Skip to main content

Advertisement

Log in

Effects of Aluminium on Rat Brain Mitochondria Bioenergetics: an In vitro and In vivo Study

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Numerous studies have highlighted the potential of aluminium as an aetiological factor for some neurodegenerative disorders, particularly Alzheimer’s disease and Parkinson’s disease. Our previous studies have shown that aluminium can cause oxidative stress, reduce the activity of some antioxidant enzymes, and enhance the dopaminergic neurodegeneration induced by 6-hydroxydopamine in an experimental model of Parkinson’s disease in rats. We now report a study on the effects caused by aluminium on mitochondrial bioenergetics following aluminium addition and after its chronic administration to rats. To develop our study, we used a high-resolution respirometry to test the mitochondrial respiratory capacities under the conditions of coupling, uncoupling, and non-coupling. Our study showed alterations in leakiness, a reduction in the maximum capacity of complex II-linked respiratory pathway, a decline in the respiration efficiency, and a decrease in the activities of complexes III and V in both models studied. The observed effects also included both an alteration in mitochondrial transmembrane potential and a decrease in oxidative phosphorylation capacity when relatively high concentrations of aluminium were added to the isolated mitochondria. These findings contribute to explain both the ability of aluminium to generate oxidative stress and its suggested potential to act as an etiological factor by promoting the progression of neurodegenerative disorders such as Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Al3+ :

Aluminium

ANT:

Adenine nucleotide translocator

CI:

Complex I

CII:

Complex II

E:

Uncoupled state

ETS:

Electron transport system

ETSmax :

Non-coupled respiration

FCCP:

Carbonyl cyanide-4-(trifluoromethoxy)-phenylhydrazone

L:

Resting state after ATP synthase inhibition

mPTP:

Mitochondrial permeability transition pore

OXPHOS:

Oxidative phosphorylation

P:

ADP activated state

PD:

Parkinson’s disease

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

SUIT:

Substrate-uncoupler-inhibitor-titration

TCA:

Tricarboxylic acid cycle

TTP+ :

Tetraphenylphosphonium

Δψ:

Mitochondria transmembrane potential

References

  1. Exley C (2013) Human exposure to aluminium. Environ Sci Processes Impacts 15:1807–18016

    Article  CAS  Google Scholar 

  2. House E, Esiri M, Forster G, Ince PG, Exley C (2012) Aluminium, iron and copper in human brain tissues donated to the Medical Research Council’s Cognitive Function and Ageing Study. Metallomics 4:56–65

    Article  CAS  PubMed  Google Scholar 

  3. Hirsch EC, Brandel JP, Galle P, Javoy-Aqid F, Aqid Y (1991) Iron and aluminium increase in the substantia nigra of patients with Parkinson’s disease: a X-ray microanalysis. J Neurochem 56:446–451

    Article  CAS  PubMed  Google Scholar 

  4. Yasui M, Kihira T, Ota K (1992) Calcium, magnesium and aluminium concentrations in Parkinson’s disease. Neurotoxicology 13:593–600

    CAS  PubMed  Google Scholar 

  5. Miu AC, Andreescu CE, Vaius R, Oltenau AI (2003) A behavioural and histological study of the effects of long-term exposure of adults rats to aluminium. Int J Neurosci 113:1197–1211

    Article  PubMed  Google Scholar 

  6. Julka D, Sandhir R, Gill KD (1995) Altered cholinergic metabolism in rat CNS following aluminium exposure: implications on learning performance. J Neurochem 65:2157–2164

    Article  CAS  PubMed  Google Scholar 

  7. Robertson JA, Felsenfeld AJ, Haygood CC, Wilson P, Clarke C, Llach F (1983) Animal model of alumium-induced osteomalacia: role of chronic renal failure. Kidney Int 23:327–335

    Article  CAS  PubMed  Google Scholar 

  8. Bolla KI, Briefel G, Spector D, Schwartz BS, Wieler L, Herron J, Gimenez L (1992) Neurocognitive effects of aluminium. Arch Neurol 49:1021–1026

    Article  CAS  PubMed  Google Scholar 

  9. Perl DP, Gajdusek DC, Garruto RM, Yanagihara RT, Gibbs CJ (1982) Intraneuronal aluminium accumulation in amyotrophic lateral sclerosis and Parkinsonism-demaentia of Guam. Science 10:1053–1055

    Article  Google Scholar 

  10. Garruto RM, Fukatsu R, Yanagihara R, Gajdusek DC, Hook G, Fiori CE (1984) Imaging of calcium and aluminium in neurofibrillary tangle-bearing neurons in parkinsonism-dementia of Guam. Proc Natl Acad Sci U S A 81:1875–1879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zatta P, Lucchini R, Van Rensburg SJ, Taylor A (2003) The role of metals in neurodegenerative processes: aluminium, manganese and zinc. Brain Res Bull 62:15–28

