Skip to main content
Log in

Antimalarial Drug Artemether Inhibits Neuroinflammation in BV2 Microglia Through Nrf2-Dependent Mechanisms

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Artemether, a lipid-soluble derivative of artemisinin has been reported to possess anti-inflammatory properties. In this study, we have investigated the molecular mechanisms involved in the inhibition of neuroinflammation by the drug. The effects of artemether on neuroinflammation-mediated HT22 neuronal toxicity were also investigated in a BV2 microglia/HT22 neuron co-culture. To investigate effects on neuroinflammation, we used LPS-stimulated BV2 microglia treated with artemether (5–40 μM) for 24 h. ELISAs and western blotting were used to detect pro-inflammatory cytokines, nitric oxide, prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and microsomal prostaglandin E synthase-1 (mPGES-1). Beta-site amyloid precursor protein cleaving enzyme 1 (BACE-1) activity and Aβ levels were measured with ELISA kits. Protein levels of targets in nuclear factor kappa B (NF-κB) and p38 mitogen-activated protein kinase (MAPK) signalling, as well as heme oxygenase-1 (HO-1), NQO1 and nuclear factor-erythroid 2-related factor 2 (Nrf2) were also measured with western blot. NF-κB binding to the DNA was investigated using electrophoretic mobility shift assays (EMSA). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), DNA fragmentation and reactive oxygen species (ROS) assays in BV2-HT22 neuronal co-culture were used to evaluate the effects of artemether on neuroinflammation-induced neuronal death. The role of Nrf2 in the anti-inflammatory activity of artemether was investigated in BV2 cells transfected with Nrf2 siRNA. Artemether significantly suppressed pro-inflammatory mediators (NO/iNOS, PGE2/COX-2/mPGES-1, tumour necrosis factor-alpha (TNFα) and interleukin (IL)-6); Aβ and BACE-1 in BV2 cells following LPS stimulation. These effects of artemether were shown to be mediated through inhibition of NF-κB and p38 MAPK signalling. Artemether produced increased levels of HO-1, NQO1 and GSH in BV2 microglia. The drug activated Nrf2 activity by increasing nuclear translocation of Nrf2 and its binding to antioxidant response elements in BV2 cells. Transfection of BV2 microglia with Nrf2 siRNA resulted in the loss of both anti-inflammatory and neuroprotective activities of artemether. We conclude that artemether induces Nrf2 expression and suggest that Nrf2 mediates the anti-inflammatory effect of artemether in BV2 microglia. Our results suggest that this drug has a therapeutic potential in neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

ANOVA:

Analysis of variance

BACE-1:

Beta-site amyloid precursor protein cleaving enzyme 1

CNS:

Central nervous system

COX:

Cyclooxygenase

DMSO:

Dimethyl sulfoxide

FBS:

Foetal bovine serum

IκB:

Inhibitor of kappa B

IL:

Interleukin

iNOS:

Inducible nitric oxide synthase

LPS:

Lipopolysaccharide

MAPK:

Mitogen-activated protein kinase

HO-1:

Heme oxygenase-1

NO:

Nitric oxide

Nrf2:

Nuclear factor-erythroid 2-related factor 2

NF-κB:

Nuclear factor kappa B

TNFα:

Tumour necrosis factor-alpha

References

  1. Salter M, Beggs S (2014) Sublime microglia: expanding roles for the guardians of the CNS. Cell 158(1):15–24

    Article  CAS  PubMed  Google Scholar 

  2. Perry V, Teeling J (2013) Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Semin Immunopathol 35(5):601–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mosher K, Wyss-Coray T (2014) Microglial dysfunction in brain aging and Alzheimer’s disease. Biochem Pharmacol 88(4):594–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Prokop S, Miller KR, Heppner FL (2013) Microglia actions in Alzheimer’s disease. Acta Neuropathol 126(4):461–477

    Article  CAS  PubMed  Google Scholar 

  5. Kaltschmidt B, Kaltschmidt C (2009) NF-kappaB in the nervous system. Cold Spring Harb Perspect Biol 1(3):a001271. doi:10.1101/cshperspect.a001271

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yong H, Koh M, Moon A (2009) The p38MAPK inhibitors for the treatment of inflammatory diseases and cancer. Expert Opin Investig Drugs 18(12):1893–1905

