Skip to main content

Advertisement

Log in

CRMPs Function in Neurons and Glial Cells: Potential Therapeutic Targets for Neurodegenerative Diseases and CNS Injury

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neurodegeneration in the adult mammalian central nervous system (CNS) is fundamentally accelerated by its intrinsic neuronal mechanisms, including its poor regenerative capacity and potent extrinsic inhibitory factors. Thus, the treatment of neurodegenerative diseases faces many obstacles. The degenerative processes, consisting of axonal/dendritic structural disruption, abnormal axonal transport, release of extracellular factors, and inflammation, are often controlled by the cytoskeleton. From this perspective, regulators of the cytoskeleton could potentially be a therapeutic target for neurodegenerative diseases and CNS injury. Collapsin response mediator proteins (CRMPs) are known to regulate the assembly of cytoskeletal proteins in neurons, as well as control axonal growth and neural circuit formation. Recent studies have provided some novel insights into the roles of CRMPs in several inhibitory signaling pathways of neurodegeneration, in addition to its functions in neurological disorders and CNS repair. Here, we summarize the roles of CRMPs in axon regeneration and its emerging functions in non-neuronal cells, especially in inflammatory responses. We also discuss the direct and indirect targeting of CRMPs as a novel therapeutic strategy for neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Liu K, Tedeschi A, Park KK, He Z (2011) Neuronal intrinsic mechanisms of axon regeneration. Annu Rev Neurosci 34:131–152

    Article  PubMed  CAS  Google Scholar 

  2. Fletcher DA, Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463:485–492. doi:10.1038/nature08908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stiess M, Bradke F (2011) Neuronal polarization: the cytoskeleton leads the way. Dev Neurobiol 71:430–444. doi:10.1002/dneu.20849

    Article  CAS  PubMed  Google Scholar 

  4. Kapitein LC, Hoogenraad CC (2011) Which way to go? Cytoskeletal organization and polarized transport in neurons. Mol Cell Neurosci 46:9–20. doi:10.1016/j.mcn.2010.08.015

    Article  CAS  PubMed  Google Scholar 

  5. Hol EM, Pekny M (2015) Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr Opin Cell Biol 32:121–130. doi:10.1016/j.ceb.2015.02.004

    Article  CAS  PubMed  Google Scholar 

  6. Hellal F, Hurtado A, Ruschel J et al (2011) Microtubule stabilization reduces scarring and causes axon regeneration after spinal cord injury. Science (80-) 331:928–931. doi:10.1126/science.1201148

    Article  CAS  Google Scholar 

  7. Ruschel J, Hellal F, Flynn KC et al (2015) Systemic administration of epothilone B promotes axon regeneration after spinal cord injury. Science (80-) 348:347–352

    Article  CAS  Google Scholar 

  8. Yamashita N, Goshima Y (2012) Collapsin response mediator proteins regulate neuronal development and plasticity by switching their phosphorylation status. Mol Neurobiol 45:234–246. doi:10.1007/s12035-012-8242-4

    Article  CAS  PubMed  Google Scholar 

  9. Ip JPK, Fu AKY, Ip NY (2014) CRMP2: functional roles in neural development and therapeutic potential in neurological diseases. Neurosci XX:1–10. doi:10.1177/1073858413514278

    Google Scholar 

  10. Khanna R, Wilson SM, Brittain JM et al (2012) Opening Pandora’s jar: a primer on the putative roles of CRMP2 in a panoply of neurodegenerative, sensory and motor neuron, and central disorders. Future Neurol 7:749–771. doi:10.2217/FNL.12.68.Opening

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Quach TT, Honnorat J, Kolattukudy PE et al (2015) CRMPs: critical molecules for neurite morphogenesis and neuropsychiatric diseases. Mol Psychiatry 275:27291–27302. doi:10.1038/mp.2015.77

    Google Scholar 

  12. Li W, Herman RK, Shaw JE (1992) Analysis of the Caenorhabditis elegans axonal guidance and outgrowth gene unc-33. Genetics 132:675–689. doi:10.1016/j.pep.2011.12.002

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Goshima Y, Nakamura F, Strittmatter P, Strittmatter SM (1995) Collapsin-induced growth cone collapse mediated by an intracellular protein related to UNC-33. Nature 376:509–514

    Article  CAS  PubMed  Google Scholar 

  14. Minturn JE, Fryer HJ, Geschwind DH, Hockfield S (1995) TOAD-64, a gene expressed early in neuronal differentiation in the rat, is related to unc-33, a C. elegans gene involved in axon outgrowth. J Neurosci 15:6757–6766

    CAS  PubMed  Google Scholar 

  15. Byk T, Dobransky T, Cifuentes-Diaz C, Sobel A (1996) Identification and molecular characterization of Unc-33-like phosphoprotein (Ulip), a putative mammalian homolog of the axonal guidance-associated unc-33 gene product. J Neurosci 16:688–701

    CAS  PubMed  Google Scholar 

  16. Inatome R, Tsujimura T, Hitomi T et al (2000) Identification of CRAM, a novel unc-33 gene family protein that associates with CRMP3 and protein-tyrosine kinase(s) in the developing rat brain. J Biol Chem 275:27291–27302. doi:10.1074/jbc.M910126199

