Molecular Neurobiology

, Volume 54, Issue 1, pp 362–374 | Cite as

Impaired Neurovisceral Integration of Cardiovascular Modulation Contributes to Multiple Sclerosis Morbidities

  • Zohara Sternberg


Multiple sclerosis (MS) is an inflammatory demyelinating central nervous system (CNS) disease with an uncertain etiology. MS is heterogeneous, involving multiple clinical pathologies, including neurodegeneration, depression, fatigue and sleep disorders, migraine, osteoporosis and cerebral hemodynamic impairments. The underlying causes of these pathologies remain mostly unknown. Based on the accumulating evidence derived from our studies and those of other investigators, we propose that the dysregulation in the neurovisceral integration of cardiovascular modulation can lead to many MS-related clinical symptoms. We show that MS inflammatory and neurodegenerative processes are intertwined with the aforementioned clinical morbidities and are collectively the manifestations of cardiovascular autonomic nervous system (ANS) dysfunction. The strategies for improving sympathovagal balance would likely prevent and minimize many MS-related clinical symptoms, improving patients’ quality of life. Similar strategies could be applied to other autoimmune and neurodegenerative diseases where autonomic imbalance plays a role.


Blood pressure Cerebral autoregulation Cerebral blood flow Dysautonomia Inflammation Internal jugular vein Hypoxic ischemia Heart rate variability Neurodegeneration Vascular remodeling Trigeminocardiac reflexes Vitamin D 



The author thanks Prof. Bernhard Schaller for the intellectual input.

Compliance with Ethical Standards

Conflict of Interest

The author declares no competing interests.

Source of Funding



  1. 1.
    Sturm D, Gurevitz SL, Turner A (2014) Multiple sclerosis: a review of the disease and treatment options. Consult Pharm: J Am Soc Consult Pharm 29(7):469–479CrossRefGoogle Scholar
  2. 2.
    Kantarci O, Wingerchuk D (2006) Epidemiology and natural history of multiple sclerosis: new insights. Curr Opin Neurol 19(3):248–254PubMedCrossRefGoogle Scholar
  3. 3.
    Willer CJ, Dyment DA, Risch NJ, Sadovnick AD, Ebers GC, Canadian Collaborative Study G (2003) Twin concordance and sibling recurrence rates in multiple sclerosis. Proc Natl Acad Sci U S A 100(22):12877–12882PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Burrell AM, Handel AE, Ramagopalan SV, Ebers GC, Morahan JM (2011) Epigenetic mechanisms in multiple sclerosis and the major histocompatibility complex (MHC). Disc Med 11(58):187–196Google Scholar
  5. 5.
    Flachenecker P, Reiners K, Krauser M, Wolf A, Toyka KV (2001) Autonomic dysfunction in multiple sclerosis is related to disease activity and progression of disability. Mult Scler 7(5):327–334PubMedCrossRefGoogle Scholar
  6. 6.
    Nasseri K, Uitdehaag BM, van Walderveen MA, Ader HJ, Polman CH (1999) Cardiovascular autonomic function in patients with relapsing remitting multiple sclerosis: a new surrogate marker of disease evolution? Eur J Neurol: Off J Eur Fed Neurol Soc 6(1):29–33CrossRefGoogle Scholar
  7. 7.
    Kodounis A, Stamboulis E, Constantinidis TS, Liolios A (2005) Measurement of autonomic dysregulation in multiple sclerosis. Acta Neurol Scand 112(6):403–408PubMedCrossRefGoogle Scholar
  8. 8.
    Thayer JF, Lane RD (2007) The role of vagal function in the risk for cardiovascular disease and mortality. Biol Psychol 74(2):224–242PubMedCrossRefGoogle Scholar
  9. 9.
    Malliani A, Pagani M, Lombardi F, Cerutti S (1991) Cardiovascular neural regulation explored in the frequency domain. Circulation 84(2):482–492PubMedCrossRefGoogle Scholar
  10. 10.
    Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Furlan R, Pizzinelli P et al (1986) Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res 59(2):178–193PubMedCrossRefGoogle Scholar
  11. 11.
    Eckberg DL (1997) Sympathovagal balance: a critical appraisal. Circulation 96(9):3224–3232PubMedCrossRefGoogle Scholar
  12. 12.
    Pagani M, Lombardi F, Guzzetti S, Sandrone G, Rimoldi O, Malfatto G et al (1984) Power spectral density of heart rate variability as an index of sympatho-vagal interaction in normal and hypertensive subjects. J Hypertens Suppl: Off J Int Soc Hypertens 2(3):S383–S385Google Scholar
  13. 13.
    Brezinova M, Goldenberg Z, Kucera P (2004) Autonomic nervous system dysfunction in multiple sclerosis patients. Bratisl Lek Listy 105(12):404–407PubMedGoogle Scholar
  14. 14.
    Sanya EO, Tutaj M, Brown CM, Goel N, Neundorfer B, Hilz MJ (2005) Abnormal heart rate and blood pressure responses to baroreflex stimulation in multiple sclerosis patients. Clin Auton Res: Off J Clin Auton Res Soc 15(3):213–218CrossRefGoogle Scholar
  15. 15.
    Polak PE, Kalinin S, Feinstein DL (2011) Locus coeruleus damage and noradrenaline reductions in multiple sclerosis and experimental autoimmune encephalomyelitis. Brain: J Neurol 134(Pt 3):665–677CrossRefGoogle Scholar
  16. 16.
    Rajda C, Bencsik K, Fuvesi J, Seres E, Vecsei L, Bergquist J (2006) The norepinephrine level is decreased in the lymphocytes of long-term interferon-beta-treated multiple sclerosis patients. Mult Scler 12(3):265–270PubMedCrossRefGoogle Scholar
  17. 17.
    Sternberg Z, Leung C, Sternberg D, Li F, Karmon Y, Chadha K et al (2013) The prevalence of the classical and non-classical cardiovascular risk factors in multiple sclerosis patients. CNS Neurol Disord Drug Targets 12(1):104–111PubMedCrossRefGoogle Scholar
  18. 18.
    Sternberg Z, Leung C, Sternberg D, Yu J, Hojnacki D (2014) Disease modifying therapies modulate cardiovascular risk factors in patients with multiple sclerosis. Cardiovasc Ther 32(2):33–39PubMedCrossRefGoogle Scholar
  19. 19.
