Skip to main content
Log in

Marginal Iodine Deficiency Affects Dendritic Spine Development by Disturbing the Function of Rac1 Signaling Pathway on Cytoskeleton

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Iodine deficiency (ID)-induced thyroid hormone (TH) insufficient during development leads to impairments of brain function, such as learning and memory. Marginal ID has been defined as subtle insufficiency of TH, characterized as low thyroxine (T4) levels, whether marginal ID potentially had adverse effects on the development of hippocampus and the underlying mechanisms remain unclear. Thus, in the present study, we established Wistar rat models with ID diet during pregnancy and lactation. The effects of marginal ID on long-term potentiation (LTP) were investigated in the hippocampal CA1 region. To study the development of dendritic spines in pyramidal cells, Golgi-Cox staining was conducted on postnatal day (PN) 7, PN14, PN21, and PN28. The activation of Rac1 signaling pathway, which is essential for dendritic spine development by regulating actin cytoskeleton, was also investigated. Our results showed that marginal ID slightly reduced the field-excitatory postsynaptic potential (f-EPSP) slope and the population spike (PS) amplitude. Besides, the density of dendritic spines during the critical period of rat postnatal development was mildly decreased, and we found no significant change of spine morphology in marginal ID group. We also observed decreased activation of the Rac1 signaling pathway in pups subjected to maternal marginal ID. Our study may support the hypothesis that decreased T4 induced by marginal ID results in slight impairments of LTP and leads to mild damage of dendritic spine development, which may be due to abnormal regulation of Rac1 signaling pathway on cytoskeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Patel J, Landers K, Li H, Mortimer RH, Richard K (2011) Thyroid hormones and fetal neurological development. J Endocrinol 209(1):1–8

    Article  CAS  PubMed  Google Scholar 

  2. World Health Organization/UNICEF/ICCIDD (2007) Assessment of ID disorders and monitoring their elimination: a guide for programme managers, 3rd edn. World Health Organization, Geneva. Available from http://whqlibdoc.who.int/publications/2007/9789241595827_eng.pdf

  3. Melse-Boonstra A, Jaiswal N (2010) Iodine deficiency in pregnancy, infancy and childhood and its consequences for brain development. Best Pract Res Clin Endocrinol Metab 24(1):29–38

    Article  CAS  PubMed  Google Scholar 

  4. Min H, Dong J, Wang Y, Wang Y, Teng W, Xi Q, Chen J (2015) Maternal hypothyroxinemia-induced neurodevelopmental impairments in the progeny. Mol Neurobiol. doi:10.1007/s12035-015-9101-x

    Google Scholar 

  5. Wang Y, Wang Y, Dong J, Wei W, Song B, Min H et al (2014) Developmental hypothyroxinemia and hypothyroidism reduce proliferation of cerebellar granule neuron precursors in rat offspring by downregulation of the sonic hedgehog signaling pathway. Mol Neurobiol 49(3):1143–1152

    Article  CAS  PubMed  Google Scholar 

  6. Méndez-Villa L, Elton-Puente JE, Solís-S JC, Sampson-Zaldívar E, García-G C et al (2014) Iodine nutrition and thyroid function assessment in childbearing age women from Queretaro, Mexico. Nutr Hosp 29(1):204–211

    PubMed  Google Scholar 

  7. Ferreira SM, Navarro AM, Magalhães PK, Maciel LM (2014) Iodine insufficiency in pregnant women from the State of São Paulo. Arq Bras Endocrinol Metabol 58(3):282–287

    Article  PubMed  Google Scholar 

  8. Zimmermann MB, Gizak M, Abbott K, Andersson M, Lazarus JH (2015) Iodine deficiency in pregnant women in Europe. Lancet Diabetes Endocrinol 3(9):672–674

    Article  PubMed  Google Scholar 

  9. Willoughby KA, McAndrews MP, Rovet JF (2014) Effects of maternal hypothyroidism on offspring hippocampus and memory. Thyroid 24(3):576–584

    Article  CAS  PubMed  Google Scholar 

  10. Wheeler SM, McLelland VC, Sheard E, McAndrews MP, Rovet JF (2015) Hippocampal functioning and verbal associative memory in adolescents with congenital hypothyroidism. Front Endocrinol 6:163

