Skip to main content

Advertisement

Log in

High-Glucose-Derived Oxidative Stress-Dependent Heme Oxygenase-1 Expression from Astrocytes Contributes to the Neuronal Apoptosis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

An elevated level of glucose has been found in the blood of hyperglycemia and diabetes patients associated with several central nervous system (CNS) complications. These disorders may be due to the up-regulation of many neurotoxic mediators by host cells triggered by high glucose (HG). Moreover, heme oxygenase-1 (HO-1) plays a crucial role in tissue pathological changes such as brain injuries. However, the molecular mechanisms underlying HG-induced HO-1 expression in brain cells remain poorly defined. Thus, we use the rat brain astrocytes (RBA-1) as a model to investigate the signaling mechanisms of HO-1 induction by HG and its effects on neuronal cells. We demonstrated that HG induced HO-1 expression via a reactive oxygen species (ROS)-dependent signaling pathway. NADPH oxidase (Nox)- and mitochondrion-dependent ROS generation led to activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun-N-terminal kinase (JNK) and then activated the downstream transcriptional factors nuclear factor-kappaB (NF-κB) and c-Fos/activator protein 1 (AP-1), respectively. Subsequently, the activated NF-κB and AP-1 turned on transcription of HO-1 gene. These results indicated that in brain astrocytes, activation of MAPK-mediated NF-κB and c-Fos/AP-1 cascades by Nox/ROS and mitoROS-dependent events is essential for HO-1 up-regulation induced by HG. Moreover, we found that HG-induced extracellular ROS increase and HO-1 expression from astrocytes resulted in neuronal apoptosis. These results offers new insights into the mechanisms and effects of the action of HG, supporting that HG may cause brain disorders in the development of diabetes- and hyperglycemia-induced CNS complications such as neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tomlinson DR, Gardiner NJ (2008) Glucose neurotoxicity. Nat Rev Neurosci 9:36–45

    Article  CAS  PubMed  Google Scholar 

  2. Massengale JL, Gasche Y, Chan PH (2002) Carbohydrate source influences gelatinase production by mouse astrocytes in vitro. Glia 38:240–245

    Article  PubMed  Google Scholar 

  3. Chen J, Cui X, Zacharek A, Cui Y, Roberts C, Chopp M (2011) White matter damage and the effect of matrix metalloproteinases in type 2 diabetic mice after stroke. Stroke 42:445–452

    Article  CAS  PubMed  Google Scholar 

  4. Llewelyn JG (2003) The diabetic neuropathies: types, diagnosis and management. J Neurol Neurosurg Psychiatry 74(Suppl 2):ii15–ii19

    PubMed  PubMed Central  Google Scholar 

  5. Archer AG, Watkins PJ, Thomas PK, Sharma AK, Payan J (1983) The natural history of acute painful neuropathy in diabetes mellitus. J Neurol Neurosurg Psychiatry 46:491–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sima AA, Bril V, Nathaniel V, McEwen TA, Brown MB, Lattimer SA, Greene DA (1988) Regeneration and repair of myelinated fibers in sural-nerve biopsy specimens from patients with diabetic neuropathy treated with sorbinil. New Engl J Med 319:548–555

    Article  CAS  PubMed  Google Scholar 

  7. Kimelberg HK (1995) Receptors on astrocytes—what possible functions? Neurochem Int 26:27–40

    Article  CAS  PubMed  Google Scholar 

  8. Hamby ME, Sofroniew MV (2010) Reactive astrocytes as therapeutic targets for CNS disorders. Neurotherapeutics 7:494–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Verkhratsky A, Olabarria M, Noristani HN, Yeh CY, Rodriguez JJ (2010) Astrocytes in Alzheimer’s disease. Neurotherapeutics 7:399–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang CM, Hsieh HL, Lin CC, Shih RH, Chi PL, Cheng SE, Hsiao LD (2013) Multiple factors from bradykinin-challenged astrocytes contribute to the neuronal apoptosis: involvement of astroglial ROS, MMP-9, and HO-1/CO system. Mol Neurobiol 47:1020–1033

