Skip to main content

Advertisement

Log in

Slit2/Robo1 Mediation of Synaptic Plasticity Contributes to Bone Cancer Pain

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Synaptic plasticity is fundamental to spinal sensitivity of bone cancer pain. Here, we have shown that excitatory synaptogenesis contributes to bone cancer pain. New synapse formation requires neurite outgrowth and an interaction between axons and dendrites, accompanied by the appositional organization of presynaptic and postsynaptic specializations. We have shown that Slit2, Robo1, and RhoA act as such cues that promote neurite outgrowth and guide the axon for synapse formation. Sarcoma inoculation induces excitatory synaptogenesis and bone cancer pain which are reversed by Slit2 knockdown but aggravated by Robo1 knockdown. Synaptogenesis of cultured neurons are inhibited by Slit2 knockdown but enhanced by Robo1 knockdown. Sarcoma implantation induces an increase in Slit2 and decreases Robo1 and RhoA, while Slit2 knockdown results in an increase of Robo1 and RhoA. These results have demonstrated a molecular mechanism of synaptogenesis in bone cancer pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Luger NM, Honore P, Sabino MA, Schwei MJ, Rogers SD, Mach DB, Clohisy DR, Mantyh PW (2001) Osteoprotegerin diminishes advanced bone cancer pain. Cancer Res 61:4038–4047

    CAS  PubMed  Google Scholar 

  2. Mundy GR, Others (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2, 584–593

  3. Schwei MJ, Honore P, Rogers SD, Salak-Johnson JL, Finke MP, Ramnaraine ML, Clohisy DR, Mantyh PW (1999) Neurochemical and cellular reorganization of the spinal cord in a murine model of bone cancer pain. J Neurosci 19:10886–10897

    CAS  PubMed  Google Scholar 

  4. Mantyh PW (2006) Cancer pain and its impact on diagnosis, survival and quality of life. Nat Rev Neurosci 7:797–809

    Article  CAS  PubMed  Google Scholar 

  5. Klein T, Stahn S, Magerl W, Treede RD (2008) The role of heterosynaptic facilitation in long-term potentiation (LTP) of human pain sensation. Pain 139:507–519

    Article  PubMed  Google Scholar 

  6. Presley RW, Menetrey D, Levine JD, Basbaum AI (1990) Systemic morphine suppresses noxious stimulus-evoked Fos protein-like immunoreactivity in the rat spinal cord. J Neurosci 10:323–335

    CAS  PubMed  Google Scholar 

  7. Torsney C (2011) Inflammatory pain unmasks heterosynaptic facilitation in lamina I neurokinin 1 receptor-expressing neurons in rat spinal cord. J Neurosci 31:5158–5168

    Article  CAS  PubMed  Google Scholar 

  8. Gao YJ, Zhang L, Samad OA, Suter MR, Yasuhiko K, Xu ZZ, Park JY, Lind AL et al (2009) JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain. J Neurosci 29:4096–4108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Griffin RS, Costigan M, Brenner GJ, Ma CH, Scholz J, Moss A, Allchorne AJ, Stahl GL et al (2007) Complement induction in spinal cord microglia results in anaphylatoxin C5a-mediated pain hypersensitivity. J Neurosci 27:8699–8708

    Article  CAS  PubMed  Google Scholar 

  10. Aoyama R, Okada Y, Yokota S, Yasui Y, Fukuda K, Shinozaki Y, Yoshida H, Nakamura M et al (2011) Spatiotemporal and anatomical analyses of P2X receptor-mediated neuronal and glial processing of sensory signals in the rat dorsal horn. Pain 152:2085–2097

    Article  CAS  PubMed  Google Scholar 

  11. Ji RR, Kohno T, Moore KA, Woolf CJ (2003) Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci 26:696–705

    Article  CAS  PubMed  Google Scholar 

  12. Bagri A, Marin O, Plump AS, Mak J, Pleasure SJ, Rubenstein JL, Tessier-Lavigne M (2002) Slit proteins prevent midline crossing and determine the dorsoventral position of major axonal pathways in the mammalian forebrain. Neuron 33:233–248

    Article  CAS  PubMed  Google Scholar 

  13. Wang KH, Brose K, Arnott D, Kidd T, Goodman CS, Henzel W, Tessier-Lavigne M (1999) Biochemical purification of a mammalian slit protein as a positive regulator of sensory axon elongation and branching. Cell 96:771–784

    Article  CAS  PubMed  Google Scholar 

  14. Plump AS, Erskine L, Sabatier C, Brose K, Epstein CJ, Goodman CS, Mason CA, Tessier-Lavigne M (2002) Slit1 and Slit2 cooperate to prevent premature midline crossing of retinal axons in the mouse visual system. Neuron 33:219–232