    Article  Google Scholar 

  11. Greenhill SD, Juczewski K, de Haan AM, Seaton G, Fox K, Hardingham NR (2015) Adult cortical plasticity depends on an early postnatal critical period. Science 349(6246):424–427

    Article  CAS  PubMed  Google Scholar 

  12. Calabrese B, Wilson MS, Halpain S (2006) Development and regulation of dendritic spine synapses. Physiology 21:38–47

    Article  CAS  PubMed  Google Scholar 

  13. Bourne JN, Harris KM (2008) Balancing structure and function at hippocampal dendritic spines. Annu Rev Neurosci 31:47–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hutsler JJ, Zhang H (2010) Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res 1309:83–94

    Article  CAS  PubMed  Google Scholar 

  15. Takashima S, Becker LE, Armstrong DL, Chan F (1981) Abnormal neuronal development in the visual cortex of the human fetus and infant with down’s syndrome. A quantitative and qualitative Golgi study. Brain Res 225(1):1–21

    Article  CAS  PubMed  Google Scholar 

  16. Galvez R, Greenough WT (2005) Sequence of abnormal dendritic spine development in primary somatosensory cortex of a mouse model of the fragile X mental retardation syndrome. Am J Med Genet A 35(2):155–160

    Article  Google Scholar 

  17. Irwin SA, Galvez R, Greenough WT (2000) Dendritic spine structural anomalies in fragile-X mental retardation syndrome. Cereb Cortex 10(10):1038–1044

    Article  CAS  PubMed  Google Scholar 

  18. Bellot A, Guivernau B, Tajes M, Bosch-Morato M, Valls-Comamala V, Muñoz FJ (2014) The structure and function of actin cytoskeleton in mature glutamatergic dendritic spines. Brain Res 1573:1–16

    Article  CAS  PubMed  Google Scholar 

  19. Fukazawa Y, Saitoh Y, Ozawa F, Ohta Y, Mizuno K, Inokuchi K (2003) Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo. Neuron 38(3):447–460

    Article  CAS  PubMed  Google Scholar 

  20. Hall A, Nobes CD (2000) Rho GTPases: molecular switches that control the organization and dynamics of the actin cytoskeleton. Philos Trans R Soc Lond B Biol Sci 355(1399):965–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schratt G (2009) microRNAs at the synapse. Nat Rev Neurosci 10(12):842–849

    Article  CAS  PubMed  Google Scholar 

  22. Haeckel A, Ahuja R, Gundelfinger ED, Qualmann B, Kessels MM (2008) The actin-binding protein Abp1 controls dendritic spine morphology and is important for spine head and synapse formation. J Neurosci 28(40):10031–10044

    Article  CAS  PubMed  Google Scholar 

  23. Stankiewicz TR, Linseman DA (2014) Rho family GTPases: key players in neuronal development neuronal survival, and neurodegeneration. Front Cell Neurosci 8:314

    Article  PubMed  PubMed Central  Google Scholar 

  24. Luo LQ (2000) Rho GTPases in neuronal morphogenesis. Nat Rev Neurosci 1(3):173–180

    Article  CAS  PubMed  Google Scholar 

  25. Govek EE, Newey SE, Van Aelst L (2005) The role of the Rho GTPases in neuronal development. Genes Dev 19(1):1–49

    Article  CAS  PubMed  Google Scholar 

  26. Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123(11):1939–1951

    CAS  PubMed  Google Scholar 

  27. Paxions G, Watson C (1996) The rat brain in stereotaxic coordinates. Academic Press, Sydney, pp 21–28

    Google Scholar 

  28. Norrholm SD, Ouimet CC (2000) Chronic fluoxetine administration to juvenile rats prevents age-associated dendritic spine proliferation in hippocampus. Brain Res 883(2):205–215

    Article  CAS  PubMed  Google Scholar 

  29. Arellano JI, Benavides-Piccione R, Defelipe J, Yuste R (2007) Ultrastructure of dendritic spines: correlation between synaptic and spine morphologies. Front Neurosci 1(1):131–143

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dong J, Lei X, Wang Y, Wang Y, Song H, Li M et al (2015) Different degrees of iodine deficiency inhibit differentiation of cerebellar granular cells in rat offspring via BMP-Smad1/5/8 Signaling. Mol Neurobiol. doi:10.1007/s12035-015-9382-0

    Google Scholar 

  31. Sekino Y, Kojima N, Shirao T (2007) Role of actin cytoskeleton in dendritic spine morphogenesis. Neurochem Int 51(2-4):92–104