    CAS  PubMed  Google Scholar 

  17. Wang LH, Strittmatter SM (1996) A family of rat CRMP genes is differentially expressed in the nervous system. J Neurosci 16:6197–6207

    CAS  PubMed  Google Scholar 

  18. Byk T, Ozon S, Sobel A (1998) The Ulip family phosphoproteins—common and specific properties. Eur J Biochem 254:14–24

    Article  CAS  PubMed  Google Scholar 

  19. Wang LH, Strittmatter SM (1997) Brain CRMP forms heterotetramers similar to liver dihydropyrimidinase. J Neurochem 69:2261–2269

    Article  CAS  PubMed  Google Scholar 

  20. Deo RC, Schmidt EF, Elhabazi A et al (2004) Structural bases for CRMP function in plexin-dependent semaphorin3A signaling. EMBO J 23:9–22. doi:10.1038/sj.emboj.7600021

    Article  CAS  PubMed  Google Scholar 

  21. Stenmark P, Ogg D, Flodin S et al (2007) The structure of human collapsin response mediator protein 2, a regulator of axonal growth. J Neurochem 101:906–917. doi:10.1111/j.1471-4159.2006.04401.x

    Article  CAS  PubMed  Google Scholar 

  22. Fukata Y, Itoh TJ, Kimura T et al (2002) CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. Nat Cell Biol 4:583–591. doi:10.1038/ncb825

    CAS  PubMed  Google Scholar 

  23. Lin P-C, Chan PM, Hall C, Manser E (2011) Collapsin response mediator proteins (CRMPs) are a new class of microtubule-associated protein (MAP) that selectively interacts with assembled microtubules via a taxol-sensitive binding interaction. J Biol Chem 286:41466–41478. doi:10.1074/jbc.M111.283580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kawano Y, Yoshimura T, Tsuboi D et al (2005) CRMP-2 is involved in kinesin-1-dependent transport of the Sra-1/WAVE1 complex and axon formation CRMP-2 is involved in kinesin-1-dependent transport of the Sra-1/WAVE1 complex and axon formation. Mol Cell Biol 25:9920–9935. doi:10.1128/MCB.25.22.9920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rosslenbroich V, Dai L, Baader SL et al (2005) Collapsin response mediator protein-4 regulates F-actin bundling. Exp Cell Res 310:434–444. doi:10.1016/j.yexcr.2005.08.005

    Article  CAS  PubMed  Google Scholar 

  26. Brot S, Rogemond V, Perrot V et al (2010) CRMP5 interacts with tubulin to inhibit neurite outgrowth, thereby modulating the function of CRMP2. J Neurosci 30:10639–10654. doi:10.1523/JNEUROSCI.0059-10.2010

    Article  CAS  PubMed  Google Scholar 

  27. Quinn CC, Chen E, Kinjo TG et al (2003) TUC-4b, a novel TUC family variant, regulates neurite outgrowth and associates with vesicles in the growth cone. J Neurosci 23:2815–2823

    CAS  PubMed  Google Scholar 

  28. Yuasa-Kawada J, Suzuki R, Kano F et al (2003) Axonal morphogenesis controlled by antagonistic roles of two CRMP subtypes in microtubule organization. Eur J Neurosci 17:2329–2343. doi:10.1046/j.1460-9568.2003.02664.x

    Article  PubMed  Google Scholar 

  29. Uchida Y, Ohshima T, Sasaki Y et al (2005) Semaphorin3A signalling is mediated via sequential Cdk5 and GSK3beta phosphorylation of CRMP2: implication of common phosphorylating mechanism underlying axon guidance and Alzheimer’s disease. Genes Cells 10:165–179. doi:10.1111/j.1365-2443.2005.00827.x

    Article  CAS  PubMed  Google Scholar 

  30. Yoshimura T, Kawano Y, Arimura N et al (2005) GSK-3β regulates phosphorylation of CRMP-2 and neuronal polarity. Cell 120:137–149. doi:10.1016/j.cell.2004.11.012

    Article  CAS  PubMed  Google Scholar 

  31. Cole AR, Causeret F, Yadirgi G et al (2006) Distinct priming kinases contribute to differential regulation of collapsin response mediator proteins by glycogen synthase kinase-3 in vivo. J Biol Chem 281:16591–16598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Alabed YZ, Pool M, Ong Tone S et al (2010) GSK3 beta regulates myelin-dependent axon outgrowth inhibition through CRMP4. J Neurosci 30:5635–5643. doi:10.1523/JNEUROSCI.6154-09.2010

    Article  CAS  PubMed  Google Scholar 

  33. Uchida Y, Ohshima T, Yamashita N et al (2009) Semaphorin3A signaling mediated by Fyn-dependent tyrosine phosphorylation of collapsin response mediator protein 2 at tyrosine 32. J Biol Chem 284:27393–27401. doi:10.1074/jbc.M109.000240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yamashita N, Mosinger B, Roy A et al (2011) CRMP5 (collapsin response mediator protein 5) regulates dendritic development and synaptic plasticity in the cerebellar Purkinje cells. J Neurosci 31:1773–1779. doi:10.1523/JNEUROSCI.5337-10.2011