    Article  CAS  PubMed  Google Scholar 

  15. Brose K, Tessier-Lavigne M (2000) Slit proteins: key regulators of axon guidance, axonal branching, and cell migration. Curr Opin Neurobiol 10:95–102

    Article  CAS  PubMed  Google Scholar 

  16. Hu H (1999) Chemorepulsion of neuronal migration by Slit2 in the developing mammalian forebrain. Neuron 23:703–711

    Article  CAS  PubMed  Google Scholar 

  17. Hu H (2001) Cell-surface heparan sulfate is involved in the repulsive guidance activities of Slit2 protein. Nat Neurosci 4:695–701

    Article  CAS  PubMed  Google Scholar 

  18. Long H, Sabatier C, Ma L, Plump A, Yuan W, Ornitz DM, Tamada A, Murakami F et al (2004) Conserved roles for Slit and Robo proteins in midline commissural axon guidance. Neuron 42:213–223

    Article  CAS  PubMed  Google Scholar 

  19. Dill J, Patel AR, Yang XL, Bachoo R, Powell CM, Li S (2010) A molecular mechanism for ibuprofen-mediated RhoA inhibition in neurons. J Neurosci 30:963–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fu Q, Hue J, Li S (2007) Nonsteroidal anti-inflammatory drugs promote axon regeneration via RhoA inhibition. J Neurosci 27:4154–4164

    Article  CAS  PubMed  Google Scholar 

  21. Jaworski A, Long H, Tessier-Lavigne M (2010) Collaborative and specialized functions of Robo1 and Robo2 in spinal commissural axon guidance. J Neurosci 30:9445–9453

    Article  CAS  PubMed  Google Scholar 

  22. McAllister AK (2002) Conserved cues for axon and dendrite growth in the developing cortex. Neuron 33:2–4

    Article  CAS  PubMed  Google Scholar 

  23. Fan X, Labrador JP, Hing H, Bashaw GJ (2003) Slit stimulation recruits Dock and Pak to the roundabout receptor and increases Rac activity to regulate axon repulsion at the CNS midline. Neuron 40:113–127

    Article  CAS  PubMed  Google Scholar 

  24. Schmucker D (2003) Downstream of guidance receptors: entering the baroque period of axon guidance signaling. Neuron 40:4–6

    Article  CAS  PubMed  Google Scholar 

  25. Zinn K, Sun Q (1999) Slit branches out: a secreted protein mediates both attractive and repulsive axon guidance. Cell 97:1–4

    Article  CAS  PubMed  Google Scholar 

  26. Nguyen BK, Brose K, Marillat V, Kidd T, Goodman CS, Tessier-Lavigne M, Sotelo C, Chedotal A (1999) Slit2-mediated chemorepulsion and collapse of developing forebrain axons. Neuron 22:463–473

    Article  Google Scholar 

  27. Cappello S, Bohringer CR, Bergami M, Conzelmann KK, Ghanem A, Tomassy GS, Arlotta P, Mainardi M et al (2012) A radial glia-specific role of RhoA in double cortex formation. Neuron 73:911–924

    Article  CAS  PubMed  Google Scholar 

  28. Zhang G, Lehmann HC, Manoharan S, Hashmi M, Shim S, Ming GL, Schnaar RL, Lopez PH et al (2011) Anti-ganglioside antibody-mediated activation of RhoA induces inhibition of neurite outgrowth. J Neurosci 31:1664–1675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wong K, Ren XR, Huang YZ, Xie Y, Liu G, Saito H, Tang H, Wen L et al (2001) Signal transduction in neuronal migration: roles of GTPase activating proteins and the small GTPase Cdc42 in the Slit-Robo pathway. Cell 107:209–221

    Article  CAS  PubMed  Google Scholar 

  30. Brose K, Bland KS, Wang KH, Arnott D, Henzel W, Goodman CS, Tessier-Lavigne M, Kidd T (1999) Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell 96:795–806

    Article  CAS  PubMed  Google Scholar 

  31. Andrews W, Liapi A, Plachez C, Camurri L, Zhang J, Mori S, Murakami F, Parnavelas JG et al (2006) Robo1 regulates the development of major axon tracts and interneuron migration in the forebrain. Development 133:2243–2252

    Article  CAS  PubMed  Google Scholar 

  32. Lopez-Bendito G, Flames N, Ma L, Fouquet C, Di Meglio T, Chedotal A, Tessier-Lavigne M, Marin O (2007) Robo1 and Robo2 cooperate to control the guidance of major axonal tracts in the mammalian forebrain. J Neurosci 27:3395–3407

    Article  CAS  PubMed  Google Scholar 

  33. Fouquet C, Di Meglio T, Ma L, Kawasaki T, Long H, Hirata T, Tessier-Lavigne M, Chedotal A et al (2007) Robo1 and Robo2 control the development of the lateral olfactory tract. J Neurosci 27:3037–3045

