Skip to main content

Advertisement

Log in

Association of Parkinson’s Disease GWAS-Linked Loci with Alzheimer’s Disease in Han Chinese

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) and Parkinson’s disease (PD) have overlapping pathological mechanisms and genetic background, suggesting it would be meaningful to replicate PD-related genetic variants in AD population to identify new loci of AD. Here, in order to discover potential AD-related loci, we investigated the association between late-onset AD (LOAD) susceptibility and nine single-nucleotide polymorphisms (SNPs) (rs11724635 of BST1, rs12637471 of MCCC1, rs15553999 of TMEM229, rs17649553 of MAPT, rs34311866 of TMEM175-GAK-DGKQ, rs356182 of SNCA, rs6430538 of ACMSD-TMEM163, rs76904798 of LRRK2 and rs823118 of RAB7L1-NUCKS1) which were reported to have genome-wide significant associations with PD risk in a recent Genome Wide Association Study performed among white population. We included 2350 samples comprising with 992 sporadic LOAD patients and 1358 gender- and age-matched control subjects who were unrelated northern Han Chinese residents. Finally, among these included genetic variants, only rs76904798 of LRRK2 was proved to significantly reduce LOAD risk in a multivariate analysis in a dominant model after adjusting for age, sex, and apolipoprotein E (APOE) ε4 status (OR = 0.616; 95 % CI 0.446–0.849; Bonferroni corrected P = 0.027). In addition, when these data were stratified by APOE ε4 status, rs76904798 was still evident among subjects without APOE ε4 allele. Our results first time indicated rs76904798 of LRRK2 is also a common risk genetic variant for LOAD susceptibility in a northern Han Chinese people.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Yu JT, Tan L, Hardy J (2014) Apolipoprotein E in Alzheimer’s disease: an update. Annu Rev Neurosci 37:79–100. doi:10.1146/annurev-neuro-071013-014300

    Article  CAS  PubMed  Google Scholar 

  2. Jiang T, Yu JT, Tian Y, Tan L (2013) Epidemiology and etiology of Alzheimer’s disease: from genetic to non-genetic factors. Curr Alzheimer Res 10(8):852–867

    Article  CAS  PubMed  Google Scholar 

  3. Jiang T, Yu JT, Zhu XC, Zhang QQ, Tan MS, Cao L, Wang HF, Lu J, Gao Q, Zhang YD, Tan L (2014) Angiotensin-(1–7) induces cerebral ischaemic tolerance by promoting brain angiogenesis in a Mas/eNOS-dependent pathway. Br J Pharmacol 171(18):4222–4232. doi:10.1111/bph.12770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hauser PS, Ryan RO (2013) Impact of apolipoprotein E on Alzheimer’s disease. Curr Alzheimer Res 10(8):809–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang HF, Yu JT, Tang SW, Jiang T, Tan CC, Meng XF, Wang C, Tan MS, Tan L (2015) Efficacy and safety of cholinesterase inhibitors and memantine in cognitive impairment in Parkinson’s disease, Parkinson’s disease dementia, and dementia with Lewy bodies: systematic review with meta-analysis and trial sequential analysis. J Neurol Neurosurg Psychiatry 86(2):135–143. doi:10.1136/jnnp-2014-307659

    Article  PubMed  Google Scholar 

  6. Kempster PA, O'Sullivan SS, Holton JL, Revesz T, Lees AJ (2010) Relationships between age and late progression of Parkinson’s disease: a clinico-pathological study. Brain 133(Pt 6):1755–1762. doi:10.1093/brain/awq059

    Article  PubMed  Google Scholar 

  7. Kalaitzakis ME, Graeber MB, Gentleman SM, Pearce RK (2008) Striatal beta-amyloid deposition in Parkinson disease with dementia. J Neuropathol Exp Neurol 67(2):155–161. doi:10.1097/NEN.0b013e31816362aa

    Article  PubMed  Google Scholar 

  8. Kalaitzakis ME, Pearce RK, Gentleman SM (2009) Clinical correlates of pathology in the claustrum in Parkinson’s disease and dementia with Lewy bodies. Neurosci Lett 461(1):12–15. doi:10.1016/j.neulet.2009.05.083

    Article  CAS  PubMed  Google Scholar 

  9. Compta Y, Parkkinen L, O'Sullivan SS, Vandrovcova J, Holton JL, Collins C, Lashley T, Kallis C, Williams DR, de Silva R, Lees AJ, Revesz T (2011) Lewy- and Alzheimer-type pathologies in Parkinson’s disease dementia: which is more important? Brain 134(Pt 5):1493–1505. doi:10.1093/brain/awr031