    Article  CAS  PubMed  Google Scholar 

  32. Yang N, Higuchi O, Ohashi K, Nagata K, Wada A, Kangawa K, Nishida E, Mizuno K (1998) Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393(6687):809–812

    Article  CAS  PubMed  Google Scholar 

  33. Mikati MA, Grintsevich EE, Reisler E (2013) Drebrin-induced stabilization of actin filaments. J Biol Chem 288(27):19926–19938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Edwards DC, Sanders LC, Bokoch GM, Gill GN (1999) Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol 1(5):253–259

    Article  CAS  PubMed  Google Scholar 

  35. Boda B, Nikonenko I, Alberi S, Muller D (2006) Central nervous system functions of PAK protein family: from spine morphogenesis to mental retardation. Mol Neurobiol 34(1):67–80

    Article  CAS  PubMed  Google Scholar 

  36. Nadif Kasri N, Van Aelst L (2008) Rho-linked genes and neurological disorders. Pflugers Arch 455(5):787–797

    Article  CAS  PubMed  Google Scholar 

  37. Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279(5350):509–514

    Article  CAS  PubMed  Google Scholar 

  38. Watutantrige Fernando S, Cavedon E, Nacamulli D, Pozza D, Ermolao A, Zaccaria M et al (2015) Iodine status from childhood to adulthood in females living in North-East Italy: iodine deficiency is still an issue. Eur J Nutr. doi:10.1007/s00394-015-0853-x

    PubMed  Google Scholar 

  39. Sareen N, Pradhan R (2015) Need for neonatal screening program in India: a national priority. Indian J Endocrinol Metab 19(2):204–220

    Article  PubMed  PubMed Central  Google Scholar 

  40. Abbag FI, Abu-Eshy SA, Mahfouz AA, Al-Fifi SA, El-Wadie H, Abdallah SM et al (2015) Iodine-deficiency disorders in the Aseer region, south-western Saudi Arabia: 20 years after the national survey and universal salt iodization. Public Health Nutr 18(14):2523–2529

    Article  PubMed  Google Scholar 

  41. Zimmermann MB, Andersson M (2012) Update on iodine status worldwide. Curr Opin Endocrinol Diabetes Obes 19(5):382–387

    Article  CAS  PubMed  Google Scholar 

  42. Navarro D, Alvarado M, Navarrete F, Giner M, Obregon MJ, Manzanares J et al (2015) Gestational and early postnatal hypothyroidism alters VGluT1 and VGAT bouton distribution in the neocortex and hippocampus, and behavior in rats. Front Neuroanat 9:9

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wang Y, Wei W, Wang Y, Dong J, Song B, Min H, Teng W, Chen J (2013) Neurotoxicity of developmental hypothyroxinemia and hypothyroidism in rats: impairments of long-term potentiation are mediated by phosphatidylinositol 3-kinase signaling pathway. Toxicol Appl Pharmacol 271(2):257–265

    Article  CAS  PubMed  Google Scholar 

  44. Wang Y, Wei W, Song B, Wang Y, Dong J, Min H, Chen J (2014) Developmental hypothyroxinemia caused by mild iodine deficiency leads to HFS-Induced LTD in Rat Hippocampal CA1 region: involvement of AMPA receptor. Mol Neurobiol 50(2):348–357

    Article  CAS  PubMed  Google Scholar 

  45. Grossman AW, Aldridge GM, Weiler IJ, Greenough WT (2006) Local protein synthesis and spine morphogenesis: fragile X syndrome and beyond. J Neurosci 26(27):7151–7155

    Article  CAS  PubMed  Google Scholar 

  46. Lüscher C, Nicoll RA, Malenka RC, Muller D (2000) Synaptic plasticity and dynamic modulation of the postsynaptic memebrane. Nat Neurosci 3(6):545–550

    Article  PubMed  Google Scholar 

  47. Nimchinsky EA, Oberlander AM, Svoboda K (2001) Abnormal development of dendritic spines in FMR1 knock-out mice. J Neurosci 21(14):5139–5146

    CAS  PubMed  Google Scholar 

  48. Tada T, Sheng M (2006) Molecular mechanisms of dendritic spine morphogenesis. Curr Opin Neurobiol 16(1):95–101

    Article  CAS  PubMed  Google Scholar 

  49. Ethell IM, Pasquale EB (2005) Molecular mechanisms of dendritic spine development and remodeling. Prog Neurobiol 75(3):161–205