    Article  CAS  Google Scholar 

  7. Corrêa S, Eales K (2012) The role of p38 MAPK and Its substrates in neuronal plasticity and neurodegenerative disease. J Signal Transduct 2012:649079. doi:10.1155/2012/649079

    Article  PubMed  PubMed Central  Google Scholar 

  8. Krementsov DN, Thornton TM, Teuscher C, Rincon M (2013) The emerging role of p38 mitogen-activated protein kinase in multiple sclerosis and its models. Mol Cell Biol 33(19):3728–3734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Diego G, Hugh P (2015) Microglial dynamics and role in the healthy and diseased brain: a paradigm of functional plasticity. Neuroscientist 21(2):169–184

    Article  Google Scholar 

  10. Wu LH, Lin C, Lin HY, Liu YS, Wu CY, Tsai CF, Chang PC, Yeh WL, et al (2015) Naringenin suppresses neuroinflammatory responses through inducing suppressor of cytokine signaling 3 expression. Mol Neurobiol. doi:10.1007/s12035-014-9042-9

  11. Heneka M, O’Banion M (2007) Inflammatory processes in Alzheimer’s disease. J Neuroimmunol 184(1–2):69–91

    Article  CAS  PubMed  Google Scholar 

  12. Lee JW, Lee YK, Yuk DY, Choi DY, Ban SB, Oh KW, Hong JT (2008) Neuroinflammation induced by lipopolysaccharide causes impairment through enhancement of beta-amyloid generation. J Neuroinflammation 5:37. doi:10.1186/1742-2094-5-37

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lee YJ, Choi DY, Choi IS, Han JY, Jeong HS, Han SB, Oh KW, Hong JT (2011) Inhibitory effect of a tyrosine-fructose Maillard reaction product, 2,4-bis(p-hydroxyphenyl)-2-butenal on amyloid-β generation and inflammatory reactions via inhibition of NF-κB and STAT3 activation in cultured astrocytes and microglial BV-2 cells. J Neuroinflammation 8:132. doi:10.1186/1742-2094-8-132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Song SY, Jung YY, Hwang CJ, Lee HP, Sok CH, Kim JH, Lee SM, Seo HO et al (2014) Inhibitory effect of ent-Sauchinone on amyloidogenesis via inhibition of STAT3-mediated NF-κB activation in cultured astrocytes and microglial BV-2 cells. J Neuroinflammation 11:118. doi:10.1186/1742-2094-11-118

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rojo AI, McBean G, Cindric M, Egea J, López MG, Rada P, Zarkovic N, Cuadrado A (2014) Redox control of microglial function: molecular mechanisms and functional significance. Antioxid Redox Signal 21(13):1766–1801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kapturczak MH, Wasserfall C, Brusko T, Campbell-Thompson M, Ellis TM, Atkinson MA, Agarwal A (2004) Heme oxygenase-1 modulates early inflammatory responses: evidence from the heme oxygenase-1-deficient mouse. Am J Pathol 165(3):1045–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kanninen K, Malm TM, Jyrkkänen HK, Goldsteins G, Keksa-Goldsteine V, Tanila H, Yamamoto M, Ylä-Herttuala S et al (2008) Nuclear factor erythroid 2-related factor 2 protects against beta amyloid. Mol Cell Neurosci 39(3):302–313

    Article  CAS  PubMed  Google Scholar 

  18. Ramsey CP, Glass CA, Montgomery MB, Lindl KA, Ritson GP, Chia LA, Hamilton RL, Chu CT et al (2007) Expression of Nrf2 in neurodegenerative diseases. J Neuropathol Exp Neurol 66(1):75–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Miller LH, Su X (2011) Artemisinin: discovery from Chinese herbal garden. Cell 146(6):855–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cuzzocrea S, Saadat F, Di Paola R, Mirshafiey A (2005) Artemether: a new therapeutic strategy in experimental rheumatoid arthritis. Immunopharmacol Immunotoxicol 27(4):615–630

    Article  CAS  PubMed  Google Scholar 

  21. Wu J (2011) Investigation of anti-inflammatory effect of artemether in mouse model of colitis. Inflamm Bowel Dis 17:S18–S19