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lippa CF, Pulaski-Salo D, Dickson DW, Smith TW (1997) Alzheimer’s disease, Lewy body disease and aging: a comparative study of the perforant pathway. J Neurol Sci 147(2):161–166

    Article  CAS  PubMed  Google Scholar 

  11. Polvikoski T, Sulkava R, Haltia M, Kainulainen K, Vuorio A, Verkkoniemi A, Niinisto L, Halonen P, Kontula K (1995) Apolipoprotein E, dementia, and cortical deposition of beta-amyloid protein. N Engl J Med 333(19):1242–1247. doi:10.1056/NEJM199511093331902

    Article  CAS  PubMed  Google Scholar 

  12. Laws SM, Friedrich P, Diehl-Schmid J, Muller J, Eisele T, Bauml J, Forstl H, Kurz A, Riemenschneider M (2007) Fine mapping of the MAPT locus using quantitative trait analysis identifies possible causal variants in Alzheimer’s disease. Mol Psychiatry 12(5):510–517. doi:10.1038/sj.mp.4001935

    CAS  PubMed  Google Scholar 

  13. Goris A, Williams-Gray CH, Clark GR, Foltynie T, Lewis SJ, Brown J, Ban M, Spillantini MG, Compston A, Burn DJ, Chinnery PF, Barker RA, Sawcer SJ (2007) Tau and alpha-synuclein in susceptibility to, and dementia in, Parkinson’s disease. Ann Neurol 62(2):145–153. doi:10.1002/ana.21192

    Article  CAS  PubMed  Google Scholar 

  14. Williams-Gray CH, Goris A, Saiki M, Foltynie T, Compston DA, Sawcer SJ, Barker RA (2009) Apolipoprotein E genotype as a risk factor for susceptibility to and dementia in Parkinson’s disease. J Neurol 256(3):493–498. doi:10.1007/s00415-009-0119-8

    Article  CAS  PubMed  Google Scholar 

  15. Nalls MA, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M, DeStefano AL, Kara E, Bras J, Sharma M, Schulte C, Keller MF, Arepalli S, Letson C, Edsall C, Stefansson H, Liu X, Pliner H, Lee JH, Cheng R, Ikram MA, Ioannidis JP, Hadjigeorgiou GM, Bis JC, Martinez M, Perlmutter JS, Goate A, Marder K, Fiske B, Sutherland M, Xiromerisiou G, Myers RH, Clark LN, Stefansson K, Hardy JA, Heutink P, Chen H, Wood NW, Houlden H, Payami H, Brice A, Scott WK, Gasser T, Bertram L, Eriksson N, Foroud T, Singleton AB (2014) Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet 46(9):989–993. doi:10.1038/ng.3043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34(7):939–944

    Article  CAS  PubMed  Google Scholar 

  17. Tan L, Yu JT, Zhang W, Wu ZC, Zhang Q, Liu QY, Wang W, Wang HF, Ma XY, Cui WZ (2013) Association of GWAS-linked loci with late-onset Alzheimer’s disease in a northern Han Chinese population. Alzheimers Dement 9(5):546–553. doi:10.1016/j.jalz.2012.08.007

    Article  PubMed  Google Scholar 

  18. Jiang T, Yu JT, Wang YL, Wang HF, Zhang W, Hu N, Tan L, Sun L, Tan MS, Zhu XC (2014) The genetic variation of ARRB2 is associated with late-onset Alzheimer’s disease in Han Chinese. Curr Alzheimer Res 11(4):408–412

    Article  CAS  PubMed  Google Scholar 

  19. Zhu XC, Tan L, Jiang T, Tan MS, Zhang W, Yu JT (2014) Association of IL-12A and IL-12B polymorphisms with Alzheimer’s disease susceptibility in a Han Chinese population. J Neuroimmunol 274(1–2):180–184. doi:10.1016/j.jneuroim.2014.06.026

    Article  CAS  PubMed  Google Scholar 

  20. Yu JT, Song JH, Ma T, Zhang W, Yu NN, Xuan SY, Tan L (2011) Genetic association of PICALM polymorphisms with Alzheimer’s disease in Han Chinese. J Neurol Sci 300(1–2):78–80. doi:10.1016/j.jns.2010.09.027

    Article  CAS  PubMed  Google Scholar 

  21. Xia M, Yu JT, Miao D, Lu RC, Zheng XP, Tan L (2014) SIRT2 polymorphism rs10410544 is associated with Alzheimer’s disease in a Han Chinese population. J Neurol Sci 336(1–2):48–51. doi:10.1016/j.jns.2013.10.001