    Arata M, Sternberg Z (2015) Neuroendocrine responses to transvascular autonomic modulation: a modified balloon angioplasty in multiple sclerosis patients. Horm Metab Res = Hormon- und Stoffwechselforschung = Horm MetabGoogle Scholar
  20. 20.
    Plotsky PM, Cunningham ET Jr, Widmaier EP (1989) Catecholaminergic modulation of corticotropin-releasing factor and adrenocorticotropin secretion. Endocr Rev 10(4):437–458PubMedCrossRefGoogle Scholar
  21. 21.
    Plotsky PM (1987) Facilitation of immunoreactive corticotropin-releasing factor secretion into the hypophysial-portal circulation after activation of catecholaminergic pathways or central norepinephrine injection. Endocrinology 121(3):924–930PubMedCrossRefGoogle Scholar
  22. 22.
    Sara SJ, Bouret S (2012) Orienting and reorienting: the locus coeruleus mediates cognition through arousal. Neuron 76(1):130–141PubMedCrossRefGoogle Scholar
  23. 23.
    Sara SJ (2009) The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci 10(3):211–223PubMedCrossRefGoogle Scholar
  24. 24.
    Takahashi K, Kayama Y, Lin JS, Sakai K (2010) Locus coeruleus neuronal activity during the sleep-waking cycle in mice. Neuroscience 169(3):1115–1126PubMedCrossRefGoogle Scholar
  25. 25.
    McGregor R, Siegel JM (2010) Illuminating the locus coeruleus: control of posture and arousal. Nat Neurosci 13(12):1448–1449PubMedCrossRefGoogle Scholar
  26. 26.
    Nance DM, Sanders VM (2007) Autonomic innervation and regulation of the immune system (1987–2007). Brain Behav Immun 21(6):736–745PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Kohm AP, Sanders VM (2001) Norepinephrine and beta 2-adrenergic receptor stimulation regulate CD4+ T and B lymphocyte function in vitro and in vivo. Pharmacol Rev 53(4):487–525PubMedGoogle Scholar
  28. 28.
    Kawashima K, Fujii T, Moriwaki Y, Misawa H (2012) Critical roles of acetylcholine and the muscarinic and nicotinic acetylcholine receptors in the regulation of immune function. Life Sci 91(21–22):1027–1032PubMedCrossRefGoogle Scholar
  29. 29.
    Sanders VM, Straub RH (2002) Norepinephrine, the beta-adrenergic receptor, and immunity. Brain Behav Immun 16(4):290–332PubMedCrossRefGoogle Scholar
  30. 30.
    Giorelli M, Livrea P, Trojano M (2004) Post-receptorial mechanisms underlie functional disregulation of beta2-adrenergic receptors in lymphocytes from multiple sclerosis patients. J Neuroimmunol 155(1–2):143–149PubMedCrossRefGoogle Scholar
  31. 31.
    Anlar B, Karaszewski JW, Reder AT, Arnason BG (1992) Increased muscarinic cholinergic receptor density on CD4+ lymphocytes in progressive multiple sclerosis. J Neuroimmunol 36(2–3):171–177PubMedCrossRefGoogle Scholar
  32. 32.
    Zoukos Y, Thomaides TN, Kidd D, Cuzner ML, Thompson A (2003) Expression of beta2 adrenoreceptors on peripheral blood mononuclear cells in patients with primary and secondary progressive multiple sclerosis: a longitudinal six month study. J Neurol Neurosurg Psychiatry 74(2):197–202PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Thayer JF, Hansen AL, Saus-Rose E, Johnsen BH (2009) Heart rate variability, prefrontal neural function, and cognitive performance: the neurovisceral integration perspective on self-regulation, adaptation, and health. Ann Behav Med: Publ Soc Behav Med 37(2):141–153CrossRefGoogle Scholar
  34. 34.
    Thayer JF, Lane RD (2000) A model of neurovisceral integration in emotion regulation and dysregulation. J Affect Disord 61(3):201–216PubMedCrossRefGoogle Scholar
  35. 35.
    Kamath MV, Fallen EL (1993) Power spectral analysis of heart rate variability: a noninvasive signature of cardiac autonomic function. Crit Rev Biomed Eng 21(3):245–311PubMedGoogle Scholar
  36. 36.
    Malik M, Camm AJ (1993) Components of heart rate variability—what they really mean and what we really measure. Am J Cardiol 72(11):821–822PubMedCrossRefGoogle Scholar
  37. 37.
    Sternberg Z (2012) Sympathetic nervous system dysfunction in multiple sclerosis, linking neurodegeneration to a reduced response to therapy. Curr Pharm Des 18(12):1635–1644PubMedCrossRefGoogle Scholar
  38. 38.
    Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES (2000) The sympathetic nerve—an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev 52(4):595–638PubMedGoogle Scholar
  39. 39.
    Laureys G, Clinckers R, Gerlo S, Spooren A, Wilczak N, Kooijman R et al (2010) Astrocytic beta(2)-adrenergic receptors: from physiology to pathology. Prog Neurobiol 91(3):189–199PubMedCrossRefGoogle Scholar
  40. 40.
    Zarrindast MR, Khodjastehfar E, Oryan S, Torkaman-Boutorabi A (2001) Baclofen-impairment of memory retention in rats: possible interaction with adrenoceptor mechanism(s). Eur J Pharmacol 411(3):283–288PubMedCrossRefGoogle Scholar
  41. 41.
    Amedei A, Prisco D, D’Elios MM (2012) Multiple Sclerosis: the role of cytokines in pathogenesis and in therapies. Int J Mol Sci 13(10):13438-13460. doi: 10.3390/ijms131013438
  42. 42.
    Rajda C, Bencsik K, Vecsei LL, Bergquist J (2002) Catecholamine levels in peripheral blood lymphocytes from multiple sclerosis patients. J Neuroimmunol 124(1–2):93–100PubMedCrossRefGoogle Scholar
  43. 43.
    Karaszewski JW, Reder AT, Anlar B, Kim WC, Arnason BG (1991) Increased lymphocyte beta-adrenergic receptor density in progressive multiple sclerosis is specific for the CD8+, CD28- suppressor cell. Ann Neurol 30(1):42–47PubMedCrossRefGoogle Scholar
  44. 44.
    Zeinstra E, Wilczak N, De Keyser J (2000) [3H]dihydroalprenolol binding to beta adrenergic receptors in multiple sclerosis brain. Neurosci Lett 289(1):75–77PubMedCrossRefGoogle Scholar
  45. 45.