    Article  CAS  PubMed  Google Scholar 

  11. Syapin PJ (2008) Regulation of haeme oxygenase-1 for treatment of neuroinflammation and brain disorders. Br J Pharmacol 155:623–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ryter SW, Alam J, Choi AM (2006) Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 86:583–650

    Article  CAS  PubMed  Google Scholar 

  13. Cuadrado A, Rojo AI (2008) Heme oxygenase-1 as a therapeutic target in neurodegenerative diseases and brain infections. Curr Pharm Des 14:429–442

    Article  CAS  PubMed  Google Scholar 

  14. Schipper HM, Bennett DA, Liberman A, Bienias JL, Schneider JA, Kelly J, Arvanitakis Z (2006) Glial heme oxygenase-1 expression in Alzheimer disease and mild cognitive impairment. Neurobiol Aging 27:252–261

    Article  CAS  PubMed  Google Scholar 

  15. Song L, Song W, Schipper HM (2007) Astroglia overexpressing heme oxygenase-1 predispose co-cultured PC12 cells to oxidative injury. J Neurosci Res 85:2186–2195

    Article  CAS  PubMed  Google Scholar 

  16. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    Article  CAS  PubMed  Google Scholar 

  17. Chrissobolis S, Faraci FM (2008) The role of oxidative stress and NADPH oxidase in cerebrovascular disease. Trends Mol Med 14:495–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vallyathan V, Shi X (1997) The role of oxygen free radicals in occupational and environmental lung diseases. Environ Health Perspect 105(Suppl 1):165–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mehta SL, Manhas N, Raghubir R (2007) Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev 54:34–66

    Article  CAS  PubMed  Google Scholar 

  20. Park L, Anrather J, Girouard H, Zhou P, Iadecola C (2007) Nox2-derived reactive oxygen species mediate neurovascular dysregulation in the aging mouse brain. J Cereb Blood Flow Metab 27:1908–1918

    Article  CAS  PubMed  Google Scholar 

  21. Wang HH, Hsieh HL, Wu CY, Sun CC, Yang CM (2009) Oxidized low-density lipoprotein induces matrix metalloproteinase-9 expression via a p42/p44 and JNK-dependent AP-1 pathway in brain astrocytes. Glia 57:24–38

    Article  PubMed  Google Scholar 

  22. Wei W, Liu Q, Tan Y, Liu L, Li X, Cai L (2009) Oxidative stress, diabetes, and diabetic complications. Hemoglobin 33:370–377

    Article  CAS  PubMed  Google Scholar 

  23. Shanmugam N, Reddy MA, Guha M, Natarajan R (2003) High glucose-induced expression of proinflammatory cytokine and chemokine genes in monocytic cells. Diabetes 52:1256–1264

    Article  CAS  PubMed  Google Scholar 

  24. Nishikawa T, Araki E (2007) Impact of mitochondrial ROS production in the pathogenesis of diabetes mellitus and its complications. Antioxid Redox Signal 9:343–353

    Article  CAS  PubMed  Google Scholar 

  25. Hsieh HL, Wang HH, Wu CY, Yang CM (2010) Reactive oxygen species-dependent c-Fos/activator protein 1 induction upregulates heme oxygenase-1 expression by bradykinin in brain astrocytes. Antioxid Redox Signal 13:1829–1844

    Article  CAS  PubMed  Google Scholar 

  26. Tung WH, Hsieh HL, Yang CM (2010) Enterovirus 71 induces COX-2 expression via MAPKs, NF-κB, and AP-1 in SK-N-SH cells: role of PGE2 in viral replication. Cell Signal 22:234–246

    Article  CAS  PubMed  Google Scholar 

  27. LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231

    Article  CAS  PubMed  Google Scholar 

  28. Reinehr R, Görg B, Becker S, Qvartskhava N, Bidmon HJ, Selbach O, Haas HL, Schliess F et al (2007) Hypoosmotic swelling and ammonia increase oxidative stress by NADPH oxidase in cultured astrocytes and vital brain slices. Glia 55:758–771