    Article  CAS  PubMed  Google Scholar 

  22. Chen X, Li S, Yang Y, Yang X, Liu Y, Hu W, Jin L, Wang X (2012) Genome-wide association study validation identifies novel loci for atherosclerotic cardiovascular disease. J Thromb Haemost 10(8):1508–1514. doi:10.1111/j.1538-7836.2012.04815.x

    Article  CAS  PubMed  Google Scholar 

  23. McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP, Hirschhorn JN (2008) Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 9(5):356–369. doi:10.1038/nrg2344

    Article  CAS  PubMed  Google Scholar 

  24. Wang J, Yu JT, Tan MS, Jiang T, Tan L (2013) Epigenetic mechanisms in Alzheimer’s disease: implications for pathogenesis and therapy. Ageing Res Rev 12(4):1024–1041. doi:10.1016/j.arr.2013.05.003

    Article  CAS  PubMed  Google Scholar 

  25. Xu W, Tan L, Yu JT (2015) The link between the SNCA gene and parkinsonism. Neurobiol Aging 36(3):1505–1518. doi:10.1016/j.neurobiolaging.2014.10.042

    Article  CAS  PubMed  Google Scholar 

  26. Li JQ, Tan L, Yu JT (2014) The role of the LRRK2 gene in Parkinsonism. Mol Neurodegener 9:47. doi:10.1186/1750-1326-9-47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xie A, Gao J, Xu L, Meng D (2014) Shared mechanisms of neurodegeneration in Alzheimer’s disease and Parkinson’s disease. BioMed research international 2014:648740. doi:10.1155/2014/648740

  28. Lill CM, Roehr JT, McQueen MB, Kavvoura FK, Bagade S, Schjeide BM, Schjeide LM, Meissner E, Zauft U, Allen NC, Liu T, Schilling M, Anderson KJ, Beecham G, Berg D, Biernacka JM, Brice A, DeStefano AL, Do CB, Eriksson N, Factor SA, Farrer MJ, Foroud T, Gasser T, Hamza T, Hardy JA, Heutink P, Hill-Burns EM, Klein C, Latourelle JC, Maraganore DM, Martin ER, Martinez M, Myers RH, Nalls MA, Pankratz N, Payami H, Satake W, Scott WK, Sharma M, Singleton AB, Stefansson K, Toda T, Tung JY, Vance J, Wood NW, Zabetian CP, Young P, Tanzi RE, Khoury MJ, Zipp F, Lehrach H, Ioannidis JP, Bertram L (2012) Comprehensive research synopsis and systematic meta-analyses in Parkinson’s disease genetics: the PDGene database. PLoS Genet 8(3):e1002548. doi:10.1371/journal.pgen.1002548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lopatina O, Yoshihara T, Nishimura T, Zhong J, Akther S, Fakhrul AA, Liang M, Higashida C, Sumi K, Furuhara K, Inahata Y, Huang JJ, Koizumi K, Yokoyama S, Tsuji T, Petugina Y, Sumarokov A, Salmina AB, Hashida K, Kitao Y, Hori O, Asano M, Kitamura Y, Kozaka T, Shiba K, Zhong F, Xie MJ, Sato M, Ishihara K, Higashida H (2014) Anxiety- and depression-like behavior in mice lacking the CD157/BST1 gene, a risk factor for Parkinson’s disease. Front Behav Neurosci 8:133. doi:10.3389/fnbeh.2014.00133

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yamamoto-Katayama S, Ariyoshi M, Ishihara K, Hirano T, Jingami H, Morikawa K (2002) Crystallographic studies on human BST-1/CD157 with ADP-ribosyl cyclase and NAD glycohydrolase activities. J Mol Biol 316(3):711–723. doi:10.1006/jmbi.2001.5386

    Article  CAS  PubMed  Google Scholar 

  31. Yilmaz OH, Katajisto P, Lamming DW, Gultekin Y, Bauer-Rowe KE, Sengupta S, Birsoy K, Dursun A, Yilmaz VO, Selig M, Nielsen GP, Mino-Kenudson M, Zukerberg LR, Bhan AK, Deshpande V, Sabatini DM (2012) mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature 486(7404):490–495. doi:10.1038/nature11163