    Zoukos Y, Kidd D, Woodroofe MN, Kendall BE, Thompson AJ, Cuzner ML (1994) Increased expression of high affinity IL-2 receptors and beta-adrenoceptors on peripheral blood mononuclear cells is associated with clinical and MRI activity in multiple sclerosis. Brain: J Neurol 117(Pt 2):307–315CrossRefGoogle Scholar
  46. 46.
    Szelenyi J, Kiss JP, Vizi ES (2000) Differential involvement of sympathetic nervous system and immune system in the modulation of TNF-alpha production by alpha2- and beta-adrenoceptors in mice. J Neuroimmunol 103(1):34–40PubMedCrossRefGoogle Scholar
  47. 47.
    Marien MR, Colpaert FC, Rosenquist AC (2004) Noradrenergic mechanisms in neurodegenerative diseases: a theory. Brain Res Brain Res Rev 45(1):38–78PubMedCrossRefGoogle Scholar
  48. 48.
    Shetty DN, Pathak SS (2002) Correlation between plasma neurotransmitters and memory loss in pregnancy. J Reprod Med 47(6):494–496PubMedGoogle Scholar
  49. 49.
    Aune B, Vartun A, Oian P, Sager G (2000) Evidence of dysfunctional beta2-adrenoceptor signal system in pre-eclampsia. BJOG: Int J Obstet Gynaecol 107(1):116–121Google Scholar
  50. 50.
    Tschada R, Hettenbach A, Melchert F, Alken P (1991) Pregnancy-induced changes in adrenergic receptors. Z Geburtshilfe Perinatol 195(4):182–186PubMedGoogle Scholar
  51. 51.
    Puri BK, Bydder GM, Chaudhuri KR, Al Saffar BY, Curati WL, White SJ et al (2001) MRI changes in multiple sclerosis following treatment with lofepramine and L-phenylalanine. Neuroreport 12(9):1821–1824PubMedCrossRefGoogle Scholar
  52. 52.
    Simonini MV, Polak PE, Sharp A, McGuire S, Galea E, Feinstein DL (2010) Increasing CNS noradrenaline reduces EAE severity. J Neuroimmune Pharm: Off J Soc NeuroImmune Pharmacol 5(2):252–259CrossRefGoogle Scholar
  53. 53.
    Shah AJ, Su S, Veledar E, Bremner JD, Goldstein FC, Lampert R et al (2011) Is heart rate variability related to memory performance in middle-aged men? Psychosom Med 73(6):475–482PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Egea J, Buendia I, Parada E, Navarro E, Leon R, Lopez MG (2015) Anti-inflammatory role of microglial alpha7 nAChRs and its role in neuroprotection. Biochem PharmacolGoogle Scholar
  55. 55.
    Kawamata J, Suzuki S, Shimohama S (2011) Enhancement of nicotinic receptors alleviates cytotoxicity in neurological disease models. Ther Adv Chron Dis 2(3):197–208CrossRefGoogle Scholar
  56. 56.
    Meyer PKK, Thomae E, Becker G, Schildan A, Patt M, Lobsien D, Hesse S, Then Bergh F et al (2010) Reduced cortical {alpha}4β2* nicotinic acetylcholine receptor binding and its relationship to impaired memory and attention in early stage multiple sclerosis: a 2-[18F]F-A-85380 (2FA) PET study. Abstr-J Nucl Med 51(Suppl 2):1792Google Scholar
  57. 57.
    Panitch H, Miller A, Paty D, Weinshenker B, North American Study Group on Interferon beta-1b in Secondary Progressive MS (2004) Interferon beta-1b in secondary progressive MS: results from a 3-year controlled study. Neurology 63(10):1788–1795PubMedCrossRefGoogle Scholar
  58. 58.
    Krakauer M, Sorensen PS, Khademi M, Olsson T, Sellebjerg F (2006) Dynamic T-lymphocyte chemokine receptor expression induced by interferon-beta therapy in multiple sclerosis. Scand J Immunol 64(2):155–163PubMedCrossRefGoogle Scholar
  59. 59.
    Sanders VM, Baker RA, Ramer-Quinn DS, Kasprowicz DJ, Fuchs BA, Street NE (1997) Differential expression of the beta2-adrenergic receptor by Th1 and Th2 clones: implications for cytokine production and B cell help. J Immunol 158(9):4200–4210PubMedGoogle Scholar
  60. 60.
    Esposito F, Radaelli M, Martinelli V, Sormani MP, Martinelli Boneschi F, Moiola L et al (2010) Comparative study of mitoxantrone efficacy profile in patients with relapsing-remitting and secondary progressive multiple sclerosis. Mult Scler 16(12):1490–1499PubMedCrossRefGoogle Scholar
  61. 61.
    Villoslada P, Oksenberg JR, Rio J, Montalban X (2004) Clinical characteristics of responders to interferon therapy for relapsing MS. Neurology 62(9):1653, author replyPubMedCrossRefGoogle Scholar
  62. 62.
    Waubant E, Vukusic S, Gignoux L, Dubief FD, Achiti I, Blanc S et al (2003) Clinical characteristics of responders to interferon therapy for relapsing MS. Neurology 61(2):184–189PubMedCrossRefGoogle Scholar
  63. 63.
    Gunal DI, Afsar N, Tanridag T, Aktan S (2002) Autonomic dysfunction in multiple sclerosis: correlation with disease-related parameters. Eur Neurol 48(1):1–5PubMedCrossRefGoogle Scholar
  64. 64.
    Liao D, Barnes RW, Chambless LE, Simpson RJ Jr, Sorlie P, Heiss G (1995) Age, race, and sex differences in autonomic cardiac function measured by spectral analysis of heart rate variability—the ARIC study. Atherosclerosis risk in communities. Am J Cardiol 76(12):906–912PubMedCrossRefGoogle Scholar
  65. 65.
    Rio J, Nos C, Tintore M, Tellez N, Galan I, Pelayo R et al (2006) Defining the response to interferon-beta in relapsing-remitting multiple sclerosis patients. Ann Neurol 59(2):344–352PubMedCrossRefGoogle Scholar
  66. 66.
    Zaffaroni M, Marino F, Bombelli R, Rasini E, Monti M, Ferrari M et al (2008) Therapy with interferon-beta modulates endogenous catecholamines in lymphocytes of patients with multiple sclerosis. Exp Neurol 214(2):315–321PubMedCrossRefGoogle Scholar
  67. 67.
    Hamamcioglu K, Reder AT (2007) Interferon-beta regulates cytokines and BDNF: greater effect in relapsing than in progressive multiple sclerosis. Mult Scler 13(4):459–470PubMedGoogle Scholar
  68. 68.