    Article  CAS  PubMed  Google Scholar 

  35. Arimura N, Inagaki N, Chihara K et al (2000) Phosphorylation of collapsin response mediator protein-2 by rho-kinase: evidence for two separate signaling pathways for growth cone collapse. J Biol Chem 275:23973–23980. doi:10.1074/jbc.M001032200

    Article  CAS  PubMed  Google Scholar 

  36. Arimura N, Kawano Y, Yoshimura T et al (2005) Phosphorylation by rho kinase regulates CRMP-2 activity in growth cones. Molecilar Cell Biol 25:9973–9984. doi:10.1128/MCB.25.22.9973

    CAS  Google Scholar 

  37. Tan F, Thiele CJ, Li Z (2014) Collapsin response mediator proteins: potential diagnostic and prognostic biomarkers in cancers (review). Oncol Lett 7:1333–1340. doi:10.3892/ol.2014.1909

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Varrin-Doyer M, Vincent P, Cavagna S et al (2009) Phosphorylation of collapsin response mediator protein 2 on Tyr-479 regulates CXCL12-induced T lymphocyte migration. J Biol Chem 284:13265–13276. doi:10.1074/jbc.M807664200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vuaillat C, Varrin-Doyer M, Bernard A et al (2008) High CRMP2 expression in peripheral T lymphocytes is associated with recruitment to the brain during virus-induced neuroinflammation. J Neuroimmunol 193:38–51. doi:10.1016/j.jneuroim.2007.09.033

    Article  CAS  PubMed  Google Scholar 

  40. Varrin-Doyer M, Nicolle A, Marignier R et al (2012) Human T lymphotropic virus type 1 increases T lymphocyte migration by recruiting the cytoskeleton organizer CRMP2. J Immunol 188:1222–1233. doi:10.4049/jimmunol.1101562

    Article  CAS  PubMed  Google Scholar 

  41. Nagai J, Kitamura Y, Owada K et al (2015) Crmp4 deletion promotes recovery from spinal cord injury by neuroprotection and limited scar formation. Sci Rep 5:8269. doi:10.1038/srep08269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nagai J, Owada K, Kitamura Y, et al. (2016) Inhibition of CRMP2 phosphorylation repairs CNS by regulating neurotrophic and inhibitory responses. Exp Neurol (in press).

  43. Tonouchi A, Nagai J, Togashi K, et al. (2016) Loss of CRMP4 suppresses dopaminergic neuron death in an MPTP-induced mouse model of Parkinson’s disease. J Neurochem (in press).

  44. Inagaki N, Chihara K, Arimura N et al (2001) CRMP-2 induces axons in cultured hippocampal neurons. Nat Neurosci 4:781–782

    Article  CAS  PubMed  Google Scholar 

  45. Charrier E, Mosinger B, Meissirel C et al (2006) Transient alterations in granule cell proliferation, apoptosis and migration in postnatal developing cerebellum of CRMP1-/- mice. Genes to Cells 11:1337–1352. doi:10.1111/j.1365-2443.2006.01024.x

    Article  CAS  PubMed  Google Scholar 

  46. Su K-Y, Chien W-L, Fu W-M et al (2007) Mice deficient in collapsin response mediator protein-1 exhibit impaired long-term potentiation and impaired spatial learning and memory. J Neurosci 27:2513–2524. doi:10.1523/JNEUROSCI.4497-06.2007

    Article  CAS  PubMed  Google Scholar 

  47. Yamashita N, Takahashi A, Takao K et al (2013) Mice lacking collapsin response mediator protein 1 manifest hyperactivity, impaired learning and memory, and impaired prepulse inhibition. Front Behav Neurosci 7:216. doi:10.3389/fnbeh.2013.00216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Yamashita N, Morita A, Uchida Y et al (2007) Regulation of spine development by semaphorin3A through cyclin-dependent kinase 5 phosphorylation of collapsin response mediator protein 1. J Neurosci 27:12546–12554. doi:10.1523/JNEUROSCI.3463-07.2007

    Article  CAS  PubMed  Google Scholar 

  49. Yamashita N, Uchida Y, Ohshima T et al (2006) Collapsin response mediator protein 1 mediates Reelin signaling in cortical neuronal migration. J Neurosci 26:13357–13362. doi:10.1523/JNEUROSCI.4276-06.2006

    Article  CAS  PubMed  Google Scholar 

  50. Jin X, Sasamoto K, Nagai J et al (2016) Phosphorylation of CRMP2 by Cdk5 regulates dendritic spine development of cortical neuron in the mouse hippocampus. Neural Plast 6790743

  51. Mishiba T, Tanaka M, Mita N et al (2014) Cdk5/p35 functions as a crucial regulator of spatial learning and memory. Mol Brain 7:82. doi:10.1186/s13041-014-0082-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Mita N, He X, Sasamoto K et al (2014) Cyclin-dependent kinase 5 regulates dendritic spine formation and maintenance of cortical neuron in the mouse brain. Cereb Cortex. doi:10.1093/cercor/bhu264