    Article  CAS  PubMed  Google Scholar 

  34. Kondo M, Takei Y, Hirokawa N (2012) Motor protein KIF1A is essential for hippocampal synaptogenesis and learning enhancement in an enriched environment. Neuron 73:743–757

    Article  CAS  PubMed  Google Scholar 

  35. Chen X, Nelson CD, Li X, Winters CA, Azzam R, Sousa AA, Leapman RD, Gainer H et al (2011) PSD-95 is required to sustain the molecular organization of the postsynaptic density. J Neurosci 31:6329–6338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cohen-Cory S (2002) The developing synapse: construction and modulation of synaptic structures and circuits. Science 298:770–776

    Article  CAS  PubMed  Google Scholar 

  37. Shu T, Sundaresan V, McCarthy MM, Richards LJ (2003) Slit2 guides both precrossing and postcrossing callosal axons at the midline in vivo. J Neurosci 23:8176–8184

    CAS  PubMed  Google Scholar 

  38. Xiao T, Staub W, Robles E, Gosse NJ, Cole GJ, Baier H (2011) Assembly of lamina-specific neuronal connections by slit bound to type IV collagen. Cell 146:164–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shi SH, Cox DN, Wang D, Jan LY, Jan YN (2004) Control of dendrite arborization by an Ig family member, dendrite arborization and synapse maturation 1 (Dasm1). Proc Natl Acad Sci U S A 101:13341–13345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Foa L, Rajan I, Haas K, Wu GY, Brakeman P, Worley P, Cline H (2001) The scaffold protein, Homer1b/c, regulates axon pathfinding in the central nervous system in vivo. Nat Neurosci 4:499–506

    CAS  PubMed  Google Scholar 

  41. Sheldon H, Andre M, Legg JA, Heal P, Herbert JM, Sainson R, Sharma AS, Kitajewski JK et al (2009) Active involvement of Robo1 and Robo4 in filopodia formation and endothelial cell motility mediated via WASP and other actin nucleation-promoting factors. FASEB J 23:513–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bielle F, Marcos-Mondejar P, Keita M, Mailhes C, Verney C, Nguyen BK, Tessier-Lavigne M, Lopez-Bendito G et al (2011) Slit2 activity in the migration of guidepost neurons shapes thalamic projections during development and evolution. Neuron 69:1085–1098

    Article  CAS  PubMed  Google Scholar 

  43. Huang ZH, Wang Y, Su ZD, Geng JG, Chen YZ, Yuan XB, He C (2011) Slit-2 repels the migration of olfactory ensheathing cells by triggering Ca2+-dependent cofilin activation and RhoA inhibition. J Cell Sci 124:186–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Niclou SP, Jia L, Raper JA (2000) Slit2 is a repellent for retinal ganglion cell axons. J Neurosci 20:4962–4974

    CAS  PubMed  Google Scholar 

  45. Ozdinler PH, Erzurumlu RS (2002) Slit2, a branching-arborization factor for sensory axons in the mammalian CNS. J Neurosci 22:4540–4549

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hernandez-Miranda LR, Cariboni A, Faux C, Ruhrberg C, Cho JH, Cloutier JF, Eickholt BJ, Parnavelas JG et al (2011) Robo1 regulates semaphorin signaling to guide the migration of cortical interneurons through the ventral forebrain. J Neurosci 31:6174–6187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Woo S, Gomez TM (2006) Rac1 and RhoA promote neurite outgrowth through formation and stabilization of growth cone point contacts. J Neurosci 26:1418–1428

    Article  CAS  PubMed  Google Scholar 

  48. Chen H, Firestein BL (2007) RhoA regulates dendrite branching in hippocampal neurons by decreasing cypin protein levels. J Neurosci 27:8378–8386

    Article  CAS  PubMed  Google Scholar 

  49. Woolf CJ (1983) Evidence for a central component of post-injury pain hypersensitivity. Nature 306:686–688

    Article  CAS  PubMed  Google Scholar 

  50. Ji RR, Baba H, Brenner GJ, Woolf CJ (1999) Nociceptive-specific activation of ERK in spinal neurons contributes to pain hypersensitivity. Nat Neurosci 2:1114–1119

    Article  CAS  PubMed  Google Scholar 

  51. Gogolla N, Galimberti I, Deguchi Y, Caroni P (2009) Wnt signaling mediates experience-related regulation of synapse numbers and mossy fiber connectivities in the adult hippocampus. Neuron 62:510–525