    Khoury SJ, Healy BC, Kivisakk P, Viglietta V, Egorova S, Guttmann CR et al (2010) A randomized controlled double-masked trial of albuterol add-on therapy in patients with multiple sclerosis. Arch Neurol 67(9):1055–1061PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Minden SL, Schiffer RB (1990) Affective disorders in multiple sclerosis. Review and recommendations for clinical research. Arch Neurol 47(1):98–104PubMedCrossRefGoogle Scholar
  70. 70.
    Lambert G, Johansson M, Agren H, Friberg P (2000) Reduced brain norepinephrine and dopamine release in treatment-refractory depressive illness: evidence in support of the catecholamine hypothesis of mood disorders. Arch Gen Psychiatry 57(8):787–793PubMedCrossRefGoogle Scholar
  71. 71.
    Srivastava N, Barthwal MK, Dalal PK, Agarwal AK, Nag D, Seth PK et al (2002) A study on nitric oxide, beta-adrenergic receptors and antioxidant status in the polymorphonuclear leukocytes from the patients of depression. J Affect Disord 72(1):45–52PubMedCrossRefGoogle Scholar
  72. 72.
    Mann JJ, Brown RP, Halper JP, Sweeney JA, Kocsis JH, Stokes PE et al (1985) Reduced sensitivity of lymphocyte beta-adrenergic receptors in patients with endogenous depression and psychomotor agitation. N Engl J Med 313(12):715–720PubMedCrossRefGoogle Scholar
  73. 73.
    Yang AC, Tsai SJ, Yang CH, Kuo CH, Chen TJ, Hong CJ (2011) Reduced physiologic complexity is associated with poor sleep in patients with major depression and primary insomnia. J Affect Disord 131(1–3):179–185PubMedGoogle Scholar
  74. 74.
    RS D (1999) The neurochemistry of mood disorders: preclinical studies. New York: Oxford University Press. In Charney DS, Nestler EJ, Bunney BS, editors. (Neurobiology of mental illness): 333–47Google Scholar
  75. 75.
    O’Reardon JP, Cristancho P, Peshek AD (2006) Vagus nerve stimulation (VNS) and treatment of depression: to the brainstem and beyond. Psychiatry 3(5):54–63PubMedPubMedCentralGoogle Scholar
  76. 76.
    Follesa P, Biggio F, Gorini G, Caria S, Talani G, Dazzi L et al (2007) Vagus nerve stimulation increases norepinephrine concentration and the gene expression of BDNF and bFGF in the rat brain. Brain Res 1179:28–34PubMedCrossRefGoogle Scholar
  77. 77.
    Marrosu F, Maleci A, Cocco E, Puligheddu M, Barberini L, Marrosu MG (2007) Vagal nerve stimulation improves cerebellar tremor and dysphagia in multiple sclerosis. Mult Scler 13(9):1200–1202PubMedCrossRefGoogle Scholar
  78. 78.
    Lang UE, Hellweg R, Gallinat J (2004) BDNF serum concentrations in healthy volunteers are associated with depression-related personality traits. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol 29(4):795–798CrossRefGoogle Scholar
  79. 79.
    Comini-Frota ER, Rodrigues DH, Miranda EC, Brum DG, Kaimen-Maciel DR, Donadi EA et al (2012) Serum levels of brain-derived neurotrophic factor correlate with the number of T2 MRI lesions in multiple sclerosis. Braz J Med Biol Res = Rev Bras Pesquisas Med Biol / Soc Bras Biofisica [et al] 45(1):68–71Google Scholar
  80. 80.
    Shimizu E, Hashimoto K, Okamura N, Koike K, Komatsu N, Kumakiri C et al (2003) Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry 54(1):70–75PubMedCrossRefGoogle Scholar
  81. 81.
    Stadelmann C, Kerschensteiner M, Misgeld T, Bruck W, Hohlfeld R, Lassmann H (2002) BDNF and gp145trkB in multiple sclerosis brain lesions: neuroprotective interactions between immune and neuronal cells? Brain: J Neurol 125(Pt 1):75–85CrossRefGoogle Scholar
  82. 82.
    Chen MJ, Nguyen TV, Pike CJ, Russo-Neustadt AA (2007) Norepinephrine induces BDNF and activates the PI-3K and MAPK cascades in embryonic hippocampal neurons. Cell Signal 19(1):114–128PubMedCrossRefGoogle Scholar
  83. 83.
    Evans JM, Ziegler MG, Patwardhan AR, Ott JB, Kim CS, Leonelli FM et al (2001) Gender differences in autonomic cardiovascular regulation: spectral, hormonal, and hemodynamic indexes. J Appl Physiol 91(6):2611–2618PubMedGoogle Scholar
  84. 84.
    Jones KH, Ford DV, Jones PA, John A, Middleton RM, Lockhart-Jones H et al (2012) A large-scale study of anxiety and depression in people with multiple sclerosis: a survey via the web portal of the UK MS Register. PLoS One 7(7), e41910PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Beal CC, Stuifbergen AK, Brown A (2007) Depression in multiple sclerosis: a longitudinal analysis. Arch Psychiatr Nurs 21(4):181–191PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Feinstein A, Roy P, Lobaugh N, Feinstein K, O’Connor P, Black S (2004) Structural brain abnormalities in multiple sclerosis patients with major depression. Neurology 62(4):586–590PubMedCrossRefGoogle Scholar
  87. 87.
    Feinstein A, O’Connor P, Akbar N, Moradzadeh L, Scott CJ, Lobaugh NJ (2010) Diffusion tensor imaging abnormalities in depressed multiple sclerosis patients. Mult Scler 16(2):189–196PubMedCrossRefGoogle Scholar
  88. 88.
    Kiy G, Lehmann P, Hahn HK, Eling P, Kastrup A, Hildebrandt H (2011) Decreased hippocampal volume, indirectly measured, is associated with depressive symptoms and consolidation deficits in multiple sclerosis. Mult Scler 17(9):1088–1097PubMedCrossRefGoogle Scholar
  89. 89.
    Arnett PA, Higginson CI, Voss WD, Wright B, Bender WI, Wurst JM et al (1999) Depressed mood in multiple sclerosis: relationship to capacity-demanding memory and attentional functioning. Neuropsychology 13(3):434–446PubMedCrossRefGoogle Scholar
  90. 90.
