Skip to main content

Advertisement

Log in

Increased Wnt Signaling and Reduced Viability in a Neuronal Model of Progranulin-Deficient Frontotemporal Lobar Degeneration

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Progranulin (PGRN) deficiency is considered the major cause of frontotemporal lobar degeneration with TDP-43 protein inclusions (FTLD-TDP). Recent work unveiled a relationship between Wnt signaling and PGRN in cellular models of FTLD and cells of patients carrying loss-of-function GRN mutations. This study was undertaken to explore the relationship between PGRN deficit and Wnt signaling in the regulation of survival of GRN knockdown neuroblastoma SH-SY5Y cells (GRN KD). We report here that both canonical and noncanonical Wnt signaling cascades are overactivated in GRN KD cells. We detected increased expression levels of Wnt1 and Wnt5a ligands of the Frizzled receptors, as well as evidence for increased signaling of the Wnt/β-catenin and Wnt/Ca2+ cascades in PGRN deficient cells, such as increased nuclear content of β-catenin and higher levels of cyclin D1, or increased levels of the active form of the NFAT1 transcription factor, respectively. Upregulation of either Wnt/β-catenin or Wnt/Ca2+ signaling in GRN KD cells leads to the stimulation of BrdU incorporation into DNA, hyperphosphorylation of the pRb family of proteins and reduced cell viability over time. Blocking the Wnt cascades by specific canonical or noncanonical inhibitors of Wnt-dependent signaling, normalized the rate of DNA synthesis, and what it is more important restored the viability of GRN KD cells. Our results suggest an important role of Wnt activation inducing cell cycle disturbance-mediated neuronal loss in the pathogenesis of PGRN deficiency-linked FTLD-TDP. Therefore, it is plausible that modulation of Wnt signaling could be a promising strategy for developing of new disease-modifying treatments for FTLD-TDP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. He Z, Ong CH, Halper J, Bateman A (2003) Progranulin is a mediator of the wound response. Nat Med 9(2):225–229. doi:10.1038/nm816

    Article  CAS  PubMed  Google Scholar 

  2. Baker M, Mackenzie IR, Pickering-Brown SM, Gass J, Rademakers R, Lindholm C, Snowden J, Adamson J et al (2006) Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442(7105):916–919. doi:10.1038/nature05016

    Article  CAS  PubMed  Google Scholar 

  3. Cruts M, Gijselinck I, van der Zee J, Engelborghs S, Wils H, Pirici D, Rademakers R, Vandenberghe R et al (2006) Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442(7105):920–924. doi:10.1038/nature05017

    Article  CAS  PubMed  Google Scholar 

  4. De Muynck L, Herdewyn S, Beel S, Scheveneels W, Van Den Bosch L, Robberecht W, Van Damme P (2013) The neurotrophic properties of progranulin depend on the granulin E domain but do not require sortilin binding. Neurobiol Aging 34(11):2541–2547. doi:10.1016/j.neurobiolaging.2013.04.022

    Article  CAS  PubMed  Google Scholar 

  5. Van Damme P, Van Hoecke A, Lambrechts D, Vanacker P, Bogaert E, van Swieten J, Carmeliet P, Van Den Bosch L et al (2008) Progranulin functions as a neurotrophic factor to regulate neurite outgrowth and enhance neuronal survival. J Cell Biol 181(1):37–41. doi:10.1083/jcb.200712039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gass J, Lee WC, Cook C, Finch N, Stetler C, Jansen-West K, Lewis J, Link CD et al (2012) Progranulin regulates neuronal outgrowth independent of sortilin. Mol Neurodegener 7:33. doi:10.1186/1750-1326-7-33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gijselinck I, Van Broeckhoven C, Cruts M (2008) Granulin mutations associated with frontotemporal lobar degeneration and related disorders: an update. Hum Mutat 29(12):1373–1386. doi:10.1002/humu.20785

