Skip to main content

Advertisement

Log in

Comparison of the Effect of Exercise on Late-Phase LTP of the Dentate Gyrus and CA1 of Alzheimer’s Disease Model

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

A Correction to this article was published on 05 October 2017

This article has been updated

Abstract

We investigated the neuroprotective effect of regular treadmill exercise training on long-term memory and its correlate: the late-phase long-term potentiation (L-LTP) and plasticity- and memory-related signaling molecules in the DG and CA1 areas of a rat model of Alzheimer’s disease (AD) (i.c.v. infusion of Aβ1-42 peptides, 2 weeks, 250 pmol/day). Testing in the radial arm water maze revealed severe impairment of spatial long-term memory in Aβ-infused sedentary rats but not in exercised Aβ-infused rats. The L-LTP, measured as changes in the field (f)EPSP and in the amplitude of population spike (pspike), was induced by multiple high-frequency stimulation in the CA1 and DG areas of anesthetized rats. The L-LTP of fEPSP in both areas was severely impaired in the sedentary Aβ rats but not in exercised Aβ rats. However, L-LTP of the pspike was severely suppressed in the CA1 area but not in the DG of sedentary Aβ rats. Immunoblot analysis revealed no increase in the levels of phosphorylated (p)-CREB, CaMKIV, and brain-derived neurotrophic factor (BDNF) in both CA1 and DG areas of sedentary Aβ rats during L-LTP, whereas the levels of these molecules were robustly increased in exercised Aβ rats. Impairment of synaptic function may be due to deleterious changes in the molecular signaling cascades that mediate synaptic structural and functional changes. The protective effect of regular exercise can be a promising therapeutic measure for countering or delaying the AD-like pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 05 October 2017

    The original version of this article unfortunately does not include the second affiliating institution of Dr. Munder A. Zagaar. “Department of Pharmacy Pracce and Clinical Health Sciences, Texas Southern University, Houston, TX 77004” should have been included on the paper.

References

  1. Erickson KI, Weinstein AM, Lopez OL (2012) Physical activity, brain plasticity, and Alzheimer’s disease. Arch Med Res 43:615–621

    Article  PubMed  PubMed Central  Google Scholar 

  2. Matthews DC, Davies M, Murray J, Williams S, Tsui WH, Li Y, Andrews RD, Lukic A, McHugh P, Vallabhajosula S, de Leon MJ, Mosconi L (2014) Physical activity, Mediterranean diet and biomarkers-assessed risk of Alzheimer’s: a multi-modality brain imaging study. Adv J Mol Imaging 4:43–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Murphy T, Dias GP, Thuret S (2014) Effects of diet on brain plasticity in animal and human studies: mind the gap. Neural Plast 2014:563160

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dao AT, Zagaar MA, Levine AT, Salim S, Eriksen JL, Alkadhi KA (2013) Treadmill exercise prevents learning and memory impairment in Alzheimer’s disease-like pathology. Curr Alzheimer Res 10:507–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dao AT, Zagaar MA, Salim S, Eriksen JL, Alkadhi KA (2014) Regular exercise prevents non-cognitive disturbances in a rat model of Alzheimer’s disease. Int J Neuropsychopharmacol 17:593–602

    Article  CAS  PubMed  Google Scholar 

  6. Dao AT, Zagaar MA, Alkadhi KA (2015) Moderate treadmill exercise protects synaptic plasticity of the dentate gyrus and related signaling cascade in a rat model of Alzheimer’s disease. Mol Neurobiol 52:1067–1076

    Article  CAS  PubMed  Google Scholar 

  7. Olton DS, Walker JA, Gage FH (1978) Hippocampal connections and spatial discrimination. Brain Res 139:295–308

    Article  CAS  PubMed  Google Scholar 

  8. Baba A, Yamada MK, Nishiyama N, Matsuki N, Ikegaya Y (2002) Different Ca2+ dynamics between isolated hippocampal pyramidal cells and dentate granule cells. J Neurocytol 31:41–48

    Article  CAS  PubMed  Google Scholar 

  9. Bibi F, Yasir M, Sohrab SS, Azhar EI, Al-Qahtani MH, Abuzenadah AM, Kamal MA, Naseer MI (2014) Link between chronic bacterial inflammation and Alzheimer disease. CNS Neurol Disord Drug Targets 13:1140–1147

