Skip to main content

Advertisement

Log in

Neuroprotective Effects of Acetyl-L-Carnitine Against Oxygen-Glucose Deprivation-Induced Neural Stem Cell Death

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Deprivation of oxygen and glucose is the main cause of neuronal cell death during cerebral infarction and can result in severe morbidity and mortality. In general, the neuroprotective therapies that are applied after ischemic stroke have been unsuccessful, despite many investigations. Acetyl-L-carnitine (ALCAR) plays an important role in mitochondrial metabolism and in modulating the coenzyme A (CoA)/acyl-CoA ratio. We investigated the protective effects of ALCAR against oxygen-glucose deprivation (OGD) in neural stem cells (NSCs). We measured cell viability, proliferation, apoptosis, and intracellular signaling protein levels after treatment with varying concentrations of ALCAR under OGD for 8 h. ALCAR protected NSCs against OGD by reducing apoptosis and restoring proliferation. Its protective effects are associated with increases in the expression of survival-related proteins, such as phosphorylated Akt (pAkt), phosphorylated glycogen synthase kinase 3b (pGSK3b), B cell lymphoma 2 (Bcl-2), and Ki-67 in NSCs that were injured by OGD. ALCAR also reduced the expression of death-related proteins, such as Bax, cytosolic cytochrome C, cleaved caspase-9, and cleaved caspase-3. We concluded that ALCAR exhibits neuroprotective effects against OGD-induced damage to NSCs by enhancing the expression of survival signals and decreasing that of death signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Goldberg MP, Choi DW (1993) Combined oxygen and glucose deprivation in cortical cell culture: calcium-dependent and calcium-independent mechanisms of neuronal injury. J Neurosci 13:3510–3524

    CAS  PubMed  Google Scholar 

  2. Murray CJ, Lopez AD (1997) Mortality by cause for eight regions of the world: global burden of disease study. Lancet 349:1269–1276

    Article  CAS  PubMed  Google Scholar 

  3. Chen YH, Chiang YH, Ma HI (2014) Analysis of spatial and temporal protein expression in the cerebral cortex after ischemia-reperfusion injury. J Clin Neurol 10:84–93

    Article  PubMed  PubMed Central  Google Scholar 

  4. Deshpande JK, Siesjo BK, Wieloch T (1987) Calcium accumulation and neuronal damage in the rat hippocampus following cerebral ischemia. J Cereb Blood Flow Metab 7:89–95

    Article  CAS  PubMed  Google Scholar 

  5. MacManus JP, Buchan AM, Hill IE, Rasquinha I, Preston E (1993) Global ischemia can cause DNA fragmentation indicative of apoptosis in rat brain. Neurosci Lett 164:89–92

    Article  CAS  PubMed  Google Scholar 

  6. Leist M, Jaattela M (2001) Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2:589–598

    Article  CAS  PubMed  Google Scholar 

  7. Zivin JA (1997) Neuroprotective therapies in stroke. Drugs 54:83–88, discussion 88–89

    Article  CAS  PubMed  Google Scholar 

  8. Flanagan JL, Simmons PA, Vehige J, Willcox MD, Garrett Q (2010) Role of carnitine in disease. Nutr Metab (Lond) 7:30–43

    Article  CAS  Google Scholar 

  9. Bahl JJ, Bressler R (1987) The pharmacology of carnitine. Ann Rev Pharmacol Toxicol 27:257–277

    Article  CAS  Google Scholar 

  10. Ghelardini CN, Galeotti M, Calvani et al (2002) Acetyl-L-carnitine induces muscarinic antinocieption in mice and rats. Neuropharmacology 43:1180–1187

    Article  CAS  PubMed  Google Scholar 

  11. Lombardo PR, Scuri E, Cataldo et al (2004) Acetyl-Lcarnitine induces a sustained potentiation of the afterhyperpolarization. Neuroscience 128:293–303

    Article  CAS  PubMed  Google Scholar 

  12. Fleury C, Mignotte B, Vayssiere JL (2002) Mitochondrial reactive oxygen species in cell death signaling. Biochimie 84:131–141