    Article  CAS  PubMed  Google Scholar 

  12. Walton JR (2006) Aluminium in hippocampal neurons from humans with Alzheimer’s disease. Neurotoxicology 27:385–394

    Article  CAS  PubMed  Google Scholar 

  13. Bondy SC, Ali SF, Guo-Ross S (1998) Aluminium but not iron treatment induces pro-oxidant events in the rat brain. Mol Chem Neuropathol 34:219–232

    Article  CAS  PubMed  Google Scholar 

  14. Kumar V, Gill KD (2009) Aluminium neurotoxicity: neurobehavioural and oxidative aspects. Arch Toxicol 83:965–978

    Article  CAS  PubMed  Google Scholar 

  15. Wu Z, Du Y, Xue H, Wu Y, Zhou B (2012) Aluminum induces neurodegeneration and its toxicity arises from increased iron accumulation and reactive oxygen species (ROS) production. Neurobiol Aging 33:199.e1–199.e12

    Article  CAS  Google Scholar 

  16. Sánchez-Iglesias S, Soto-Otero R, Iglesias-González J, Barciela-Alonso MC, Bermejo-Barrera P, Méndez-Álvarez E (2007) Analysis of brain regional distribution of aluminium in rats via oral and intraperitoneal administration. J Trace Elem Med Biol 21:31–34

    Article  PubMed  Google Scholar 

  17. Sánchez-Iglesias S, Méndez-Álvarez E, Iglesias-González J, Muñoz-Patiño A, Sánchez-Sellero I, Labandeira-García JL, Soto-Otero R (2009) Brain oxidative stress and selective behaviour of aluminium in specific areas of rat brain: potential effects in a 6-OHDA-induced model of Prakinson’s disease. J Neurochem 109:879–888

    Article  PubMed  Google Scholar 

  18. Gaeta A, Hider RC (2005) The crucial role of metal ions in neurodegeneration: the basis for a promising therapeutic strategy. Br J Pharmacol 146:1041–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ward RJ, Dexter DT, Crichton RR (2012) Chelating agents for neurodegenerative diseases. Curr Med Chem 19:2760–2772

    Article  CAS  PubMed  Google Scholar 

  20. Levenson CW (2003) Iron and Parkinson’s disease: chelators to rescue? Nutr Rev 61:311–313

    Article  PubMed  Google Scholar 

  21. Youdim MB, Stephenson G, Ben Sachar D (2004) Ironing iron out in Parkinson’s disease and other neurodegenerative diseases with iron chelators: a lesson from 6-hydroxydopamine and iron chelators, desferal and VK-28. Ann NY Acad Sci 1012:306–325

    Article  CAS  PubMed  Google Scholar 

  22. Cadenas E (2004) Mitochondrial free radical production and cell signaling. Mol Asp Med 25:17–26

    Article  CAS  Google Scholar 

  23. Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, Vercesi AE (2009) Mitochondria and reactive oxygen species. Free Radic Biol Med 47:333–343

    Article  CAS  PubMed  Google Scholar 

  24. Chandel NS (2014) Mitochondria as signaling organelles. BMC Biol 12:34

    Article  PubMed  PubMed Central  Google Scholar 

  25. Schapira AHV, Cooper JM, Dexter D, Jenner P, Clark JB, Mardsen CD (1989) Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1:1269

    Article  CAS  PubMed  Google Scholar 

  26. Keeney PM, Xie J, Capaldi RA, Bennett JP Jr (2006) Parkinson's disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J Neurosci 26:5256–5264

    Article  CAS  PubMed  Google Scholar 

  27. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909

    Article  CAS  PubMed  Google Scholar 

  28. Cannon JR, Greenamyre JT (2013) Gene-environment interactions in Parkinson’s disease: specific evidence in humans and mammalian models. Neurobiol Dis 57:38–46

    Article  CAS  PubMed  Google Scholar 

  29. Schapira AHV (2008) Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol 7:97–109

    Article  CAS  PubMed  Google Scholar 

  30. Kumar V, Bal A, Gill KD (2008) Impairment of mitochondrial energy metabolism in different regions of rat brain following chronic exposure to aluminium. Brain Res 1232:94–103

    Article  CAS  PubMed  Google Scholar 

  31. Tonitello A, Clari G, Mancon M, Tognon G, Zatta P (2000) Aluminium as inducer of the mitocondrial permeability transition. J Biol Inorg Chem 5:612–623