    Google Scholar 

  53. Yamashita N, Ohshima T, Nakamura F et al (2012) Phosphorylation of CRMP2 (collapsin response mediator protein 2) is involved in proper dendritic field organization. J Neurosci 32:1360–1365. doi:10.1523/JNEUROSCI.5563-11.2012

    Article  CAS  PubMed  Google Scholar 

  54. Quach TT, Massicotte G, Belin M-F et al (2008) CRMP3 is required for hippocampal CA1 dendritic organization and plasticity. FASEB J 22:401–409. doi:10.1096/fj.07-9012com

    Article  CAS  PubMed  Google Scholar 

  55. Quach TT, Wang Y, Khanna R et al (2011) Effect of CRMP3 expression on dystrophic dendrites of hippocampal neurons. Mol Psychiatry 16:689–691. doi:10.1038/mp.2011.6

    Article  CAS  PubMed  Google Scholar 

  56. Nakamura F, Ugajin K, Yamashita N et al (2009) Increased proximal bifurcation of CA1 pyramidal apical dendrites in sema3A mutant mice. J Comp Neurol 516:360–375. doi:10.1002/cne.22125

    Article  PubMed  Google Scholar 

  57. Niisato E, Nagai J, Yamashita N et al (2012) CRMP4 suppresses apical dendrite bifurcation of CA1 pyramidal neurons in the mouse hippocampus. Dev Neurobiol 72:1447–1457. doi:10.1002/dneu.22007

    Article  CAS  PubMed  Google Scholar 

  58. Tsutiya A, Watanabe H, Nakano Y, et al. (2016) Deletion of collapsin response mediator protein 4 results in abnormal layer thickness and elongation of mitral cell apical dendrites in the neonatal olfactory bulb. J Anat in press. doi: 10.1111/joa.12434

  59. Tsutiya A, Nishihara M, Goshima Y, Ohtani-Kaneko R (2015) Mouse pups lacking collapsin response mediator protein 4 (CRMP4) manifest impaired olfactory function and hyperactivity in the olfactory bulb. Eur J Neurosci 42:2335–2345. doi:10.1111/ejn.12999

    Article  PubMed  Google Scholar 

  60. Khazaei MR, Girouard M-P, Alchini R et al (2014) Collapsin response mediator protein 4 regulates growth cone dynamics through the actin and microtubule cytoskeleton. J Biol Chem 289:30133–30143. doi:10.1074/jbc.M114.570440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Camdessanché J-P, Ferraud K, Boutahar N et al (2012) The collapsin response mediator protein 5 onconeural protein is expressed in Schwann cells under axonal signals and regulates axon-Schwann cell interactions. J Neuropathol Exp Neurol 71:298–311. doi:10.1097/NEN.0b013e31824d1df2

    Article  PubMed  CAS  Google Scholar 

  62. Niisato E, Nagai J, Yamashita N et al (2013) Phosphorylation of CRMP2 is involved in proper bifurcation of the apical dendrite of hippocampal CA1 pyramidal neurons. Dev Neurobiol 73:142–151. doi:10.1002/dneu.22048

    Article  CAS  PubMed  Google Scholar 

  63. Ip JPK, Shi L, Chen Y et al (2012) α2-chimaerin controls neuronal migration and functioning of the cerebral cortex through CRMP-2. Nat Neurosci 15:39–47

    Article  CAS  Google Scholar 

  64. Ohshima T (2015) Neuronal migration and protein kinases. Front Neurosci 8:458. doi:10.3389/fnins.2014.00458

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kaneko S, Iwanami A, Nakamura M et al (2006) A selective Sema3A inhibitor enhances regenerative responses and functional recovery of the injured spinal cord. Nat Med 12:1380–1389. doi:10.1038/nm1505

    Article  CAS  PubMed  Google Scholar 

  66. Bradbury EJ, Moon LDF, Popat RJ et al (2002) Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416:636–640. doi:10.1038/416636a

    Article  CAS  PubMed  Google Scholar 

  67. Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5:146–156. doi:10.1038/nrn1326

    Article  CAS  PubMed  Google Scholar 

  68. Yiu G, He Z (2006) Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 7:617–627. doi:10.1038/nrn1956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fink XKL, Strittmatter XSM, Cafferty XWBJ (2015) Comprehensive corticospinal labeling with mu—crystallin transgene reveals axon regeneration after spinal cord trauma in ngr1 Ϫ / Ϫ Mice. J Neurosci 35:15403–15418. doi:10.1523/JNEUROSCI.3165-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liz MA, Mar FM, Santos TE et al (2014) Neuronal deletion of GSK3beta increases microtubule speed in the growth cone and enhances axon regeneration via CRMP-2 and independently of MAP1B and CLASP2. BMC Biol 12:47. doi:10.1186/1741-7007-12-47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Dill J, Wang H, Zhou F, Li S (2008) Inactivation of glycogen synthase kinase 3 promotes axonal growth and recovery in the CNS. J Neurosci 28:8914–8928. doi:10.1523/JNEUROSCI.1178-08.2008

    Article  CAS  PubMed  Google Scholar 

  72. Renault-Mihara F, Katoh H, Ikegami T et al (2011) Beneficial compaction of spinal cord lesion by migrating astrocytes through glycogen synthase kinase-3 inhibition. EMBO Mol Med 3:682–696. doi:10.1002/emmm.201100179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fournier AE, Takizawa BT, Strittmatter SM (2003) Rho kinase inhibition enhances axonal regeneration in the injured CNS. J Neurosci 23:1416–1423