    Giovannoni G (2006) Multiple sclerosis related fatigue. J Neurol Neurosurg Psychiatry 77(1):2–3PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Putzki N, Katsarava Z, Vago S, Diener HC, Limmroth V (2008) Prevalence and severity of multiple-sclerosis-associated fatigue in treated and untreated patients. Eur Neurol 59(3–4):136–142PubMedGoogle Scholar
  92. 92.
    Pittion-Vouyovitch S, Debouverie M, Guillemin F, Vandenberghe N, Anxionnat R, Vespignani H (2006) Fatigue in multiple sclerosis is related to disability, depression and quality of life. J Neurol Sci 243(1–2):39–45PubMedCrossRefGoogle Scholar
  93. 93.
    Koch M, Mostert J, Heerings M, Uyttenboogaart M, De Keyser J (2009) Fatigue, depression and disability accumulation in multiple sclerosis: a cross-sectional study. Eur J Neurol: Off J Eur Fed Neurol Soc 16(3):348–352CrossRefGoogle Scholar
  94. 94.
    Fejelstad C, Brittian D, Fejelstad AS, Pardo G (2010) Fatigue and thermo sensitivity affect physical activity in multiple sclerosis. J Appl Res 10(3):108–115Google Scholar
  95. 95.
    Rotstein D, O’Connor P, Lee L, Murray BJ (2012) Multiple sclerosis fatigue is associated with reduced psychomotor vigilance. Can J Neurol Sci Le J Can Sci Neurol 39(2):180–184CrossRefGoogle Scholar
  96. 96.
    Fernandez-Munoz JJ, Moron-Verdasco A, Cigaran-Mendez M, Munoz-Hellin E, Perez-de-Heredia-Torres M, Fernandez-de-Las-Penas C (2015) Disability, quality of life, personality, cognitive and psychological variables associated with fatigue in patients with multiple sclerosis. Acta Neurol ScandGoogle Scholar
  97. 97.
    Flachenecker P, Kumpfel T, Kallmann B, Gottschalk M, Grauer O, Rieckmann P et al (2002) Fatigue in multiple sclerosis: a comparison of different rating scales and correlation to clinical parameters. Mult Scler 8(6):523–526PubMedCrossRefGoogle Scholar
  98. 98.
    Lebre AT, Mendes MF, Tilbery CP, Almeida AL, Scatolini NA (2007) Relation between fatigue and autonomic disturbances in multiple sclerosis. Arq Neuropsiquiatr 65(3A):663–668PubMedCrossRefGoogle Scholar
  99. 99.
    Yu F, Bilberg A, Dalgas U, Stenager E (2013) Fatigued patients with multiple sclerosis can be discriminated from healthy controls by the recordings of a newly developed measurement system (FAMOS): a pilot study. Disabil Rehabil Assist Technol 8(1):77–83PubMedCrossRefGoogle Scholar
  100. 100.
    Flachenecker P, Rufer A, Bihler I, Hippel C, Reiners K, Toyka KV et al (2003) Fatigue in MS is related to sympathetic vasomotor dysfunction. Neurology 61(6):851–853PubMedCrossRefGoogle Scholar
  101. 101.
    Strober LB, Arnett PA (2005) An examination of four models predicting fatigue in multiple sclerosis. Arch Clin Neuropsychol: Off J Ntnl Acad Neuropsychol 20(5):631–646CrossRefGoogle Scholar
  102. 102.
    Lobentanz IS, Asenbaum S, Vass K, Sauter C, Klosch G, Kollegger H et al (2004) Factors influencing quality of life in multiple sclerosis patients: disability, depressive mood, fatigue and sleep quality. Acta Neurol Scand 110(1):6–13PubMedCrossRefGoogle Scholar
  103. 103.
    Attarian HP, Brown KM, Duntley SP, Carter JD, Cross AH (2004) The relationship of sleep disturbances and fatigue in multiple sclerosis. Arch Neurol 61(4):525–528PubMedCrossRefGoogle Scholar
  104. 104.
    Ferini-Strambi L, Rovaris M, Oldani A, Martinelli V, Filippi M, Smirne S et al (1995) Cardiac autonomic function during sleep and wakefulness in multiple sclerosis. J Neurol 242(10):639–643PubMedCrossRefGoogle Scholar
  105. 105.
    Tedeschi G, Dinacci D, Lavorgna L, Prinster A, Savettieri G, Quattrone A et al (2007) Correlation between fatigue and brain atrophy and lesion load in multiple sclerosis patients independent of disability. J Neurol Sci 263(1–2):15–19PubMedCrossRefGoogle Scholar
  106. 106.
    Calabrese M, Rinaldi F, Grossi P, Mattisi I, Bernardi V, Favaretto A et al (2010) Basal ganglia and frontal/parietal cortical atrophy is associated with fatigue in relapsing-remitting multiple sclerosis. Mult Scler 16(10):1220–1228PubMedCrossRefGoogle Scholar
  107. 107.
    Acevedo AR, Nava C, Arriada N, Violante A, Corona T (2000) Cardiovascular dysfunction in multiple sclerosis. Acta Neurol Scand 101(2):85–88PubMedCrossRefGoogle Scholar
  108. 108.
    Jones DE, Hollingsworth K, Fattakhova G, MacGowan G, Taylor R, Blamire A et al (2010) Impaired cardiovascular function in primary biliary cirrhosis. Am J Physiol Gastrointest Liver Physiol 298(5):G764–G773PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Nakamura T, Hirayama M, Hara T, Hama T, Watanabe H, Sobue G (2011) Does cardiovascular autonomic dysfunction contribute to fatigue in Parkinson’s disease? Mov Disord: Off J Mov Disord Soc 26(10):1869–1874CrossRefGoogle Scholar
  110. 110.
    D’Amico D, La Mantia L, Rigamonti A, Usai S, Mascoli N, Milanese C et al (2004) Prevalence of primary headaches in people with multiple sclerosis. Cephalalgia: Int J Headache 24(11):980–984CrossRefGoogle Scholar
  111. 111.
    Mohrke J, Kropp P, Zettl UK (2013) Headaches in multiple sclerosis patients might imply an inflammatorial process. PLoS One 8(8), e69570PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Tabby D, Majeed MH, Youngman B, Wilcox J (2013) Headache in multiple sclerosis: features and implications for disease management. Int J MS Care 15(2):73–80PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Villani V, Prosperini L, Ciuffoli A, Pizzolato R, Salvetti M, Pozzilli C et al (2008) Primary headache and multiple sclerosis: preliminary results of a prospective study. Neurol Sci: Off J Ital Neurol Soc Ital Soc Clin Neurophysiol 29(Suppl 1):S146–S148CrossRefGoogle Scholar
  114. 114.