    Article  CAS  PubMed  Google Scholar 

  52. Margolis SS, Salogiannis J, Lipton DM, Mandel-Brehm C, Wills ZP, Mardinly AR, Hu L, Greer PL et al (2010) EphB-mediated degradation of the RhoA GEF Ephexin5 relieves a developmental brake on excitatory synapse formation. Cell 143:442–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sin WC, Haas K, Ruthazer ES, Cline HT (2002) Dendrite growth increased by visual activity requires NMDA receptor and Rho GTPases. Nature 419:475–480

    Article  CAS  PubMed  Google Scholar 

  54. Bashaw GJ, Goodman CS (1999) Chimeric axon guidance receptors: the cytoplasmic domains of slit and netrin receptors specify attraction versus repulsion. Cell 97:917–926

    Article  CAS  PubMed  Google Scholar 

  55. Farmer WT, Altick AL, Nural HF, Dugan JP, Kidd T, Charron F, Mastick GS (2008) Pioneer longitudinal axons navigate using floor plate and Slit/Robo signals. Development 135:3643–3653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu ZJ, Herlyn M (2003) Slit-Robo: neuronal guides signal in tumor angiogenesis. Cancer Cell 4:1–2

    Article  CAS  PubMed  Google Scholar 

  57. Dhaka A, Earley TJ, Watson J, Patapoutian A (2008) Visualizing cold spots: TRPM8-expressing sensory neurons and their projections. J Neurosci 28:566–575

    Article  CAS  PubMed  Google Scholar 

  58. Honore P, Luger NM, Sabino MAC, Schwei MJ, Rogers SD, Mach DB, O’Keefe PF, Ramnaraine ML et al (2000) Osteoprotegerin blocks bone cancer-induced skeletal destruction, skeletal pain and pain-related neurochemical reorganization of the spinal cord. Nat Med 6:521–528

    Article  CAS  PubMed  Google Scholar 

  59. Rubinson DA, Dillon CP, Kwiatkowski AV, Sievers C, Yang L, Kopinja J, Rooney DL, Zhang M et al (2003) A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 33:401–406

    Article  CAS  PubMed  Google Scholar 

  60. White MD, Farmer M, Mirabile I, Brandner S, Collinge J, Mallucci GR (2008) Single treatment with RNAi against prion protein rescues early neuronal dysfunction and prolongs survival in mice with prion disease. Proc Natl Acad Sci U S A 105:10238–10243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. de Wit J, Sylwestrak E, O’Sullivan ML, Otto S, Tiglio K, Savas JN, Yates JR, Comoletti D et al (2009) LRRTM2 interacts with Neurexin1 and regulates excitatory synapse formation. Neuron 64:799–806

    Article  PubMed  PubMed Central  Google Scholar 

  62. Tang XQ, Heron P, Mashburn C, Smith GM (2007) Targeting sensory axon regeneration in adult spinal cord. J Neurosci 27:6068–6078

    Article  CAS  PubMed  Google Scholar 

  63. Dore-Savard L, Otis V, Belleville K, Lemire M, Archambault M, Tremblay L, Beaudoin JF, Beaudet N et al (2010) Behavioral, medical imaging and histopathological features of a new rat model of bone cancer pain. PLoS One 5:e13774

    Article  PubMed  PubMed Central  Google Scholar 

  64. Sabino MA, Ghilardi JR, Jongen JL, Keyser CP, Luger NM, Mach DB, Peters CM, Rogers SD et al (2002) Simultaneous reduction in cancer pain, bone destruction, and tumor growth by selective inhibition of cyclooxygenase-2. Cancer Res 62:7343–7349

    CAS  PubMed  Google Scholar 

  65. Garrett AM, Schreiner D, Lobas MA, Weiner JA (2012) Gamma-protocadherins control cortical dendrite arborization by regulating the activity of a FAK/PKC/MARCKS signaling pathway. Neuron 74:269–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ghosh A, Greenberg ME (1995) Distinct roles for bFGF and NT-3 in the regulation of cortical neurogenesis. Neuron 15:89–103

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuke Tian.

Ethics declarations

Conflict of Interest

All authors declare that they have no conflict of interest with respect to this report.

Funding

This work was supported by 2010 Clinical Key Disciplines Construction Grant from the Ministry of Health of the People’s Republic of China, National Natural Science Foundation of China (Nos. 81070890, 30872441, and 30901395), the Foundation of the Ministry of Education of China for Outstanding Young Teacher in University (No. 20090142120012), and Educational Commission of Hubei Province of China (No. D20142105).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental data 1

(XLSX 264 kb)

Supplemental data 2

(DOC 7571 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke, C., Gao, F., Tian, X. et al. Slit2/Robo1 Mediation of Synaptic Plasticity Contributes to Bone Cancer Pain. Mol Neurobiol 54, 295–307 (2017). https://doi.org/10.1007/s12035-015-9564-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9564-9

Keywords

Navigation