    Article  CAS  PubMed  Google Scholar 

  10. Padurariu M, Ciobica A, Mavroudis I, Fotiou D, Baloyannis S (2012) Hippocampal neuronal loss in the CA1 and CA3 areas of Alzheimer’s disease patients. Psychiatr Danub 24:152–158

    PubMed  Google Scholar 

  11. Sheng B, Wang X, Su B, Lee HG, Casadesus G, Perry G, Zhu X (2012) Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer’s disease. J Neurochem 120:419–429

    Article  CAS  PubMed  Google Scholar 

  12. Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, Kim JS, Heo S, Alves H, White SM, Wojcicki TR, Mailey E, Vieira VJ, Martin SA, Pence BD, Woods JA, McAuley E, Kramer AF (2011) Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A 108:3017–3022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Killgore WD, Olson EA, Weber M (2013) Physical exercise habits correlate with gray matter volume of the hippocampus in healthy adult humans. Sci Rep 3:3457

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mellor J, Nicoll R (2001) Hippocampal mossy fiber LTP is independent of postsynaptic calcium. Nat Neurosci 4:125–126

    Article  CAS  PubMed  Google Scholar 

  15. Bortolotto ZA, Nistico R, More JC, Jane DE, Collingridge GL (2005) Kainate receptors and mossy fiber LTP. Neurotoxicology 26:769–777

    Article  CAS  PubMed  Google Scholar 

  16. Lynch G, Kessler M, Arai A, Larson J (1990) The nature and causes of hippocampal long-term potentiation. Prog Brain Res 83:233–250

    Article  CAS  PubMed  Google Scholar 

  17. Regehr WG, Tank DW (1990) Postsynaptic NMDA receptor-mediated calcium accumulation in hippocampal CA1 pyramidal cell dendrites. Nature 345:807–810

    Article  CAS  PubMed  Google Scholar 

  18. Sweatt JD (1999) Toward a molecular explanation for long-term potentiation. Learn Mem 6:399–416

    Article  CAS  PubMed  Google Scholar 

  19. Zagaar M, Alhaider I, Dao A, Levine A, Alkarawi A, Alzubaidy M, Alkadhi K (2012) The beneficial effects of regular exercise on cognition in REM sleep deprivation: behavioral, electrophysiological and molecular evidence. Neurobiol Dis 45:1153–1162

    Article  CAS  PubMed  Google Scholar 

  20. Srivareerat M, Tran TT, Salim S, Aleisa AM, Alkadhi KA (2011) Chronic nicotine restores normal Aβ levels and prevents short-term memory and E-LTP impairment in Aβ rat model of Alzheimer’s disease. Neurobiol Aging 32:834–844

    Article  CAS  PubMed  Google Scholar 

  21. Tran TT, Srivareerat M, Alkadhi KA (2010) Chronic psychosocial stress triggers cognitive impairment in a novel at-risk model of Alzheimer’s disease. Neurobiol Dis 37:756–763

    Article  CAS  PubMed  Google Scholar 

  22. Papatheodoropoulos C, Kostopoulos G (2000) Decreased ability of rat temporal hippocampal CA1 region to produce long-term potentiation. Neurosci Lett 279:177–180

    Article  CAS  PubMed  Google Scholar 

  23. Bengtson CP, Bading H (2012) Nuclear calcium signaling. Adv Exp Med Biol 970:377–405

    Article  CAS  PubMed  Google Scholar 

  24. Anderson KA, Kane CD (1998) Ca2+/calmodulin-dependent protein kinase IV and calcium signaling. Biometals 11:331–343

    Article  CAS  PubMed  Google Scholar 

  25. Ohira K, Hayashi M (2009) A new aspect of the TrkB signaling pathway in neural plasticity. Curr Neuropharmacol 7:276–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nitta A, Fukuta T, Hasegawa T, Nabeshima T (1997) Continuous infusion of beta-amyloid protein into the rat cerebral ventricle induces learning impairment and neuronal and morphological degeneration. Jpn J Pharmacol 73:51–57

    Article  CAS  PubMed  Google Scholar 

  27. Nitta A, Itoh A, Hasegawa T, Nabeshima T (1994) Beta-amyloid protein-induced Alzheimer’s disease animal model. Neurosci Lett 170:63–66

    Article  CAS  PubMed  Google Scholar 

  28. Itoh A, Nitta A, Nadai M, Nishimura K, Hirose M, Hasegawa T, Nabeshima T (1996) Dysfunction of cholinergic and dopaminergic neuronal systems in beta-amyloid protein-infused rats. J Neurochem 66:1113–1117