    Article  CAS  PubMed  Google Scholar 

  8. Gao X, Joselin AP, Wang L, Kar A, Ray P, Bateman A, Goate AM, Wu JY (2010) Progranulin promotes neurite outgrowth and neuronal differentiation by regulating GSK-3beta. Protein Cell 1(6):552–562. doi:10.1007/s13238-010-0067-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ryan CL, Baranowski DC, Chitramuthu BP, Malik S, Li Z, Cao M, Minotti S, Durham HD et al (2009) Progranulin is expressed within motor neurons and promotes neuronal cell survival. BMC Neurosci 10:130. doi:10.1186/1471-2202-10-130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hu F, Padukkavidana T, Vaegter CB, Brady OA, Zheng Y, Mackenzie IR, Feldman HH, Nykjaer A et al (2010) Sortilin-mediated endocytosis determines levels of the frontotemporal dementia protein, progranulin. Neuron 68(4):654–667. doi:10.1016/j.neuron.2010.09.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tang W, Lu Y, Tian QY, Zhang Y, Guo FJ, Liu GY, Syed NM, Lai Y et al (2011) The growth factor progranulin binds to TNF receptors and is therapeutic against inflammatory arthritis in mice. Science (New York, NY) 332(6028):478–484. doi:10.1126/science.1199214

    Article  CAS  Google Scholar 

  12. He Z, Ismail A, Kriazhev L, Sadvakassova G, Bateman A (2002) Progranulin (PC-cell-derived growth factor/acrogranin) regulates invasion and cell survival. Cancer Res 62(19):5590–5596

    CAS  PubMed  Google Scholar 

  13. Monami G, Gonzalez EM, Hellman M, Gomella LG, Baffa R, Iozzo RV, Morrione A (2006) Proepithelin promotes migration and invasion of 5637 bladder cancer cells through the activation of ERK1/2 and the formation of a paxillin/FAK/ERK complex. Cancer Res 66(14):7103–7110. doi:10.1158/0008-5472.can-06-0633

    Article  CAS  PubMed  Google Scholar 

  14. Zanocco-Marani T, Bateman A, Romano G, Valentinis B, He ZH, Baserga R (1999) Biological activities and signaling pathways of the granulin/epithelin precursor. Cancer Res 59(20):5331–5340

    CAS  PubMed  Google Scholar 

  15. Rosen EY, Wexler EM, Versano R, Coppola G, Gao F, Winden KD, Oldham MC, Martens LH et al (2011) Functional genomic analyses identify pathways dysregulated by progranulin deficiency, implicating Wnt signaling. Neuron 71(6):1030–1042. doi:10.1016/j.neuron.2011.07.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wexler EM, Rosen E, Lu D, Osborn GE, Martin E, Raybould H, Geschwind DH (2011) Genome-wide analysis of a Wnt1-regulated transcriptional network implicates neurodegenerative pathways. Sci Signal 4(193):ra65. doi:10.1126/scisignal.2002282

    Article  CAS  PubMed  Google Scholar 

  17. Alquezar C, Esteras N, de la Encarnacion A, Alzualde A, Moreno F, Lopez de Munain A, Martin-Requero A (2014) PGRN haploinsufficiency increased Wnt5a signaling in peripheral cells from frontotemporal lobar degeneration-progranulin mutation carriers. Neurobiol Aging 35(4):886–898. doi:10.1016/j.neurobiolaging.2013.09.021

    Article  CAS  PubMed  Google Scholar 

  18. Raitano S, Ordovas L, De Muynck L, Guo W, Espuny-Camacho I, Geraerts M, Khurana S, Vanuytsel K et al (2015) Restoration of progranulin expression rescues cortical neuron generation in an induced pluripotent stem cell model of frontotemporal dementia. Stem Cell Reports 4(1):16–24. doi:10.1016/j.stemcr.2014.12.001

    Article  CAS  PubMed  Google Scholar 

  19. Lopez de Munain A, Alzualde A, Gorostidi A, Otaegui D, Ruiz-Martinez J, Indakoetxea B, Ferrer I, Perez-Tur J et al (2008) Mutations in progranulin gene: clinical, pathological, and ribonucleic acid expression findings. Biol Psychiatry 63(10):946–952. doi:10.1016/j.biopsych.2007.08.015