    CAS  PubMed  Google Scholar 

  74. Mimura F, Yamagishi S, Arimura N et al (2006) Myelin-associated glycoprotein inhibits microtubule assembly by a Rho-kinase-dependent mechanism. J Biol Chem 281:15970–15979. doi:10.1074/jbc.M510934200

    Article  CAS  PubMed  Google Scholar 

  75. Petratos S, Ozturk E, Azari MF et al (2012) Limiting multiple sclerosis related axonopathy by blocking Nogo receptor and CRMP-2 phosphorylation. Brain 135:1794–1818. doi:10.1093/brain/aws100

    Article  PubMed  PubMed Central  Google Scholar 

  76. Gögel S, Lange S, Leung K-Y et al (2010) Post-translational regulation of Crmp in developing and regenerating chick spinal cord. Dev Neurobiol 70:456–471. doi:10.1002/dneu.20789

    Article  PubMed  CAS  Google Scholar 

  77. Wakatsuki S, Saitoh F, Araki T (2011) ZNRF1 promotes Wallerian degeneration by degrading AKT to induce GSK3B-dependent CRMP2 phosphorylation. Nat Cell Biol 13:1415–1423. doi:10.1038/ncb2373

    Article  CAS  PubMed  Google Scholar 

  78. Romero MI, Rangappa N, Garry MG, Smith GM (2001) Functional regeneration of chronically injured sensory afferents into adult spinal cord after neurotrophin gene therapy. J Neurosci 21:8408–8416

    CAS  PubMed  Google Scholar 

  79. Thuret S, Moon LDF, Gage FH (2006) Therapeutic interventions after spinal cord injury. Nat Rev Neurosci 7:628–643. doi:10.1038/nrn1955

    Article  CAS  PubMed  Google Scholar 

  80. Arimura N, Kimura T, Nakamuta S et al (2009) Anterograde transport of TrkB in axons is mediated by direct interaction with Slp1 and Rab27. Dev Cell 16:675–686. doi:10.1016/j.devcel.2009.03.005

    Article  CAS  PubMed  Google Scholar 

  81. Suzuki Y, Nakagomi S, Namikawa K et al (2003) Collapsin response mediator protein-2 accelerates axon regeneration of nerve-injured motor neurons of rat. J Neurochem 86:1042–1050. doi:10.1046/j.1471-4159.2003.01920.x

    Article  CAS  PubMed  Google Scholar 

  82. Nishimura T, Fukata Y, Kato K et al (2003) CRMP-2 regulates polarized Numb-mediated endocytosis for axon growth. Nat Cell Biol 5:819–826. doi:10.1038/ncb1039

    Article  CAS  PubMed  Google Scholar 

  83. Witte H, Neukirchen D, Bradke F (2008) Microtubule stabilization specifies initial neuronal polarization. J Cell Biol 180:619–632. doi:10.1083/jcb.200707042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jang SY, Shin YK, Jung J et al (2010) Injury-induced CRMP4 expression in adult sensory neurons; a possible target gene for ciliary neurotrophic factor. Neurosci Lett 485:37–42. doi:10.1016/j.neulet.2010.08.058

    Article  CAS  PubMed  Google Scholar 

  85. Duplan L, Bernard N, Casseron W et al (2010) Collapsin response mediator protein 4a (CRMP4a) is upregulated in motoneurons of mutant SOD1 mice and can trigger motoneuron axonal degeneration and cell death. J Neurosci 30:785–796. doi:10.1523/JNEUROSCI.5411-09.2010

    Article  CAS  PubMed  Google Scholar 

  86. Alabed YZ, Pool M, Ong Tone S, Fournier AE (2007) Identification of CRMP4 as a convergent regulator of axon outgrowth inhibition. J Neurosci 27:1702–1711. doi:10.1523/JNEUROSCI.5055-06.2007

    Article  CAS  PubMed  Google Scholar 

  87. Nagai J, Goshima Y, Ohshima T (2012) CRMP4 mediates MAG-induced inhibition of axonal outgrowth and protection against vincristine-induced axonal degeneration. Neurosci Lett 519:56–61. doi:10.1016/j.neulet.2012.05.020

    Article  CAS  PubMed  Google Scholar 

  88. Nagai J, Takaya R, Piao W, et al. (2016) Deletion of Crmp4 attenuates CSPG-induced inhibition of axonal growth and induces nociceptive recovery after spinal cord injury. Mol Cell Neurosci (in press).

