma cells show tumor-growth advantage. Endocr Relat Cancer 21(2):203–216. doi:10.1530/ERC-13-0229
Florio T, Barbieri F, Spaziante R, Zona G, Hofland LJ, van Koetsveld PM, Feelders RA, Stalla GK et al (2008) Efficacy of a dopamine-somatostatin chimeric molecule, BIM-23A760, in the control of cell growth from primary cultures of human non-functioning pituitary adenomas: a multi-center study. Endocr Relat Cancer 15(2):583–596
Bajetto A, Porcile C, Pattarozzi A, Scotti L, Aceto A, Daga A, Barbieri F, Florio T (2013) Differential role of EGF and BFGF in human GBM-TIC proliferation: relationship to EGFR-tyrosine kinase inhibitor sensibility. J Biol Regul Homeost Agents 27(1):143–154
Bajetto A, Barbieri F, Pattarozzi A, Dorcaratto A, Porcile C, Ravetti JL, Zona G, Spaziante R et al (2007) CXCR4 and SDF1 expression in human meningiomas: a proliferative role in tumoral meningothelial cells in vitro. Neuro-Oncology 9(1):3–11. doi:10.1215/15228517-2006-023
Wurth R, Barbieri F, Bajetto A, Pattarozzi A, Gatti M, Porcile C, Zona G, Ravetti JL et al (2011) Expression of CXCR7 chemokine receptor in human meningioma cells and in intratumoral microvasculature. J Neuroimmunol 234(1–2):115–123. doi:10.1016/j.jneuroim.2011.01.006
Gatti M, Pattarozzi A, Bajetto A, Wurth R, Daga A, Fiaschi P, Zona G, Florio T et al (2013) Inhibition of CXCL12/CXCR4 autocrine/paracrine loop reduces viability of human glioblastoma stem-like cells affecting self-renewal activity. Toxicology 314(2–3):209–220. doi:10.1016/j.tox.2013.10.003
Gritti M, Wurth R, Angelini M, Barbieri F, Peretti M, Pizzi E, Pattarozzi A, Carra E et al (2014) Metformin repositioning as antitumoral agent: selective antiproliferative effects in human glioblastoma stem cells, via inhibition of CLIC1-mediated ion current. Oncotarget 5(22):11252–11268
Griffero F, Daga A, Marubbi D, Capra MC, Melotti A, Pattarozzi A, Gatti M, Bajetto A et al (2009) Different response of human glioma tumor-initiating cells to epidermal growth factor receptor kinase inhibitors. J Biol Chem 284(11):7138–7148. doi:10.1074/jbc.M807111200
Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203(3):253–310. doi:10.1002/aja.1002030302
Nicoli S, Presta M (2007) The zebrafish/tumor xenograft angiogenesis assay. Nat Protoc 2(11):2918–2923. doi:10.1038/nprot.2007.412
Vitale G, Gaudenzi G, Dicitore A, Cotelli F, Ferone D, Persani L (2014) Zebrafish as an innovative model for neuroendocrine tumors. Endocr Relat Cancer 21(1):R67–R83. doi:10.1530/ERC-13-0388
Tobia C, Gariano G, De Sena G, Presta M (2013) Zebrafish embryo as a tool to study tumor/endothelial cell cross-talk. Biochim Biophys Acta 1832(9):1371–1377. doi:10.1016/j.bbadis.2013.01.016
Perez-Millan MI, Berner SI, Luque GM, De Bonis C, Sevlever G, Becu-Villalobos D, Cristina C (2013) Enhanced nestin expression and small blood vessels in human pituitary adenomas. Pituitary 16(3):303–310. doi:10.1007/s11102-012-0421-9
Chen J, Gremeaux L, Fu Q, Liekens D, Van Laere S, Vankelecom H (2009) Pituitary progenitor cells tracked down by side population dissection. Stem Cells (Dayton, Ohio) 27(5):1182–1195
Krylyshkina O, Chen J, Mebis L, Denef C, Vankelecom H (2005) Nestin-immunoreactive cells in rat pituitary are neither hormonal nor typical folliculo-stellate cells. Endocrinology 146(5):2376–2387
Barbieri F, Thellung S, Wurth R, Gatto F, Corsaro A, Villa V, Nizzari M, Albertelli M et al (2014) Emerging targets in pituitary adenomas: role of the CXCL12/CXCR4-R7 system. Int J Endocrinol 2014:753524. doi:10.1155/2014/753524
Xing B, Kong YG, Yao Y, Lian W, Wang RZ, Ren ZY (2013) Study on the expression levels of CXCR4, CXCL12, CD44, and CD147 and their potential correlation with invasive behaviors of pituitary adenomas. Biomed Environ Sci 26(7):592–598. doi:10.3967/0895-3988.2013.07.011
de Moraes DC, Vaisman M, Conceicao FL, Ortiga-Carvalho TM (2012) Pituitary development: a complex, temporal regulated process dependent on specific transcriptional factors. J Endocrinol 215(2):239–245. doi:10.1530/JOE-12-0229
Hsieh YC, Intawicha P, Lee KH, Chiu YT, Lo NW, Ju JC (2011) LIF and FGF cooperatively support stemness of rabbit embryonic stem cells derived from parthenogenetically activated embryos. Cell Reprogram 13(3):241–255. doi:10.1089/cell.2010.0097
Hofland LJ, Lamberts SW (1999) Pituitary gland tumors. Masters JRW, Palsson B (eds) Human Cell Culture: Cancer Cell Lines Part 1. Springer Netherlands, pp 149–159. doi:10.1007/0-306-46872-7_8