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Poehler AM, Xiang W, Spitzer P, May VE, Meixner H, Rockenstein E, Chutna O, Outeiro TF, Winkler J, Masliah E, Klucken J (2014) Autophagy modulates SNCA/alpha-synuclein release, thereby generating a hostile microenvironment. Autophagy 10(12):2171–2192. doi:10.4161/auto.36436

    Article  CAS  PubMed  Google Scholar 

  33. Byers B, Cord B, Nguyen HN, Schule B, Fenno L, Lee PC, Deisseroth K, Langston JW, Pera RR, Palmer TD (2011) SNCA triplication Parkinson’s patient’s iPSC-derived DA neurons accumulate alpha-synuclein and are susceptible to oxidative stress. PLoS One 6(11):e26159. doi:10.1371/journal.pone.0026159

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sposito T, Preza E, Mahoney CJ, Seto-Salvia N, Ryan NS, Morris HR, Arber C, Devine MJ, Houlden H, Warner TT, Bushell TJ, Zagnoni M, Kunath T, Livesey FJ, Fox NC, Rossor MN, Hardy J, Wray S (2015) Developmental regulation of tau splicing is disrupted in stem cell-derived neurons from frontotemporal dementia patients with the 10 + 16 splice-site mutation in MAPT. Hum Mol Genet 24(18):5260–5269. doi:10.1093/hmg/ddv246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen S, Townsend K, Goldberg TE, Davies P, Conejero-Goldberg C (2010) MAPT isoforms: differential transcriptional profiles related to 3R and 4R splice variants. J Alzheimers Dis 22(4):1313–1329. doi:10.3233/JAD-2010-101155

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE (2007) Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet 39(1):17–23. doi:10.1038/ng1934

    Article  CAS  PubMed  Google Scholar 

  37. Ramanan VK, Saykin AJ (2013) Pathways to neurodegeneration: mechanistic insights from GWAS in Alzheimer’s disease, Parkinson’s disease, and related disorders. Am J Neurodegener Dis 2(3):145–175

    PubMed  PubMed Central  Google Scholar 

  38. Dachsel JC, Farrer MJ (2010) LRRK2 and Parkinson disease. Arch Neurol 67(5):542–547. doi:10.1001/archneurol.2010.79

    Article  PubMed  Google Scholar 

  39. Ross OA, Soto-Ortolaza AI, Heckman MG, Aasly JO, Abahuni N, Annesi G, Bacon JA, Bardien S, Bozi M, Brice A, Brighina L, Van Broeckhoven C, Carr J, Chartier-Harlin MC, Dardiotis E, Dickson DW, Diehl NN, Elbaz A, Ferrarese C, Ferraris A, Fiske B, Gibson JM, Gibson R, Hadjigeorgiou GM, Hattori N, Ioannidis JP, Jasinska-Myga B, Jeon BS, Kim YJ, Klein C, Kruger R, Kyratzi E, Lesage S, Lin CH, Lynch T, Maraganore DM, Mellick GD, Mutez E, Nilsson C, Opala G, Park SS, Puschmann A, Quattrone A, Sharma M, Silburn PA, Sohn YH, Stefanis L, Tadic V, Theuns J, Tomiyama H, Uitti RJ, Valente EM, van de Loo S, Vassilatis DK, Vilarino-Guell C, White LR, Wirdefeldt K, Wszolek ZK, Wu RM, Farrer MJ (2011) Association of LRRK2 exonic variants with susceptibility to Parkinson’s disease: a case–control study. Lancet Neurol 10(10):898–908. doi:10.1016/S1474-4422(11)70175-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S, Kachergus J, Hulihan M, Uitti RJ, Calne DB, Stoessl AJ, Pfeiffer RF, Patenge N, Carbajal IC, Vieregge P, Asmus F, Muller-Myhsok B, Dickson DW, Meitinger T, Strom TM, Wszolek ZK, Gasser T (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44(4):601–607. doi:10.1016/j.neuron.2004.11.005

    Article  CAS  PubMed  Google Scholar 

  41. Lee E, Hui S, Ho G, Tan EK, Chen CP (2006) LRRK2 G2019S and I2020T mutations are not common in Alzheimer’s disease and vascular dementia. Am J Med Genet B Neuropsychiatr Genet 141B(5):549–550. doi:10.1002/ajmg.b.30305

    Article  CAS  PubMed  Google Scholar 

  42. Santos-Reboucas CB, Abdalla CB, Baldi FJ, Martins PA, Correa JC, Goncalves AP, Cunha MS, Borges MB, Pereira JS, Laks J, Pimentel MM (2008) Co-occurrence of sporadic parkinsonism and late-onset Alzheimer’s disease in a Brazilian male with the LRRK2 p.G2019S mutation. Genet Test 12(4):471–473. doi:10.1089/gte.2008.0042