  89. Quach TT, Wilson SM, Rogemond V et al (2013) Mapping CRMP3 domains involved in dendrite morphogenesis and voltage-gated calcium channel regulation. J Cell Sci 126:4262–4273. doi:10.1242/jcs.131409

    Article  CAS  PubMed  Google Scholar 

  90. Kurnellas MP, Li H, Giraud SN et al (2010) Reduced expression of plasma membrane calcium ATPase 2 and collapsin response mediator protein 1 promotes death of spinal cord neurons. Cell Death Differ 17:1501–1510. doi:10.1038/cdd.2010.54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Williams PR, Marincu B, Sorbara CD et al (2014) A recoverable state of axon injury persists for hours after spinal cord contusion in vivo. Nat Commun 5:5683. doi:10.1038/ncomms6683

    Article  CAS  PubMed  Google Scholar 

  92. Liu W, Zhou X-W, Liu S et al (2009) Calpain-truncated CRMP-3 and -4 contribute to potassium deprivation-induced apoptosis of cerebellar granule neurons. Proteomics 9:3712–3728. doi:10.1002/pmic.200800979

    Article  CAS  PubMed  Google Scholar 

  93. Zhang Z, Ottens AK, Sadasivan S et al (2007) Calpain-mediated collapsin response mediator protein-1, -2, and -4 proteolysis after neurotoxic and traumatic brain injury. J Neurotrauma 24:460–472

    Article  PubMed  Google Scholar 

  94. Taghian K, Lee JY, Petratos S (2012) Phosphorylation and cleavage of the family of collapsin response mediator proteins may play a central role in neurodegeneration after CNS trauma. J Neurotrauma 29:1728–1735

    Article  PubMed  Google Scholar 

  95. Bretin S, Rogemond V, Marin P et al (2006) Calpain product of WT-CRMP2 reduces the amount of surface NR2B NMDA receptor subunit. J Neurochem 98:1252–1265. doi:10.1111/j.1471-4159.2006.03969.x

    Article  CAS  PubMed  Google Scholar 

  96. Brittain JM, Duarte DB, Wilson SM et al (2011) Suppression of inflammatory and neuropathic pain by uncoupling CRMP-2 from the presynaptic Ca2+ channel complex. Nat Med 17:822–829. doi:10.1038/nm.2345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Moutal A, François-Moutal L, Perez-Miller S, et al. (2015) (S)-Lacosamide binding to collapsin response mediator protein 2 (CRMP2) regulates CaV2.2 activity by subverting its phosphorylation by Cdk5. Mol Neurobiol. doi: 10.1007/s12035-015-9141-2

  98. Wilson SM, Moutal A, Melemedjian OK et al (2014) The functionalized amino acid (S)-Lacosamide subverts CRMP2-mediated tubulin polymerization to prevent constitutive and activity-dependent increase in neurite outgrowth. Front Cell Neurosci 8:1–15. doi:10.3389/fncel.2014.00196

    Google Scholar 

  99. Chi XX, Schmutzler BS, Brittain JM et al (2009) Regulation of N-type voltage-gated calcium channels (Cav2.2) and transmitter release by collapsin response mediator protein-2 (CRMP-2) in sensory neurons. J Cell Sci 122:4351–4362. doi:10.1242/jcs.053280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. 101. Moutal A, Chew LA, Yang X, et al. (2016) (S)-Lacosamide inhibition of CRMP2 phosphorylation reduces postoperative and neuropathic pain behaviors through distinct classes of sensory neurons identified by constellation pharmacology. Pain. doi: 10.1097/j.pain.0000000000000555

  101. Fitch MT, Doller C, Combs CK et al (1999) Cellular and molecular mechanisms of glial scarring and progressive cavitation: in vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma. J Neurosci 19:8182–8198

    CAS  PubMed  Google Scholar 

  102. Preston E, Webster J, Small D (2001) Characteristics of sustained blood-brain barrier opening and tissue injury in a model for focal trauma in the rat. J Neurotrauma 18:83–92

    Article  CAS  PubMed  Google Scholar 

  103. Vincent P, Collette Y, Marignier R et al (2005) A role for the neuronal protein collapsin response mediator protein 2 in T lymphocyte polarization and migration. J Immunol 175:7650–7660. doi:10.4049/jimmunol.175.11.7650

    Article  CAS  PubMed  Google Scholar 

  104. Na YR, Jung D, Gu GJ et al (2015) The early synthesis of p35 and activation of CDK5 in LPS-stimulated macrophages suppresses interleukin-10 production. Sci Signal 8:1–12

    Article  CAS  Google Scholar 

  105. Manivannan J, Tay SSW, Ling E, Dheen ST (2013) Dihydropyrimidinase-like 3 regulates the inflammatory response of activated microglia. Neuroscience 253:40–54. doi:10.1016/j.neuroscience.2013.08.023

    Article  CAS  PubMed  Google Scholar 

  106. Kang SS, Keasey MP, Cai J, Hagg T (2012) Loss of neuron-astroglial interaction rapidly induces protective CNTF expression after stroke in mice. J Neurosci 32:9277–9287. doi:10.1523/JNEUROSCI.1746-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Herrmann JE, Imura T, Song B et al (2008) STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury. J Neurosci 28:7231–7243. doi:10.1523/JNEUROSCI.1709-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kim OS, Park EJ, Joe E et al (2002) JAK-STAT signaling mediates gangliosides-induced inflammatory responses in brain microglial cells. J Biol Chem 277:40594. doi:10.1074/jbc

    Article  CAS  PubMed  Google Scholar 

  109. Yamauchi K, Osuka K, Takayasu M et al (2006) Activation of JAK/STAT signalling in neurons following spinal cord injury in mice. J Neurochem 96:1060–1070. doi:10.1111/j.1471-4159.2005.03559.x