    Article  CAS  PubMed  Google Scholar 

  29. Srivareerat M, Tran TT, Alzoubi KH, Alkadhi KA (2009) Chronic psychosocial stress exacerbates impairment of cognition and long-term potentiation in beta-amyloid rat model of Alzheimer’s disease. Biol Psychiatry 65:918–926

    Article  CAS  PubMed  Google Scholar 

  30. Darlington D, Deng J, Giunta B, Hou H, Sanberg CD, Kuzmin-Nichols N, Zhou HD, Mori T, Ehrhart J, Sanberg PR, Tan J (2013) Multiple low-dose infusions of human umbilical cord blood cells improve cognitive impairments and reduce amyloid-beta-associated neuropathology in Alzheimer mice. Stem Cells Dev 22:412–421

    Article  CAS  PubMed  Google Scholar 

  31. Frozza RL, Bernardi A, Hoppe JB, Meneghetti AB, Matte A, Battastini AM, Pohlmann AR, Guterres SS, Salbego C (2013) Neuroprotective effects of resveratrol against Abeta administration in rats are improved by lipid-core nanocapsules. Mol Neurobiol 47:1066–1080

    Article  CAS  PubMed  Google Scholar 

  32. Sun X, Yao H, Douglas RM, Gu XQ, Wang J, Haddad GG (2010) Insulin/PI3K signaling protects dentate neurons from oxygen-glucose deprivation in organotypic slice cultures. J Neurochem 112:377–388

    Article  CAS  PubMed  Google Scholar 

  33. Sawada M, Sawamoto K (2013) Mechanisms of neurogenesis in the normal and injured adult brain. Keio J Med 62:13–28

    Article  CAS  PubMed  Google Scholar 

  34. Lee E, Son H (2009) Adult hippocampal neurogenesis and related neurotrophic factors. BMB Rep 42:239–244

    Article  CAS  PubMed  Google Scholar 

  35. Mufson EJ, Mahady L, Waters D, Counts SE, Perez SE, DeKosky S, Ginsberg SD, Ikonomovic MD, Scheff S, Binder L (2015) Hippocampal plasticity during the progression of Alzheimer’s disease. Neuroscience 309:51–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hu NW, Smith IM, Walsh DM, Rowan MJ (2008) Soluble amyloid-beta peptides potently disrupt hippocampal synaptic plasticity in the absence of cerebrovascular dysfunction in vivo. Brain 131:2414–2424

    Article  PubMed  Google Scholar 

  37. Origlia N, Righi M, Capsoni S, Cattaneo A, Fang F, Stern DM, Chen JX, Schmidt AM, Arancio O, Yan SD, Domenici L (2008) Receptor for advanced glycation end product-dependent activation of p38 mitogen-activated protein kinase contributes to amyloid-beta-mediated cortical synaptic dysfunction. J Neurosci 28:3521–3530

    Article  CAS  PubMed  Google Scholar 

  38. Wang Q, Klyubin I, Wright S, Griswold-Prenner I, Rowan MJ, Anwyl R (2008) Alpha v integrins mediate beta-amyloid induced inhibition of long-term potentiation. Neurobiol Aging 29:1485–1493

    Article  CAS  PubMed  Google Scholar 

  39. Isono T, Yamashita N, Obara M, Araki T, Nakamura F, Kamiya Y, Alkam T, Nitta A, Nabeshima T, Mikoshiba K, Ohshima T, Goshima Y (2013) Amyloid-beta 25-35 induces impairment of cognitive function and long-term potentiation through phosphorylation of collapsin response mediator protein 2. Neurosci Res 77:180–185

    Article  CAS  PubMed  Google Scholar 

  40. Kervern M, Angeli A, Nicole O, Leveille F, Parent B, Villette V, Buisson A, Dutar P (2012) Selective impairment of some forms of synaptic plasticity by oligomeric amyloid-beta peptide in the mouse hippocampus: implication of extrasynaptic NMDA receptors. J Alzheimers Dis 32:183–196

    CAS  PubMed  Google Scholar 

  41. Huang SM, Mouri A, Kokubo H, Nakajima R, Suemoto T, Higuchi M, Staufenbiel M, Noda Y, Yamaguchi H, Nabeshima T, Saido TC, Iwata N (2006) Neprilysin-sensitive synapse-associated amyloid-beta peptide oligomers impair neuronal plasticity and cognitive function. J Biol Chem 281:17941–17951