    Article  CAS  PubMed  Google Scholar 

  50. Schafer DA (2002) Coupling actin dynamics and membrane dynamics during endocytosis. Curr Opin Cell Biol 14(1):76–81

    Article  CAS  PubMed  Google Scholar 

  51. Priel A, Tuszynski JA, Woolf NJ (2010) Neural cytoskeleton capabilities for learning and memory. J Biol Phys 36(1):3–21

    Article  CAS  PubMed  Google Scholar 

  52. Siegrist-Kaiser CA, Juge-Aubry C, Tranter MP, Ekenbarger DM, Leonard JL (1990) Thyroxine-dependent modulation of actin polymerization in cultured astrocytes. A novel, extranuclear action of thyroid hormone. J Biol Chem 265(9):5296–5302

    CAS  PubMed  Google Scholar 

  53. Leonard JL, Farwell AP (1997) Thyroid hormone-regulated actin polymerization in brain. Thyroid 7(1):147–151

    Article  CAS  PubMed  Google Scholar 

  54. Farwell AP, Dubord-Tomasetti SA, Pietrzykowski AZ, Stachelek SJ, Leonard JL (2005) Regulation of cerebellar neuronal migration and neurite outgrowth by thyroxine and 3,3′,5′-triiodothyronine. Brain Res Dev Res 154(1):121–135

    Article  CAS  Google Scholar 

  55. Zamoner A, Funchal C, Jacques-Silva MC, Gottfried C, Barreto Silva FR, Pessoa-Pureur R (2007) Thyroid hormones reorganize the cytoskeleton of glial cells through Gfap phosphorylation and Rhoa-dependent mechanisms. Cell Mol Neurobiol 27(7):845–865

    Article  CAS  PubMed  Google Scholar 

  56. Davis PJ, Leonard JL, Davis FB (2008) Mechanisms of nongenomic actions of thyroid hormone. Front Neuroendocrinol 29(2):211–218

    Article  CAS  PubMed  Google Scholar 

  57. Soria Fregozo C, Perez Vega MI (2012) Actin-binding proteins and signalling pathways associated with the formation and maintenance of dendritic spines. Neurologia 27(7):421–431

    Article  CAS  PubMed  Google Scholar 

  58. Ivanov A, Esclapez M, Ferhat L (2009) Role of drebrin A in dendritic spine plasticity and synaptic function: implications in neurological disorders. Commun Integr Biol 2(3):268–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Counts SE, He B, Nadeem M, Wuu J, Scheff SW, Mufson EJ (2012) Hippocampal drebrin loss in mild cognitive impairment. Neurodegener Dis 10(1-4):216–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bamburg JR (1999) Proteins of the ADF/cofilin family: essential regulators of actin dynamics. Annu Rev Cell Dev Biol 15:185–230

    Article  CAS  PubMed  Google Scholar 

  61. Sarmiere PD, Bamburg JR (2002) Head, neck, and spines: a role for LIMK-1 in the hippocampus. Neuron 35(1):3–5

    Article  CAS  PubMed  Google Scholar 

  62. Cheng SY, Leonard JL, Davis PJ (2010) Molecular aspects of thyroid hormone actions. Endocr Rev 31(2):139–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zamoner A, Pessoa-Pureur R (2011) Nongenomic actions of thyroid hormones: every why has a wherefore. Immunol Endocr Metab Agents Med Chem 11:165–178

    Article  CAS  Google Scholar 

  64. Davis PJ, Shih A, Lin HY, Martino LJ, Davis FB (2000) Thyroxine promotes association of mitogen-activated protein kinase and nuclear thyroid hormone receptor (TR) and causes serine phosphorylation of TR. J Biol Chem 275(48):38032–38039

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant numbers 81102126), Important Platform of Science and Technology for the Universities in Liaoning Province (grant number 16010), and Program for Liaoning Innovative Research Team in University (grant number LT2015028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Chen.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, H., Dong, J., Wang, Y. et al. Marginal Iodine Deficiency Affects Dendritic Spine Development by Disturbing the Function of Rac1 Signaling Pathway on Cytoskeleton. Mol Neurobiol 54, 437–449 (2017). https://doi.org/10.1007/s12035-015-9657-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9657-5

Keywords

Navigation