    Kister I, Munger KL, Herbert J, Ascherio A (2012) Increased risk of multiple sclerosis among women with migraine in the Nurses’ Health Study II. Mult Scler 18(1):90–97PubMedCrossRefGoogle Scholar
  115. 115.
    Gee JR, Chang J, Dublin AB, Vijayan N (2005) The association of brainstem lesions with migraine-like headache: an imaging study of multiple sclerosis. Headache 45(6):670–677PubMedCrossRefGoogle Scholar
  116. 116.
    Khromov A, Segal M, Nissinoff J, Fast A (2005) Migraines linked to interferon-beta treatment of multiple sclerosis. Am J Phys Med Rehabil Assoc Acad Physiatrists 84(8):644–647CrossRefGoogle Scholar
  117. 117.
    Goadsby PJ (2013) Autonomic nervous system control of the cerebral circulation. Handb Clin Neurol 117:193–201PubMedCrossRefGoogle Scholar
  118. 118.
    Takeshima T, Takao Y, Takahashi K (1987) Pupillary sympathetic hypofunction and asymmetry in muscle contraction headache and migraine. Cephalalgia: Int J Headache 7(4):257–262CrossRefGoogle Scholar
  119. 119.
    Mikamo K, Takeshima T, Takahashi K (1989) Cardiovascular sympathetic hypofunction in muscle contraction headache and migraine. Headache 29(2):86–89PubMedCrossRefGoogle Scholar
  120. 120.
    Takeshima T, Takao Y, Urakami K, Nishikawa S, Takahashi K (1989) Muscle contraction headache and migraine. Platelet activation and plasma norepinephrine during the cold pressor test. Cephalalgia: Int J Headache 9(1):7–13CrossRefGoogle Scholar
  121. 121.
    Gotoh F, Komatsumoto S, Araki N, Gomi S (1984) Noradrenergic nervous activity in migraine. Arch Neurol 41(9):951–955PubMedCrossRefGoogle Scholar
  122. 122.
    Gass JJ, Glaros AG (2013) Autonomic dysregulation in headache patients. Appl Psychophysiol Biofeedback 38(4):257–263PubMedCrossRefGoogle Scholar
  123. 123.
    Tabata M, Takeshima T, Burioka N, Nomura T, Ishizaki K, Mori N et al (2000) Cosinor analysis of heart rate variability in ambulatory migraineurs. Headache 40(6):457–463PubMedCrossRefGoogle Scholar
  124. 124.
    Pogacnik T, Sega S, Pecnik B, Kiauta T (1993) Autonomic function testing in patients with migraine. Headache 33(10):545–550PubMedCrossRefGoogle Scholar
  125. 125.
    Rubin LS, Graham D, Pasker R, Calhoun W (1985) Autonomic nervous system dysfunction in common migraine. Headache 25(1):40–48PubMedCrossRefGoogle Scholar
  126. 126.
    Peroutka SJ (2004) Migraine: a chronic sympathetic nervous system disorder. Headache 44(1):53–64PubMedCrossRefGoogle Scholar
  127. 127.
    Yilmaz N, Karaali K, Ozdem S, Turkay M, Unal A, Dora B (2011) Elevated S100B and neuron specific enolase levels in patients with migraine-without aura: evidence for neurodegeneration? Cell Mol Neurobiol 31(4):579–585PubMedCrossRefGoogle Scholar
  128. 128.
    Zamboni P, Galeotti R, Menegatti E, Malagoni AM, Tacconi G, Dall’Ara S et al (2009) Chronic cerebrospinal venous insufficiency in patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 80(4):392–399PubMedCrossRefGoogle Scholar
  129. 129.
    Zamboni P (2006) The big idea: iron-dependent inflammation in venous disease and proposed parallels in multiple sclerosis. J R Soc Med 99(11):589–593PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Worthington V, Killestein J, Eikelenboom MJ, Teunissen CE, Barkhof F, Polman CH et al (2010) Normal CSF ferritin levels in MS suggest against etiologic role of chronic venous insufficiency. Neurology 75(18):1617–1622PubMedCrossRefGoogle Scholar
  131. 131.
    Joyner MJ, Charkoudian N, Wallin BG (2008) A sympathetic view of the sympathetic nervous system and human blood pressure regulation. Exp Physiol 93(6):715–724PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Sternberg Z, Grewal P, Cen S, Debarge-Igoe F, Yu J, Arata M (2013) Blood pressure normalization post-jugular venous balloon angioplasty. Phlebol Venous Forum R Soc MedGoogle Scholar
  133. 133.
    Zivadinov R, Marr K, Cutter G, Ramanathan M, Benedict RH, Kennedy C et al (2011) Prevalence, sensitivity, and specificity of chronic cerebrospinal venous insufficiency in MS. Neurology 77(2):138–144PubMedCrossRefGoogle Scholar
  134. 134.
    Dolic K, Weinstock-Guttman B, Marr K, Valnarov V, Carl E, Hagemeier J et al (2011) Risk factors for chronic cerebrospinal venous insufficiency (CCSVI) in a large cohort of volunteers. PLoS One 6(11), e28062PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Reis DJ, Golanov EV (1997) Autonomic and vasomotor regulation. Int Rev Neurobiol 41:121–149PubMedCrossRefGoogle Scholar
  136. 136.
    Meyer-Schwickerath R, Haug C, Hacker A, Fink F, Seidel D, Hartung HP et al (2011) Intracranial venous pressure is normal in patients with multiple sclerosis. Mult Scler 17(5):637–638PubMedCrossRefGoogle Scholar
  137. 137.
    De Keyser J, Steen C, Mostert JP, Koch MW (2008) Hypoperfusion of the cerebral white matter in multiple sclerosis: possible mechanisms and pathophysiological significance. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab 28(10):1645–1651CrossRefGoogle Scholar
  138. 138.
    Inglese M, Park SJ, Johnson G, Babb JS, Miles L, Jaggi H et al (2007) Deep gray matter perfusion in multiple sclerosis: dynamic susceptibility contrast perfusion magnetic resonance imaging at 3 T. Arch Neurol 64(2):196–202PubMedCrossRefGoogle Scholar
  139. 139.