    Article  CAS  PubMed  Google Scholar 

  43. Tan EK, Lee J, Chen CP, Wong MC, Zhao Y (2009) Case control analysis of LRRK2 Gly2385Arg in Alzheimer’s disease. Neurobiol Aging 30(3):501–502. doi:10.1016/j.neurobiolaging.2007.07.010

    Article  CAS  PubMed  Google Scholar 

  44. Zhao Y, Ho P, Yih Y, Chen C, Lee WL, Tan EK (2011) LRRK2 variant associated with Alzheimer’s disease. Neurobiol Aging 32(11):1990–1993. doi:10.1016/j.neurobiolaging.2009.11.019

    Article  CAS  PubMed  Google Scholar 

  45. Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R, Myers RH, Pericak-Vance MA, Risch N, van Duijn CM (1997) Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 278(16):1349–1356

    Article  CAS  PubMed  Google Scholar 

  46. Chang TY, Kuo HC, Lu CS, Wu-Chou YH, Huang CC (2010) Analysis of the LRRK2 Gly2385Arg variant in Alzheimer’s disease in Taiwan. Parkinsonism Relat Disord 16(1):28–30. doi:10.1016/j.parkreldis.2009.06.009

    Article  PubMed  Google Scholar 

  47. Bi R, Zhao L, Zhang C, Lu W, Feng JQ, Wang Y, Ni J, Zhang J, Li GD, Hu QX, Wang D, Yao YG, Li T (2014) No association of the LRRK2 genetic variants with Alzheimer’s disease in Han Chinese individuals. Neurobiol Aging 35(2):444. doi:10.1016/j.neurobiolaging.2013.08.013, e445-449>

    Article  PubMed  Google Scholar 

  48. Farrer M, Maraganore DM, Lockhart P, Singleton A, Lesnick TG, de Andrade M, West A, de Silva R, Hardy J, Hernandez D (2001) alpha-Synuclein gene haplotypes are associated with Parkinson’s disease. Hum Mol Genet 10(17):1847–1851

    Article  CAS  PubMed  Google Scholar 

  49. Mueller JC, Fuchs J, Hofer A, Zimprich A, Lichtner P, Illig T, Berg D, Wullner U, Meitinger T, Gasser T (2005) Multiple regions of alpha-synuclein are associated with Parkinson’s disease. Ann Neurol 57(4):535–541. doi:10.1002/ana.20438

    Article  CAS  PubMed  Google Scholar 

  50. Mizuta I, Satake W, Nakabayashi Y, Ito C, Suzuki S, Momose Y, Nagai Y, Oka A, Inoko H, Fukae J, Saito Y, Sawabe M, Murayama S, Yamamoto M, Hattori N, Murata M, Toda T (2006) Multiple candidate gene analysis identifies alpha-synuclein as a susceptibility gene for sporadic Parkinson’s disease. Hum Mol Genet 15(7):1151–1158. doi:10.1093/hmg/ddl030

    Article  CAS  PubMed  Google Scholar 

  51. Peuralinna T, Oinas M, Polvikoski T, Paetau A, Sulkava R, Niinisto L, Kalimo H, Hernandez D, Hardy J, Singleton A, Tienari PJ, Myllykangas L (2008) Neurofibrillary tau pathology modulated by genetic variation of alpha-synuclein. Ann Neurol 64(3):348–352. doi:10.1002/ana.21446

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (81471309, 81571245, 81501103), the Shandong Provincial Outstanding Medical Academic Professional Program, Qingdao Key Health Discipline Development Fund, Qingdao Outstanding Health Professional Development Fund, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, and the Innovation Project for Postgraduates of Jiangsu province (to XCZ (KYLX15_0958)).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lan Tan or Jin-Tai Yu.

Ethics declarations

We obtained informed consents from each subject or a guardian, and this study protocol was approved by the institutional ethics committees of Qingdao Municipal Hospital.

Conflict of Interests

The authors declare that they have no competing interests.

Additional information

Xi-Chen Zhu and Lei Cao contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Additional 1

The details of the primer sequences used for the polymerase chain reaction–ligase detection reaction. (DOC 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, XC., Cao, L., Tan, MS. et al. Association of Parkinson’s Disease GWAS-Linked Loci with Alzheimer’s Disease in Han Chinese. Mol Neurobiol 54, 308–318 (2017). https://doi.org/10.1007/s12035-015-9649-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9649-5

Keywords

Navigation