    Article  Google Scholar 

  32. Exley C (2004) The pro-oxidant activity of aluminium. Free Radic Biol Med 36:380–387

    Article  CAS  PubMed  Google Scholar 

  33. Schapiro SA, Everitt JI (2006) Preparation of animals for use in the laboratory: issues and challenges for the Institutional Animal Care and Use Committee (IACUC). ILAR J 47:370–375

    Article  CAS  PubMed  Google Scholar 

  34. Iglesias-Gonzalez J, Sánchez-Iglesias S, Beiras-Iglesias A, Soto-Otero R, Méndez-Álvarez E (2013) A simple method for isolating rat brain mitochondria with high metabolic activity: Effects of EGTA and EDTA. J Neurosci Methods 213:39–42

    Article  CAS  PubMed  Google Scholar 

  35. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  36. Fasching M, Gnaiger E (2009) Determination of membrane potential with TPP+ and an ion selective electrode. Mitochondr Physiol Network 14(5):1–7

    Google Scholar 

  37. Manella CA (2006) Structure and dynamics of the mitochondrial inner membrane cristae. Biochim Biophys Acta 1763:542–548

    Article  Google Scholar 

  38. Gnaiger E (2009) Capacity of oxidative phosphorylation in human skeletal muscle. New perspectives of mitochondrial physiology. Int J Biochem Cell Biol 41:1837–1845

    Article  CAS  PubMed  Google Scholar 

  39. Lin MT, Beal MF (2003) The oxidative damage theory of aging. Clin Neurosci Res 2:305–315

    Article  CAS  Google Scholar 

  40. Daiber A (2010) Redox signalling (cross-talk) from and to mitochondria involves mitochondrial pores and reactive oxidative species. Biochim Biophys Acta 1797:897–906

    Article  CAS  PubMed  Google Scholar 

  41. Le Masters JJ, Nieminen A-L, Quian T, Lawrence C, Elmore SP, Nishimura Y, Crowe RA, Cascio WE et al (1998) The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim Biophys Acta 1366:177–196

    Article  Google Scholar 

  42. De Marchi U, Mancon M, Battaglia V, Ceccon S, Cardellini P, Tonitello A (2004) Influence of reactive oxygen species production by monoamine oxidase activity on aluminium-induced mitochondrial permeability transition. Cell Mol Life Sci 61:2664–2671

    Article  PubMed  Google Scholar 

  43. Van Rensburg SJ, Carstens ME, Potocnik FCV, Aucamp AK, Taljaard JJF, Koch KR (1992) Membrane fluidity of platelets and erythrocytes in patients with Alzheimer’s disease and the effect of small amounts of aluminium on platelet and erythrocytes membranes. Neurochem Res 17:825–829

    Article  PubMed  Google Scholar 

  44. Bleier L, Dröse S (2012) Superoxide generation by complex III: from mechanistic rationales to functional consequences. Biochim Biophys Acta 1827:1320–1331

    Article  PubMed  Google Scholar 

  45. Swegert CV, Dave KR, Katyare SS (1999) Effect of aluminium-induced Alzheimer like condition on oxidative energy metabolism in rat liver, brain and heart mitochondria. Mech Aging Develop 112:27–42

    Article  CAS  Google Scholar 

  46. Mailloux RJ, Hamel R, Appanna VD (2006) Aluminium toxicity elicits a dysfunctional TCA cycle and succinate accumulation in hepatocytes. J Biochem Mol Toxicol 20:198–208

    Article  CAS  PubMed  Google Scholar 

  47. Trapp GA (1980) Studies on aluminium interaction with enzymes and proteins-the inhibition of hexokinase. Neurotoxicology 1:89–100

    CAS  Google Scholar 

  48. Zatta P, Lain E, Cagnolini C (2000) Effects of aluminium on activity of Krebs cycle enzymes and glutamate dehydrogenase in rat brain homogenate. Eur J Biochem 267:3049–3055

    Article  CAS  PubMed  Google Scholar 

  49. Bolam JP, Pissadaki EK (2012) Living on the edge with too many mouths to feed: why dopamine neurons die. Mov Disord 27:1478–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was financially supported by grant 09CSA005298PR from the Galician Government (XUGA), Santiago de Compostela, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón Soto-Otero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iglesias-González, J., Sánchez-Iglesias, S., Beiras-Iglesias, A. et al. Effects of Aluminium on Rat Brain Mitochondria Bioenergetics: an In vitro and In vivo Study. Mol Neurobiol 54, 563–570 (2017). https://doi.org/10.1007/s12035-015-9650-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9650-z

Keywords

Navigation