    Article  CAS  PubMed  Google Scholar 

  42. Kuwabara Y, Ishizeki M, Watamura N, Toba J, Yoshii A, Inoue T, Ohshima T (2014) Impairments of long-term depression induction and motor coordination precede Abeta accumulation in the cerebellum of APPswe/PS1dE9 double transgenic mice. J Neurochem 130:432–443

    Article  CAS  PubMed  Google Scholar 

  43. Bechara RG, Kelly AM (2013) Exercise improves object recognition memory and induces BDNF expression and cell proliferation in cognitively enriched rats. Behav Brain Res 245:96–100

    Article  CAS  PubMed  Google Scholar 

  44. Cassilhas RC, Lee KS, Fernandes J, Oliveira MG, Tufik S, Meeusen R, de Mello MT (2012) Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms. Neuroscience 202:309–317

    Article  CAS  PubMed  Google Scholar 

  45. Karpova NN (2014) Role of BDNF epigenetics in activity-dependent neuronal plasticity. Neuropharmacology 76 Pt C:709–718

    Article  PubMed  Google Scholar 

  46. Wang BY, Zhong Y, Zhao Z, Miao Y (2014) Epigenetic suppression of hippocampal BDNF mediates the memory deficiency induced by amyloid fibrils. Pharmacol Biochem Behav 126:83–89

    Article  CAS  PubMed  Google Scholar 

  47. Abel JL, Rissman EF (2013) Running-induced epigenetic and gene expression changes in the adolescent brain. Int J Dev Neurosci 31:382–390

    Article  CAS  PubMed  Google Scholar 

  48. Gomez-Pinilla F, Zhuang Y, Feng J, Ying Z, Fan G (2011) Exercise impacts brain-derived neurotrophic factor plasticity by engaging mechanisms of epigenetic regulation. Eur J Neurosci 33:383–390

    Article  CAS  PubMed  Google Scholar 

  49. Lonze BE, Ginty DD (2002) Function and regulation of CREB family transcription factors in the nervous system. Neuron 35:605–623

    Article  CAS  PubMed  Google Scholar 

  50. Pugazhenthi S, Wang M, Pham S, Sze CI, Eckman CB (2011) Downregulation of CREB expression in Alzheimer’s brain and in Abeta-treated rat hippocampal neurons. Mol Neurodegener 6:60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ljungberg MC, Ali YO, Zhu J, Wu CS, Oka K, Zhai RG, Lu HC (2012) CREB-activity and NMNAT2 transcription are down-regulated prior to neurodegeneration, while NMNAT2 over-expression is neuroprotective, in a mouse model of human tauopathy. Hum Mol Genet 21(2):251–267

    Article  CAS  PubMed  Google Scholar 

  52. Jin N, Qian W, Yin X, Zhang L, Iqbal K, Grundke-Iqbal I, Gong CX, Liu F (2013) CREB regulates the expression of neuronal glucose transporter 3: a possible mechanism related to impaired brain glucose uptake in Alzheimer’s disease. Nucleic Acids Res 41:3240–3256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Arrazola MS, Varela-Nallar L, Colombres M, Toledo EM, Cruzat F, Pavez L, Assar R, Aravena A, Gonzalez M, Montecino M, Maass A, Martinez S, Inestrosa NC (2009) Calcium/calmodulin-dependent protein kinase type IV is a target gene of the Wnt/beta-catenin signaling pathway. J Cell Physiol 221:658–667

    Article  CAS  PubMed  Google Scholar 

  54. Lin TW, Shih YH, Chen SJ, Lien CH, Chang CY, Huang TY, Chen SH, Jen CJ, Kuo YM (2015) Running exercise delays neurodegeneration in amygdala and hippocampus of Alzheimer’s disease (APP/PS1) transgenic mice. Neurobiol Learn Mem 118:189–197

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by several SGP grants from the University of Houston.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim A. Alkadhi.

Ethics declarations

All animal experiments complied with the “National Research Council’s Guide of The Care and Use of Laboratory Animals” and with the approval of Institutional Animal Care and Use Committee at the University of Houston.

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s12035-017-0790-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dao, A.T., Zagaar, M.A., Levine, A.T. et al. Comparison of the Effect of Exercise on Late-Phase LTP of the Dentate Gyrus and CA1 of Alzheimer’s Disease Model. Mol Neurobiol 53, 6859–6868 (2016). https://doi.org/10.1007/s12035-015-9612-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9612-5

Keywords

Navigation