    Article  CAS  PubMed  Google Scholar 

  13. Zanelli SA, Solenski NJ, Rosenthal RE, Fiskum G (2005) Mechanisms of ischemic neuroprotection by acetyl-L-carnitine. Ann NY Acad Sci 1053:153–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jalal FY, Bohlke M, Maher TJ (2010) Acetyl-L-carnitine reduces the infarct size and striatal glutamate outflow following focal cerebral ischemia in rats. Ann NY Acad Sci 1199:95–104

    Article  CAS  PubMed  Google Scholar 

  15. Jin K, Sun Y, Xie L, Peel A, Mao XO, Batteur S, Greenberg DA (2003) Directed migration of neuronal precursors into the ischemic cerebral cortex and striatum. Mol Cell Neurosci 24:171–189

    Article  CAS  PubMed  Google Scholar 

  16. Chojnacki A, Weiss S (2008) Production of neurons, astrocytes and oligodendrocytes from mammalian CNS stem cells. Nat Protoc 3:935–940

    Article  CAS  PubMed  Google Scholar 

  17. Currle DS, Hu JS, Kolski-Andreaco A, Monuki ES (2007) Culture of mouse neural stem cell precursors. J Vis Exp 2:152

    Google Scholar 

  18. Studer L, Tabar V, McKay RD (1998) Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nat Neurosci 1:290–295

    Article  CAS  PubMed  Google Scholar 

  19. Li C, Issa R, Kumar P, Hampson IN, Lopez-Novoa JM, Bernabeu C, Kumar S (2003) CD105 prevents apoptosis in hypoxic endothelial cells. J Cell Sci 116:2677–2685

    Article  CAS  PubMed  Google Scholar 

  20. Qi J, Hong ZY, Xin H, Zhu YZ (2010) Neuroprotective effects of leonurine on ischemia/reperfusion-induced mitochondrial dysfunctions in rat cerebral cortex. Biol Pharm Bull 33:1958–1964

    Article  CAS  PubMed  Google Scholar 

  21. Pan J, Chang Q, Wang X, Son Y, Zhang Z, Chen G, Luo J, Bi Y et al (2010) Reactive oxygen species-activated Akt/ ASK1/p38 signaling pathway in nickel compound-induced apoptosis in BEAS2B cells. Chem Res Toxicol 23:568–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Virmani A, Binienda Z (2004) Role of carnitine esters in brain neuropathology. Mol Aspects Med 25:533–549

    Article  CAS  PubMed  Google Scholar 

  23. Virmani MA, Biselli R, Spadoni A, Rossi S, Corsico N, Calvani M, Fattorossi A, De Simone C et al (1995) Protective actions of L-carnitine and acetyl-L-carnitine on the neurotoxicity evoked by mitochondrial uncoupling or inhibitors. Pharmacol Res 32:383–389

    Article  CAS  PubMed  Google Scholar 

  24. Virmani MA, Caso V, Spadoni A, Rossi S, Russo F, Gaetani F (2001) The action of acetyl-Lcarnitine on the neurotoxicity evoked by amyloid fragments and peroxide on primary rat cortical neurones. Ann NY Acad Sci 939:162–178

    Article  CAS  PubMed  Google Scholar 

  25. Zhang R, Zhang H, Zhang Z, Wang T, Niu J, Cui D, Xu S (2012) Neuroprotective effects of pre-treatment with L-carnitine and acetyl-L-carnitine on ischemic injury in vivo and in vitro. Int J Mol Sci 13:2078–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yuan J (2009) Neuroprotective strategies targeting apoptotic and necrotic cell death for stroke. Apoptosis 14:469–477

    Article  PubMed  PubMed Central  Google Scholar 

  27. Nakamichi N, Taguchi T, Hosotani H, Wakayama T, Shimizu T, Sagiura T, Iseki S, Kato Y (2012) Functional expression of carnitine/organic cation transpoter OCTN1 in mouse brain neurons: possible involvement in neuronal differentiation. Neurochemistiry Int 61:1121–1132