    Article  PubMed  Google Scholar 

  29. Ryter SW, Choi AM (2005) Heme oxygenase-1: redox regulation of a stress protein in lung and cell culture models. Antioxid Redox Signal 7:80–91

    Article  CAS  PubMed  Google Scholar 

  30. Infanger DW, Sharma RV, Davisson RL (2006) NADPH oxidases of the brain: distribution, regulation, and function. Antioxid Redox Signal 8:1583–1596

    Article  CAS  PubMed  Google Scholar 

  31. Kann O, Kovács R (2007) Mitochondria and neuronal activity. Am J Physiol Cell Physiol 292:C641–C657

    Article  CAS  PubMed  Google Scholar 

  32. Shi Q, Gibson GE (2007) Oxidative stress and transcriptional regulation in Alzheimer disease. Alzheimer Dis Assoc Disord 21:276–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Floyd RA (1999) Neuroinflammatory processes are important in neurodegenerative diseases: an hypothesis to explain the increased formation of reactive oxygen and nitrogen species as major factors involved in neurodegenerative disease development. Free Radic Biol Med 26:1346–1355

    Article  CAS  PubMed  Google Scholar 

  34. Wyss-Coray T (2006) Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med 12:1005–1015

    CAS  PubMed  Google Scholar 

  35. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140:918–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang J, Li G, Wang Z, Zhang X, Yao L, Wang F, Liu S, Yin J et al (2012) High glucose-induced expression of inflammatory cytokines and reactive oxygen species in cultured astrocytes. Neuroscience 202:58–68

    Article  CAS  PubMed  Google Scholar 

  37. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  CAS  PubMed  Google Scholar 

  38. Mohanty P, Hamouda W, Garg R, Aljada A, Ghanim H, Dandona P (2000) Glucose challenge stimulates reactive oxygen species (ROS) generation by leucocytes. J Clin Endocrinol Metab 85:2970–2973

    Article  CAS  PubMed  Google Scholar 

  39. Lee HB, Yu MR, Yang Y, Jiang Z, Ha H (2003) Reactive oxygen species-regulated signaling pathways in diabetic nephropathy. J Am Soc Nephrol 14(8 Suppl 3):S241–S245

    Article  CAS  PubMed  Google Scholar 

  40. Hsieh HL, Chi PL, Lin CC, Yang CC, Yang CM (2014) Up-regulation of ROS-dependent matrix metalloproteinase-9 from high-glucose-challenged astrocytes contributes to the neuronal apoptosis. Mol Neurobiol 50:520–533

    Article  CAS  PubMed  Google Scholar 

  41. Abramov AY, Jacobson J, Wientjes F, Hothersall J, Canevari L, Duchen MRL (2005) Expression and modulation of an NADPH oxidase in mammalian astrocytes. J Neurosci 25:9176–9184

    Article  CAS  PubMed  Google Scholar 

  42. Lin CC, Hsieh HL, Shih RH, Chi PL, Cheng SE, Chen JC, Yang CM (2012) NADPH oxidase 2-derived reactive oxygen species signal contributes to bradykinin-induced matrix metalloproteinase-9 expression and cell migration in brain astrocytes. Cell Commun Signal 10:35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. He M, Pan H, Xiao C, Pu M (2013) Roles for redox signaling by NADPH oxidase in hyperglycemia-induced heme oxygenase-1 expression in the diabetic retina. Invest Ophthalmol Vis Sci 54:4092–4101

    Article  CAS  PubMed  Google Scholar 

  44. Brown GC, Bal-Price A (2003) Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Mol Neurobiol 27:325–355

    Article  CAS  PubMed  Google Scholar 

  45. Bugger H, Abel ED (2010) Mitochondria in the diabetic heart. Cardiovasc Res 8:229–240

    Article  Google Scholar 

  46. Daiber A (2010) Redox signaling (cross-talk) from and to mitochondria involves mitochondrial pores and reactive oxygen species. Biochim Biophys Acta 1797:897–906