Rich JN, Eyler CE (2008) Cancer stem cells in brain tumor biology. Cold Spring Harb Symp Quant Biol 73:411–420
Florio T, Thellung S, Arena S, Corsaro A, Spaziante R, Gussoni G, Acuto G, Giusti M et al (1999) Somatostatin and its analog lanreotide inhibit the proliferation of dispersed human non-functioning pituitary adenoma cells in vitro. Eur J Endocrinol 141(4):396–408
Florio T, Thellung S, Corsaro A, Bocca L, Arena S, Pattarozzi A, Villa V, Massa A et al (2003) Characterization of the intracellular mechanisms mediating somatostatin and lanreotide inhibition of DNA synthesis and growth hormone release from dispersed human GH-secreting pituitary adenoma cells in vitro. Clin Endocrinol 59(1):115–128
Barbieri F, Thellung S, Ratto A, Carra E, Marini V, Fucile C, Bajetto A, Pattarozzi A et al (2015) In vitro and in vivo antiproliferative activity of metformin on stem-like cells isolated from spontaneous canine mammary carcinomas: translational implications for human tumors. BMC Cancer 15:228. doi:10.1186/s12885-015-1235-8
Kastelan D, Korsic M (2007) High prevalence rate of pituitary incidentaloma: is it associated with the age-related decline of the sex hormones levels? Med Hypotheses 69(2):307–309. doi:10.1016/j.mehy.2006.11.044
Gaudenzi G, Albertelli M, Dicitore A, Würth R, Gatto F, Barbieri F, Cotelli F, Florio T et al (2016) Patient-derived xenograft in zebrafish embryos: a new platform for translational research in neuroendocrine tumors. Endocrine. doi:10.1007/s12020-016-1048-9
Florio T, Pan MG, Newman B, Hershberger RE, Civelli O, Stork PJ (1992) Dopaminergic inhibition of DNA synthesis in pituitary tumor cells is associated with phosphotyrosine phosphatase activity. J Biol Chem 267(34):24169–24172
Pan MG, Florio T, Stork PJ (1992) G protein activation of a hormone-stimulated phosphatase in human tumor cells. Science (New York, NY) 256(5060):1215–1217
Florio T (2008) Somatostatin/somatostatin receptor signalling: phosphotyrosine phosphatases. Mol Cell Endocrinol 286(1–2):40–48. doi:10.1016/j.mce.2007.08.012
Saveanu A, Jaquet P (2009) Somatostatin-dopamine ligands in the treatment of pituitary adenomas. Rev Endocr Metab Disord 10(2):83–90. doi:10.1007/s11154-008-9086-0
Yunoue S, Arita K, Kawano H, Uchida H, Tokimura H, Hirano H (2011) Identification of CD133+ cells in pituitary adenomas. Neuroendocrinology 94(4):302–312. doi:10.1159/000330625
Leung SW, Wloga EH, Castro AF, Nguyen T, Bronson RT, Yamasaki L (2004) A dynamic switch in Rb+/− mediated neuroendocrine tumorigenesis. Oncogene 23(19):3296–3307. doi:10.1038/sj.onc.1207457
Nicoli S, Ribatti D, Cotelli F, Presta M (2007) Mammalian tumor xenografts induce neovascularization in zebrafish embryos. Cancer Res 67(7):2927–2931. doi:10.1158/0008-5472.Can-06-4268
Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, Lander ES (2009) Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138(4):645–659. doi:10.1016/j.cell.2009.06.034
Carra E, Barbieri F, Marubbi D, Pattarozzi A, Favoni RE, Florio T, Daga A (2013) Sorafenib selectively depletes human glioblastoma tumor-initiating cells from primary cultures. Cell Cycle 12(3):491–500. doi:10.4161/cc.23372
Alexandraki KI, Munayem Khan M, Chahal HS, Dalantaeva NS, Trivellin G, Berney DM, Caron P, Popovic V et al (2012) Oncogene-induced senescence in pituitary adenomas and carcinomas. Hormones (Athens) 11(3):297–307
Acknowledgments
The authors are thankful to M. Culler (Ipsen Inc.) for providing us with BIM-23A760, and to Dr. E. Mannino for her contribution in the early phases of the study. This work was supported by grants from the Italian Association for Cancer Research (AIRC) to TF and the Italian Ministry of University and Research (FIRB RBAP11884M) to GV.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing Interests
The authors declare that they have no competing interests.
Additional information
Roberto Würth and Federica Barbieri contributed equally to this work.
Rights and permissions
About this article
Cite this article
Würth, R., Barbieri, F., Pattarozzi, A. et al. Phenotypical and Pharmacological Characterization of Stem-Like Cells in Human Pituitary Adenomas. Mol Neurobiol 54, 4879–4895 (2017). https://doi.org/10.1007/s12035-016-0025-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12035-016-0025-x