    Article  CAS  PubMed  Google Scholar 

  20. Moreno F, Indakoetxea B, Barandiaran M, Alzualde A, Gabilondo A, Estanga A, Ruiz J, Ruibal M et al (2009) Frontotemporoparietal” dementia: clinical phenotype associated with the c.709-1G > A PGRN mutation. Neurology 73(17):1367–1374. doi:10.1212/WNL.0b013e3181bd82a7

    Article  CAS  PubMed  Google Scholar 

  21. Alquezar C, Esteras N, Bartolome F, Merino JJ, Alzualde A, de Munain LA, Martin-Requero A (2012) Alteration in cell cycle-related proteins in lymphoblasts from carriers of the c.709-1G>A PGRN mutation associated with FTLD-TDP dementia. Neurobiol Aging 33(2):429. doi:10.1016/j.neurobiolaging.2010.11.020, e427–420

    Article  CAS  PubMed  Google Scholar 

  22. Bonda DJ, Lee HP, Kudo W, Zhu X, Smith MA, Lee HG (2010) Pathological implications of cell cycle re-entry in Alzheimer disease. Expert Rev Mol Med 12, e19. doi:10.1017/s146239941000150x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee HP, Kudo W, Zhu X, Smith MA, Lee HG (2011) Early induction of c-Myc is associated with neuronal cell death. Neurosci Lett 505(2):124–127. doi:10.1016/j.neulet.2011.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89(2):271–277

    Article  CAS  PubMed  Google Scholar 

  25. Hogan PG, Chen L, Nardone J, Rao A (2003) Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev 17(18):2205–2232. doi:10.1101/gad.1102703

    Article  CAS  PubMed  Google Scholar 

  26. Weinberg RA (1995) The retinoblastoma protein and cell cycle control. Cell 81(3):323–330

    Article  CAS  PubMed  Google Scholar 

  27. Niehrs C (2006) Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene 25(57):7469–7481. doi:10.1038/sj.onc.1210054

    Article  CAS  PubMed  Google Scholar 

  28. Tokumitsu H, Chijiwa T, Hagiwara M, Mizutani A, Terasawa M, Hidaka H (1990) KN-62, 1-[N, O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazi ne, a specific inhibitor of Ca2+/calmodulin-dependent protein kinase II. J Biological Chem 265(8):4315–4320

    CAS  Google Scholar 

  29. Alquezar C, Esteras N, de la Encarnacion A, Moreno F, Lopez de Munain A, Martin-Requero A (2015) Increasing progranulin levels and blockade of the ERK1/2 pathway: upstream and downstream strategies for the treatment of progranulin deficient frontotemporal dementia. European Neuropsychopharmacology: J European College Neuropsychopharmacology 25(3):386–403. doi:10.1016/j.euroneuro.2014.12.007

    Article  CAS  Google Scholar 

  30. Herrup K, Yang Y (2007) Cell cycle regulation in the postmitotic neuron: oxymoron or new biology? Nat Rev Neurosci 8(5):368–378. doi:10.1038/nrn2124

    Article  CAS  PubMed  Google Scholar 

  31. Hoglinger GU, Breunig JJ, Depboylu C, Rouaux C, Michel PP, Alvarez-Fischer D, Boutillier AL, Degregori J et al (2007) The pRb/E2F cell-cycle pathway mediates cell death in Parkinson’s disease. Proc Natl Acad Sci U S A 104(9):3585–3590. doi:10.1073/pnas.0611671104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ueberham U, Arendt T (2005) The expression of cell cycle proteins in neurons and its relevance for Alzheimer’s disease. Current Drug Targets CNS Neurological Disorders 4(3):293–306

    Article  CAS  PubMed  Google Scholar 

  33. Stone JG, Siedlak SL, Tabaton M, Hirano A, Castellani RJ, Santocanale C, Perry G, Smith MA et al (2011) The cell cycle regulator phosphorylated retinoblastoma protein is associated with tau pathology in several tauopathies. J Neuropathol Exp Neurol 70(7):578–587. doi:10.1097/NEN.0b013e3182204414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pandilla R, Kotapalli V, Gowrishankar S, Chigurupati M, Patnaik S, Uppin S, Rao S, Kalidindi N et al (2013) Distinct genetic aberrations in oesophageal adeno and squamous carcinoma. Eur J Clin Investig 43(12):1233–1239. doi:10.1111/eci.12163