    Article  CAS  PubMed  Google Scholar 

  110. Tian D, Yu Z, Xie M et al (2006) Suppression of astroglial scar formation and enhanced axonal regeneration associated with functional recovery in a spinal cord injury rat model by the cell cycle inhibitor olomoucine. J Neurosci Res 84:1053–1063. doi:10.1002/jnr

    Article  CAS  PubMed  Google Scholar 

  111. Dergham P, Ellezam B, Essagian C et al (2002) Rho signaling pathway targeted to promote spinal cord repair. J Neurosci 22:6570–6577

    CAS  PubMed  Google Scholar 

  112. Tanaka H, Yamashita T, Yachi K et al (2004) Cytoplasmic p21Cip1/WAF1 enhances axonal regeneration and functional recovery after spinal cord injury in rats. Neuroscience 127:155–164. doi:10.1016/j.neuroscience.2004.05.010

    Article  CAS  PubMed  Google Scholar 

  113. Zhang L, Kaneko S, Kikuchi K et al (2014) Rewiring of regenerated axons by combining treadmill training with semaphorin3A inhibition. Mol Brain 7:14. doi:10.1186/1756-6606-7-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kagoshima M, Ito T, Kitamura H, Goshima Y (2001) Diverse gene expression and function of semaphorins in developing lung: positive and negative regulatory roles of semaphorins in lung branching morphogenesis. Genes to Cells 6

  115. Beurel E, Grieco SF, Jope RS (2014) Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther 148:114–131. doi:10.1016/j.pharmthera.2014.11.016

    Article  PubMed  CAS  Google Scholar 

  116. Sakurai A, Doçi C, Gutkind JS (2012) Semaphorin signaling in angiogenesis, lymphangiogenesis and cancer. Cell Res 22:441–441. doi:10.1038/cr.2012.21

    Article  PubMed Central  Google Scholar 

  117. Lim S, Kaldis P (2013) Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development 140:3079–3093. doi:10.1242/dev.091744

    Article  CAS  PubMed  Google Scholar 

  118. Taniguchi M, Yuasa S, Fujisawa H et al (1997) Disruption of semaphorin III/D gene causes severe abnormality in peripheral nerve projection. Neuron 19:519–530

    Article  CAS  PubMed  Google Scholar 

  119. Ohshima T, Hirasawa M, Tabata H et al (2007) Cdk5 is required for multipolar-to-bipolar transition during radial neuronal migration and proper dendrite development of pyramidal neurons in the cerebral cortex. Development 134:2273–2282. doi:10.1242/dev.02854

    Article  CAS  PubMed  Google Scholar 

  120. MacAulay K, Doble BW, Patel S et al (2007) Glycogen synthase kinase 3α-specific regulation of murine hepatic glycogen metabolism. Cell Metab 6:329–337. doi:10.1016/j.cmet.2007.08.013

    Article  CAS  PubMed  Google Scholar 

  121. Thumkeo D, Keel J, Ishizaki T et al (2003) Targeted disruption of the mouse rho-associated kinase 2 gene results in intrauterine growth retardation and fetal death. Mol Cell Biol 23:5043–5055. doi:10.1128/MCB.23.14.5043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Astle MV, Ooms LM, Cole AR et al (2011) Identification of a proline-rich inositol polyphosphate 5-phosphatase (PIPP) collapsin response mediator protein 2 (CRMP2) complex that regulates neurite elongation. J Biol Chem 286:23407–23418. doi:10.1074/jbc.M110.214247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhu L-Q, Zheng H-Y, Peng C-X et al (2010) Protein phosphatase 2A facilitates axonogenesis by dephosphorylating CRMP2. J Neurosci 30:3839–3848. doi:10.1523/JNEUROSCI.5174-09.2010

    Article  CAS  PubMed  Google Scholar 

  124. Cole AR, Soutar MPM, Rembutsu M et al (2008) Relative resistance of Cdk5-phosphorylated CRMP2 to dephosphorylation. J Biol Chem 283:18227–18237. doi:10.1074/jbc.M801645200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wilson SM, Xiong W, Wang Y et al (2012) Prevention of posttraumatic axon sprouting by blocking collapsin response mediator protein 2-mediated neurite outgrowth and tubulin polymerization. Neuroscience 210:451–466. doi:10.1016/j.neuroscience.2012.02.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Brittain JM, Chen L, Wilson SM et al (2011) Neuroprotection against traumatic brain injury by a peptide derived from the collapsin response mediator protein 2 (CRMP2). J Biol Chem 286:37778–37792. doi:10.1074/jbc.M111.255455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hensley K, Christov A, Kamat S et al (2010) Proteomic identification of binding partners for the brain metabolite lanthionine ketimine (LK) and documentation of LK effects on microglia and motoneuron cell cultures. J Neurosci 30:2979–2988. doi:10.1523/JNEUROSCI.5247-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hensley K, Venkova K, Christov A (2010) Emerging biological importance of central nervous system lanthionines. Molecules 15:5581–5594. doi:10.3390/molecules15085581