    Zamboni P, Menegatti E, Weinstock-Guttman B, Dwyer MG, Schirda CV, Malagoni AM et al (2011) Hypoperfusion of brain parenchyma is associated with the severity of chronic cerebrospinal venous insufficiency in patients with multiple sclerosis: a cross-sectional preliminary report. BMC Med 9:22PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Inglese M, Adhya S, Johnson G, Babb JS, Miles L, Jaggi H et al (2008) Perfusion magnetic resonance imaging correlates of neuropsychological impairment in multiple sclerosis. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab 28(1):164–171CrossRefGoogle Scholar
  141. 141.
    Mollanji R, Bozanovic-Sosic R, Zakharov A, Makarian L, Johnston MG (2002) Blocking cerebrospinal fluid absorption through the cribriform plate increases resting intracranial pressure. Am J Physiol Regul Integr Comp Physiol 282(6):R1593–R1599PubMedCrossRefGoogle Scholar
  142. 142.
    Law M, Saindane AM, Ge Y, Babb JS, Johnson G, Mannon LJ et al (2004) Microvascular abnormality in relapsing-remitting multiple sclerosis: perfusion MR imaging findings in normal-appearing white matter. Radiology 231(3):645–652PubMedCrossRefGoogle Scholar
  143. 143.
    Adhya S, Johnson G, Herbert J, Jaggi H, Babb JS, Grossman RI et al (2006) Pattern of hemodynamic impairment in multiple sclerosis: dynamic susceptibility contrast perfusion MR imaging at 3.0 T. NeuroImage 33(4):1029–1035PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Schaller B, Graf R (2005) Different compartments of intracranial pressure and its relationship to cerebral blood flow. J Traumatol 59(6):1521–1531Google Scholar
  145. 145.
    Thibault P, Lewis W, Niblett S (2015) Objective duplex ultrasound evaluation of the extracranial circulation in multiple sclerosis patients undergoing venoplasty of internal jugular vein stenoses: a pilot study. Phlebol Venous Forum R Soc Med 30(2):98–104CrossRefGoogle Scholar
  146. 146.
    Winklewski PJ, Frydrychowski AF (2013) Cerebral blood flow, sympathetic nerve activity and stroke risk in obstructive sleep apnoea. Is there a direct link? Blood Press 22(1):27–33PubMedCrossRefGoogle Scholar
  147. 147.
    Cui J, McQuillan PM, Blaha C, Kunselman AR, Sinoway LI (2012) Limb venous distension evokes sympathetic activation via stimulation of the limb afferents in humans. Am J Physiol Heart Circ Physiol 303(4):H457–H463PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Wuerfel J, Bellmann-Strobl J, Brunecker P, Aktas O, McFarland H, Villringer A et al (2004) Changes in cerebral perfusion precede plaque formation in multiple sclerosis: a longitudinal perfusion MRI study. Brain: J Neurol 127(Pt 1):111–119CrossRefGoogle Scholar
  149. 149.
    Mezei Z, Olah L, Kardos L, Kovacs RK, Csiba L, Csepany T (2013) Cerebrovascular hemodynamic changes in multiple sclerosis patients during head-up tilt table test: effect of high-dose intravenous steroid treatment. J Neurol 260(9):2335–2342PubMedCrossRefGoogle Scholar
  150. 150.
    Zhang R, Zuckerman JH, Iwasaki K, Wilson TE, Crandall CG, Levine BD (2002) Autonomic neural control of dynamic cerebral autoregulation in humans. Circulation 106(14):1814–1820PubMedCrossRefGoogle Scholar
  151. 151.
    Azevedo E, Castro P, Santos R, Freitas J, Coelho T, Rosengarten B et al (2011) Autonomic dysfunction affects cerebral neurovascular coupling. Clin Aut Res: Off J Clin Aut Res Soc 21(6):395–403CrossRefGoogle Scholar
  152. 152.
    Yuceyar N, Taskiran D, Sagduyu A (2001) Serum and cerebrospinal fluid nitrite and nitrate levels in relapsing-remitting and secondary progressive multiple sclerosis patients. Clin Neurol Neurosurg 103(4):206–211PubMedCrossRefGoogle Scholar
  153. 153.
    Czosnyka M, Smielewski P, Piechnik S, Al-Rawi PG, Kirkpatrick PJ, Matta BF et al (1999) Critical closing pressure in cerebrovascular circulation. J Neurol Neurosurg Psychiatry 66(5):606–611PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Ursino M, Lodi CA (1998) Interaction among autoregulation, CO2 reactivity, and intracranial pressure: a mathematical model. Am J Physiol 274(5 Pt 2):H1715–H1728PubMedGoogle Scholar
  155. 155.
    Zamboni P, Galeotti R, Menegatti E, Malagoni AM, Gianesini S, Bartolomei I et al (2009) A prospective open-label study of endovascular treatment of chronic cerebrospinal venous insufficiency. J Vasc Surg 50(6):1348–58.e1-3PubMedCrossRefGoogle Scholar
  156. 156.
    Gisolf J, van Lieshout JJ, van Heusden K, Pott F, Stok WJ, Karemaker JM (2004) Human cerebral venous outflow pathway depends on posture and central venous pressure. J Physiol 560(Pt 1):317–327PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Zamboni P, Menegatti E, Weinstock-Guttman B, Schirda C, Cox JL, Malagoni AM et al (2009) The severity of chronic cerebrospinal venous insufficiency in patients with multiple sclerosis is related to altered cerebrospinal fluid dynamics. Funct Neurol 24(3):133–138PubMedGoogle Scholar
  158. 158.
    ElSankari S, Baledent O, van Pesch V, Sindic C, de Broqueville Q, Duprez T (2013) Concomitant analysis of arterial, venous, and CSF flows using phase-contrast MRI: a quantitative comparison between MS patients and healthy controls. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab 33(9):1314–1321CrossRefGoogle Scholar
  159. 159.
    Bateman GA, Levi CR, Schofield P, Wang Y, Lovett EC (2008) The venous manifestations of pulse wave encephalopathy: windkessel dysfunction in normal aging and senile dementia. Neuroradiology 50(6):491–497PubMedCrossRefGoogle Scholar
  160. 160.
    Whedon JM, Glassey D (2009) Cerebrospinal fluid stasis and its clinical significance. Altern Ther Health Med 15(3):54–60PubMedPubMedCentralGoogle Scholar
  161. 161.
    Zivadinov R, Magnano C, Galeotti R, Schirda C, Menegatti E, Weinstock-Guttman B et al (2013) Changes of cine cerebrospinal fluid dynamics in patients with multiple sclerosis treated with percutaneous transluminal angioplasty: a case–control study. J Vascular Int Radiol: JVIR 24(6):829–838CrossRefGoogle Scholar
  162. 162.