    Article  CAS  Google Scholar 

  35. Ge X, Wang X (2010) Role of Wnt canonical pathway in hematological malignancies. J Hematology Oncol 3:33. doi:10.1186/1756-8722-3-33

    Article  CAS  Google Scholar 

  36. Dissanayake SK, Wade M, Johnson CE, O'Connell MP, Leotlela PD, French AD, Shah KV, Hewitt KJ et al (2007) The Wnt5A/protein kinase C pathway mediates motility in melanoma cells via the inhibition of metastasis suppressors and initiation of an epithelial to mesenchymal transition. J Biological Chem 282(23):17259–17271. doi:10.1074/jbc.M700075200

    Article  CAS  Google Scholar 

  37. Gordon MD, Nusse R (2006) Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biological Chem 281(32):22429–22433. doi:10.1074/jbc.R600015200

    Article  CAS  Google Scholar 

  38. Yu JM, Jun ES, Jung JS, Suh SY, Han JY, Kim JY, Kim KW, Jung JS (2007) Role of Wnt5a in the proliferation of human glioblastoma cells. Cancer Lett 257(2):172–181. doi:10.1016/j.canlet.2007.07.011

    Article  CAS  PubMed  Google Scholar 

  39. Liang H, Chen Q, Coles AH, Anderson SJ, Pihan G, Bradley A, Gerstein R, Jurecic R et al (2003) Wnt5a inhibits B cell proliferation and functions as a tumor suppressor in hematopoietic tissue. Cancer Cell 4(5):349–360

    Article  CAS  PubMed  Google Scholar 

  40. Inestrosa NC, Arenas E (2010) Emerging roles of Wnts in the adult nervous system. Nat Rev Neurosci 11(2):77–86. doi:10.1038/nrn2755

    Article  CAS  PubMed  Google Scholar 

  41. Chen Y, Guan Y, Zhang Z, Liu H, Wang S, Yu L, Wu X, Wang X (2012) Wnt signaling pathway is involved in the pathogenesis of amyotrophic lateral sclerosis in adult transgenic mice. Neurol Res 34(4):390–399. doi:10.1179/1743132812y.0000000027

    Article  CAS  PubMed  Google Scholar 

  42. da Cruz e Silva OA, Henriques AG, Domingues SC, da Cruz e Silva EF (2010) Wnt signalling is a relevant pathway contributing to amyloid beta- peptide-mediated neuropathology in Alzheimer’s disease. CNS Neurological Disorders Drug Targets 9(6):720–726

    Article  PubMed  Google Scholar 

  43. L'Episcopo F, Tirolo C, Testa N, Caniglia S, Morale MC, Deleidi M, Serapide MF, Pluchino S et al (2012) Plasticity of subventricular zone neuroprogenitors in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model of Parkinson’s disease involves cross talk between inflammatory and Wnt/beta-catenin signaling pathways: functional consequences for neuroprotection and repair. J Neuroscience: Off J Soc Neuroscience 32(6):2062–2085. doi:10.1523/jneurosci.5259-11.2012

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by grants from the Ministerio de Economía y Competitividad (SAF2011-28603) and Fundación Ramón Areces. AdlE is supported by the Fundación Ramón Areces. We thank Drs. Joselin and Wu for providing the GRN KD SH-SY5Y cells. The skillful assistance of Haidée Aranda is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángeles Martín-Requero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de la Encarnación, A., Alquézar, C. & Martín-Requero, Á. Increased Wnt Signaling and Reduced Viability in a Neuronal Model of Progranulin-Deficient Frontotemporal Lobar Degeneration. Mol Neurobiol 53, 7107–7118 (2016). https://doi.org/10.1007/s12035-015-9596-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9596-1

Keywords

Navigation