    Article  CAS  Google Scholar 

  28. Ishimoto T, Nakamichi N, Hosotani H, Masuo Y, Sugiura T, Kato Y (2014) Organic cation transporter-mediated ergothioneine uptake in mouse neural progenitor cells suppresses proliferation and promotes differentiation into neurons. Plos ONE 9, e89434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tamai I, Ohashi R, Nezu J, Yabuuchi H, Oku A, Shimane M, Sai Y, Tsuji A (1998) Molecular and functional identification of sodium ion-dependent, high affinity juman carnitine transporter OCTN2. J Biol Chem 273:20378–20382

    Article  CAS  PubMed  Google Scholar 

  30. Kido Y, Tamai I, Ohnari A, Sai Y, Kagami T, Nezu J, Nikaido H, Hashimoto N et al (2001) Functional relevance of carnitine transporter OCTN2 to brain distribution of L-carnitine and actyl-L-carnitine across the blood–brain barrier. J Neurochem 79:959–969

    Article  CAS  PubMed  Google Scholar 

  31. Park J, Park HH, Choi H, Kim YS, Yu HJ, Lee KY, Lee YJ, Kim SH et al (2012) Coenzyme Q10 protects neural stem cells against hypoxia by enhancing survival signals. Brain Res 1478:64–73

    Article  CAS  PubMed  Google Scholar 

  32. Choi NY, Choi H, Park HH, Lee EH, Yu HJ, Lee KY, Lee YJ, Koh SH (2014) Neuroprotective effects of amlodipine besylate and benidipine hydrochloride on oxidative stress-injured neural stem cells. Brain Res 1551:1–12

    Article  CAS  PubMed  Google Scholar 

  33. Zhao Y, Xiao Z, Gao Y, Chen B, Zhang J, Dai J (2007) Insulin rescues ES cell-derived neural progenitor cells from apoptosis by differential regulation of Akt and ERK pathways. Neurosci Lett 429:49–54

    Article  CAS  PubMed  Google Scholar 

  34. Broughton BR, Reutens DC, Sobey CG (2009) Apoptotic mechanisms after cerebral ischemia. Stroke 40:e331–e339

    Article  PubMed  Google Scholar 

  35. Chung H, Seo S, Moon M, Park S (2008) Phosphatidylinositol-3-kinase/Akt/glycogensynthasekinase-3 beta and ERK1/2 pathways mediate protective effects of acylated and unacylated ghrelin against oxygen-glucose deprivation-induced apoptosis in primary rat cortical neuronal cells. J Endocrinol 198:511–521

    Article  CAS  PubMed  Google Scholar 

  36. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657

    Article  CAS  PubMed  Google Scholar 

  37. Cantrell DA (2001) Phosphoinositide 3-kinase signalling pathways. J Cell Sci 114:1439–1445

    CAS  PubMed  Google Scholar 

  38. Koh SH, Lo EH (2015) The role of the PI3K pathway in the regeneration of the damaged brain by neural stem cells after cerebral infarction. J Clin Neurol 11:297–304

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pap M, Cooper GM (2002) Role of translation initiation factor 2B in control of cell survival by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3beta signaling pathway. Mol Cell Biol 22:578–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Frame S, Cohen P, Biondi RM (2001) A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation. Mol Cell 7:1321–1327

    Article  CAS  PubMed  Google Scholar 

  41. Koh SH, Noh MY, Kim SH (2008) Amyloid-beta-induced neurotoxicity is reduced by inhibition of glycogen synthase kinase-3. Brain Res 1188:254–262

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Korea Research Foundation (2015R1A2A2A04004865) and a grant from the NanoBio R&D Program of the Korea Science and Engineering Foundation, funded by the Ministry of Education, Science and Technology (2007-04717).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Ho Koh.

Additional information

Seong Wan Bak and Hojin Choi contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bak, S.W., Choi, H., Park, HH. et al. Neuroprotective Effects of Acetyl-L-Carnitine Against Oxygen-Glucose Deprivation-Induced Neural Stem Cell Death. Mol Neurobiol 53, 6644–6652 (2016). https://doi.org/10.1007/s12035-015-9563-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9563-x

Keywords

Navigation