    Article  CAS  PubMed  Google Scholar 

  47. Dikalova AE, Bikineyeva AT, Budzyn K, Nazarewicz RR, McCann L, Lewis W, Harrison DG, Dikalov SI (2010) Therapeutic targeting of mitochondrial superoxide in hypertension. Circ Res 107:106–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gao L, Mann GE (2009) Vascular NAD(P)H oxidase activation in diabetes: a double-edged sword in redox signalling. Cardiovasc Res 82:9–20

    Article  CAS  PubMed  Google Scholar 

  49. Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81:807–869

    CAS  PubMed  Google Scholar 

  50. Lopes JP, Oliveira SM, Soares Fortunato J (2008) Oxidative stress and its effects on insulin resistance and pancreatic beta-cells dysfunction: relationship with type 2 diabetes mellitus complications. Acta Med Port 21:293–302

    CAS  PubMed  Google Scholar 

  51. Wu WS (2006) The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev 25:695–705

    Article  CAS  PubMed  Google Scholar 

  52. Park J, Min JS, Kim B, Chae UB, Yun JW, Choi MS, Kong IK, Chang KT et al (2015) Mitochondrial ROS govern the LPS-induced pro-inflammatory response in microglia cells by regulating MAPK and NF-κB pathways. Neurosci Lett 584:191–196

    Article  CAS  PubMed  Google Scholar 

  53. Alam J, Cook JL (2007) How many transcription factors does it take to turn on the heme oxygenase-1 gene? Am J Respir Cell Mol Biol 36:166–174

    Article  CAS  PubMed  Google Scholar 

  54. Haddad JJ (2002) Oxygen-sensitive pro-inflammatory cytokines, apoptosis signaling and redox-responsive transcription factors in development and pathophysiology. Cytokines Cell Mol Ther 7:1–14

    Article  CAS  PubMed  Google Scholar 

  55. Barnes PJ, Karin M (1997) Nuclear factor-κB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336:1066–1071

    Article  CAS  PubMed  Google Scholar 

  56. Hsieh HL, Lin CC, Hsiao LD, Yang CM (2013) High glucose induces reactive oxygen species-dependent matrix metalloproteinase-9 expression and cell migration in brain astrocytes. Mol Neurobiol 48:601–614

    Article  CAS  PubMed  Google Scholar 

  57. Das DK, Maulik N, Engelman RM (2004) Redox regulation of angiotensin II signaling in the heart. J Cell Mol Med 8:144–152

    Article  CAS  PubMed  Google Scholar 

  58. Cheng PY, Lee YM, Shih NL, Chen YC, Yen MH (2006) Heme oxygenase-1 contributes to the cytoprotection of alpha-lipoic acid via activation of p44/42 mitogen-activated protein kinase in vascular smooth muscle cells. Free Radic Biol Med 40:1313–1322

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education, Taiwan, Grant Number EMRPD1E1641; Ministry of Science and Technology, Taiwan, Grant Numbers MOST103-2321-B-182-006, MOST104-2320-B-182-010 (CMY), and NSC102-2320-B-255-005-MY3 (HLH); and Chang Gung Medical Research Foundation, Grant Numbers CMRPD1B0383, CMRPD1C0103, CMRPD1C0563, CMRPD1B0332, and CMRPD1F0021 (CMY); CMRPF1A0063, CMRPF1C0192, CMRPF1C0193, CMRPF3D0031, and CMRPF3D0032 (HLH); and CMRPG3B1093 and CMRPG3E2231 (CCL). We thank Ms. Yin-Chen Chen for her technical assistance.

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsi-Lung Hsieh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, CM., Lin, CC. & Hsieh, HL. High-Glucose-Derived Oxidative Stress-Dependent Heme Oxygenase-1 Expression from Astrocytes Contributes to the Neuronal Apoptosis. Mol Neurobiol 54, 470–483 (2017). https://doi.org/10.1007/s12035-015-9666-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9666-4

Keywords

Navigation