    Article  CAS  PubMed  Google Scholar 

  129. Hensley K, Harris-white ME (2015) Redox regulation of autophagy in healthy brain and neurodegeneration. Neurobiol Dis 84:50–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Niewoehner J, Bohrmann B, Collin L et al (2014) Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron 81:49–60. doi:10.1016/j.neuron.2013.10.061

    Article  CAS  PubMed  Google Scholar 

  131. Prashar P, Swaroop Yadav P, Samarjeet F, Bandyopadhyay A (2014) Microarray meta-analysis identifies evolutionarily conserved BMP signaling targets in developing long bones. Dev Biol 389:192–207. doi:10.1016/j.ydbio.2014.02.015

    Article  CAS  PubMed  Google Scholar 

  132. Sun Y, Fei T, Yang T et al (2010) The suppression of CRMP2 expression by bone morphogenetic protein (BMP)-SMAD gradient signaling controls multiple stages of neuronal development. J Biol Chem 285:39039–39050. doi:10.1074/jbc.M110.168351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ricard D, Stankoff B, Bagnard D et al (2000) Differential expression of collapsin response mediator proteins (CRMP/ULIP) in subsets of oligodendrocytes in the postnatal rodent brain. Mol Cell Neurosci 16:324–337. doi:10.1006/mcne.2000.0888

    Article  CAS  PubMed  Google Scholar 

  134. Tahimic CGT, Tomimatsu N, Nishigaki R et al (2006) Evidence for a role of collapsin response mediator protein-2 in signaling pathways that regulate the proliferation of non-neuronal cells. Biochem Biophys Res Commun 340:1244–1250. doi:10.1016/j.bbrc.2005.12.132

    Article  CAS  PubMed  Google Scholar 

  135. Tan M, Cha C, Ye Y et al (2015) CRMP4 and CRMP2 interact to coordinate cytoskeleton dynamics, regulating growth cone development and axon elongation. Neural Plast. doi:10.1155/2015/947423

    Google Scholar 

  136. Tanaka H, Morimura R, Ohshima T (2012) Dpysl2 (CRMP2) and Dpysl3 (CRMP4) phosphorylation by Cdk5 and DYRK2 is required for proper positioning of Rohon-Beard neurons and neural crest cells during neurulation in zebrafish. Dev Biol 370:223–236. doi:10.1016/j.ydbio.2012.07.032

    Article  CAS  PubMed  Google Scholar 

  137. Morimura R, Nozawa K, Tanaka H, Ohshima T (2013) Phosphorylation of Dpsyl2 (CRMP2) and Dpsyl3 (CRMP4) is required for positioning of caudal primary motor neurons in the zebrafish spinal cord. Dev Neurobiol 73:911–920. doi:10.1002/dneu.22117

    Article  CAS  PubMed  Google Scholar 

  138. Balastik M, Zhou XZ, Sutherland C et al (2015) Prolyl isomerase Pin1 regulates axon guidance by stabilizing CRMP2A selectively in distal axons article prolyl isomerase pin1 regulates axon guidance by stabilizing CRMP2A selectively in distal axons. Cell Rep 13:812–828. doi:10.1016/j.celrep.2015.09.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Yu Z, Kryzer T, Griesmann G et al (2001) CRMP-5 neuronal autoantibody: marker of lung cancer and thymoma-related autoimmunity. Annu Neurol 49:146–154

    Article  CAS  Google Scholar 

  140. Caroni P, Schwab ME (1988) Antibody against myelin-associated inhibitor of neurite growth neutralizes nonpermissive substrate properties of CNS white matter. Neuron 1:85–96. doi:10.1016/0896-6273(88)90212-7

    Article  CAS  PubMed  Google Scholar 

  141. Yu C-G, Joshi A, Geddes JW (2008) Intraspinal MDL28170 microinjection improves functional and pathological outcome following spinal cord injury. J Neurotrauma 25:833–840. doi:10.1089/neu.2007.0490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Parkhurst CN, Yang G, Ninan I et al (2014) Neuroprotective effects of lithium: implications for the treatment of Alzheimer’s disease and related neurodegenerative disorders. ACS Chem Neurosci 5:443–450. doi:10.1021/cn5000309

    Article  CAS  Google Scholar 

  143. Bhat R, Xue Y, Berg S et al (2003) Structural insights and biological effects of glycogen synthase kinase 3-specific inhibitor AR-A014418. J Biol Chem 278:45937–45945. doi:10.1074/jbc.M306268200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Yoshio Goshima from the Department of Molecular Pharmacology and Neurobiology at Yokohama City University for his collaboration. We apologize to the authors whose relevant work we could not cite due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Ohshima.

Ethics declarations

Funding

This work was supported by grants from Grant-in-Aid for JSPS Fellows (J.N.), JSPS KAKENHI Grant Number 26430043 (T.O.) and Waseda University Grant for Special Research Projects (2013B-171 to T.O.). The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagai, J., Baba, R. & Ohshima, T. CRMPs Function in Neurons and Glial Cells: Potential Therapeutic Targets for Neurodegenerative Diseases and CNS Injury. Mol Neurobiol 54, 4243–4256 (2017). https://doi.org/10.1007/s12035-016-0005-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0005-1

Keywords

Navigation