    Aboul-Enein F, Rauschka H, Kornek B, Stadelmann C, Stefferl A, Bruck W et al (2003) Preferential loss of myelin-associated glycoprotein reflects hypoxia-like white matter damage in stroke and inflammatory brain diseases. J Neuropathol Exp Neurol 62(1):25–33PubMedCrossRefGoogle Scholar
  163. 163.
    Dux E, Temesvari P, Joo F, Adam G, Clementi F, Dux L et al (1984) The blood–brain barrier in hypoxia: ultrastructural aspects and adenylate cyclase activity of brain capillaries. Neuroscience 12(3):951–958PubMedCrossRefGoogle Scholar
  164. 164.
    Jelinski SE, Yager JY, Juurlink BH (1999) Preferential injury of oligodendroblasts by a short hypoxic-ischemic insult. Brain Res 815(1):150–153PubMedCrossRefGoogle Scholar
  165. 165.
    Reimer MM, McQueen J, Searcy L, Scullion G, Zonta B, Desmazieres A et al (2011) Rapid disruption of axon-glial integrity in response to mild cerebral hypoperfusion. J Neurosci: Off J Soc Neurosci 31(49):18185–18194CrossRefGoogle Scholar
  166. 166.
    Farkas E, Donka G, de Vos RA, Mihaly A, Bari F, Luiten PG (2004) Experimental cerebral hypoperfusion induces white matter injury and microglial activation in the rat brain. Acta Neuropathol 108(1):57–64PubMedCrossRefGoogle Scholar
  167. 167.
    Schaller B, Cornelius JF, Sandu N, Ottaviani G, Perez-Pinzon MA (2009) Oxygen-conserving reflexes of the brain: the current molecular knowledge. J Cell Mol Med 13(4):644–647PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Sandu N, Cornelius J, Filis A, Nothen C, Rasper J, Kulinsky VI et al (2010) Cerebral hemodynamic changes during the trigeminocardiac reflex: description of a new animal model protocol. TheScientificWorldJOURNAL 10:1416–1423PubMedCrossRefGoogle Scholar
  169. 169.
    Lee BB, Baumgartner I, Berlien P, Bianchini G, Burrows P, Gloviczki P et al (2014) Diagnosis and treatment of venous malformations consensus document of the International union of Phlebology (IUP): updated 2013. Int Angiol: J Int Union AngiolGoogle Scholar
  170. 170.
    Pascolo L, Gianoncelli A, Rizzardi C, Tisato V, Salome M, Calligaro C et al (2014) Calcium micro-depositions in jugular truncular venous malformations revealed by synchrotron-based XRF imaging. Sci Rep 4:6540PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Zamboni P, Tisato V, Menegatti E, Mascoli F, Gianesini S, Salvi F et al (2014) Ultrastructure of internal jugular vein defective valves. Phlebol Venous Forum R Soc MedGoogle Scholar
  172. 172.
    Coen M, Menegatti E, Salvi F, Mascoli F, Zamboni P, Gabbiani G et al (2013) Altered collagen expression in jugular veins in multiple sclerosis. Cardiovasc Pathol: Off J Soc Cardiovasc Pathol 22(1):33–38CrossRefGoogle Scholar
  173. 173.
    Fitts MK, Pike DB, Anderson K, Shiu YT (2014) Hemodynamic shear stress and endothelial dysfunction in hemodialysis access. Open Urol Nephrol J 7(Suppl 1 M5):33–44PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Roy-Chaudhury P, Khan R, Campos B, Wang Y, Kurian M, Lee T et al (2014) Pathogenetic role for early focal macrophage infiltration in a pig model of arteriovenous fistula (AVF) stenosis. Journal Vasc Access 15(1):25–28CrossRefGoogle Scholar
  175. 175.
    Schubert A, Cattaruzza M, Hecker M, Darmer D, Holtz J, Morawietz H (2000) Shear stress-dependent regulation of the human beta-tubulin folding cofactor D gene. Circ Res 87(12):1188–1194PubMedCrossRefGoogle Scholar
  176. 176.
    Mann MC, Exner DV, Hemmelgarn BR, Sola DY, Turin TC, Ellis L et al (2013) Vitamin D levels are associated with cardiac autonomic activity in healthy humans. Nutrients 5(6):2114–2127PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Varbiro S, Sara L, Antal P, Monori-Kiss A, Tokes AM, Monos E et al (2014) Lower-limb veins are thicker and vascular reactivity is decreased in a rat PCOS model: concomitant vitamin D3 treatment partially prevents these changes. Am J Physiol Heart Circ Physiol 307(6):H848–H857PubMedCrossRefGoogle Scholar
  178. 178.
    Schaller B (2004) Physiology of cerebral venous blood flow: from experimental data in animals to normal function in humans. Brain Res Brain Res Rev 46(3):243–260PubMedCrossRefGoogle Scholar
  179. 179.
    Schaller B, Graf R (2004) Cerebral venous infarction: the pathophysiological concept. Cerebrovasc Dis 18(3):179–188PubMedCrossRefGoogle Scholar
  180. 180.
    Roshanisefat H, Bahmanyar S, Hillert J, Olsson T, Montgomery S (2014) Multiple sclerosis clinical course and cardiovascular disease risk—Swedish cohort study. Eur J Neurol: Off J Eur Fed Neurol Soc 21(11):1353–e88CrossRefGoogle Scholar
  181. 181.
    Christiansen CF (2012) Risk of vascular disease in patients with multiple sclerosis: a review. Neurol Res 34(8):746–753PubMedCrossRefGoogle Scholar
  182. 182.
    Sung EAL, Cen S, Krug A (2014) Sanossian N. Mult Scler Stroke Neurol 82(10):169Google Scholar
  183. 183.
    Allen NB, Lichtman JH, Cohen HW, Fang J, Brass LM, Alderman MH (2008) Vascular disease among hospitalized multiple sclerosis patients. Neuroepidemiology 30(4):234–238PubMedCrossRefGoogle Scholar
  184. 184.
    Sternberg Z(2015) Promoting sympathovagal balance in multiple sclerosis; pharmacological, non-pharmacological, and surgical strategies. Autoimmunity RevGoogle Scholar
  185. 185.
    Sternberg Z (2015) Genetic, epigenetic, and environmental factors influencing neurovisceral integration of cardiovascular modulation: focus on multiple sclerosis. Neuromol MedGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2016

Authors and Affiliations

  1. 1.Department of Neurology, Stroke CenterBuffalo Medical CenterBuffaloUSA

Personalised recommendations