    Article  Google Scholar 

  22. Zhang F, Wang H, Wu Q, Lu Y, Nie J, Xie X, Shi J (2013) Resveratrol protects cortical neurons against microglia-mediated neuroinflammation. Phytother Res 27(3):344–349

    Article  CAS  PubMed  Google Scholar 

  23. Gao HM, Hong JS (2008) Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol 29(8):57–65

    Article  Google Scholar 

  24. Kuroki Y, Sasaki Y, Kamei D, Akitake Y, Takahashi M, Uematsu S, Akira S, Nakatani Y et al (2012) Deletion of microsomal prostaglandin E synthase-1 protects neuronal cells from cytotoxic effects of β-amyloid peptide fragment 31–35. Biochem Biophys Res Commun 424(3):409–413

    Article  CAS  PubMed  Google Scholar 

  25. Olajide OA, Kumar A, Velagapudi R, Okorji UP, Fiebich BL (2014) Punicalagin inhibits neuroinflammation in LPS-activated rat primary microglia. Mol Nutr Food Res 58(9):1843–1851

    Article  CAS  PubMed  Google Scholar 

  26. Okorji U, Olajide O (2014) A semi-synthetic derivative of artemisinin, artesunate inhibits prostaglandin E2 production in LPS/IFNgamma-activated BV2 microglia. Bioorg Med Chem 22(17):4726–4734

    Article  CAS  PubMed  Google Scholar 

  27. Velagapudi R, Aderogba M, Olajide O (2014) TIliroside, a dietary glycosidic flavonoid, inhibits TRAF-6/NF-kappaB/p38-mediated neuroinflammation in activated BV2 microglia. Biochim Biophys Acta 1840(12):3311–3319

    Article  CAS  PubMed  Google Scholar 

  28. Zhu C, Xiong Z, Chen X, Peng F, Hu X, Chen Y, Wang Q (2012) Artemisinin attenuates lipopolysaccharide-stimulated proinflammatory responses by inhibiting NF-κB pathway in microglia cells. PLoS One 7(4), e35125. doi:10.1371/journal.pone.0035125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Munoz L, Ammit A (2010) Targeting p38 MAPK pathway for the treatment of Alzheimer’s disease. Neuropharmacology 58(3):561–568

    Article  CAS  PubMed  Google Scholar 

  30. Xing B, Bachstetter AD, Van Eldik LJ (2011) Microglial p38α MAPK is critical for LPS-induced neuron degeneration, through a mechanism involving TNFα. Mol Neurodegener 6:84. doi:10.1186/1750-1326-6-84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hsu MJ, Chang CK, Chen MC, Chen BC, Ma HP, Hong CY, Lin CH (2010) Apoptosis signal-regulating kinase 1 in peptidoglycan induced COX-2 expression in macrophages. J Leukoc Biol. 87(6):1069–1082

  32. Borchelt DR, Ratovitski T, van Lare J, Lee MK, Gonzales V, Jenkins NA, Copeland NG, Price DL et al (1997) Accelerated amyloid deposition in the brains of transgenic mice coexpression mutant presenilin 1 and amyloid precursor proteins. Neuron 19(4):939–945

    Article  CAS  PubMed  Google Scholar 

  33. Sambamurti K, Kinsey R, Maloney B, Ge YW, Lahiri DK (2004) Gene structure and organisation of human beta-secretase (BACE) promoter. FASEB J 18(9):1034–1036

    CAS  PubMed  Google Scholar 

  34. Kim JA, Yun HM, Jin P, Lee HP, Han JY, Udumula V, Moon DC, Han SB et al (2014) Inhibitory effect of a 2,4-bis(4-hydroxyphenyl)-2-butenal diacetate on neuroinflammatory reactions via inhibition of STAT1 and STAT3 activation in cultured astrocytes and microglial BV-2 cells. Neuropharmacology 79:476–487

    Article  CAS  PubMed  Google Scholar 

  35. Chen CH, Zhou W, Liu S, Deng Y, Cai F, Tone M, Tone Y, Tong Y et al (2012) Increased NF-κB signalling up-regulated BACE-1 expression and its therapeutic potential in Alzheimer’s disease. Int J Neuropsychopharmacol 15(1):77–90

    Article  CAS  PubMed  Google Scholar 

  36. Innamorato NG, Rojo AI, García-Yagüe AJ, Yamamoto M, de Ceballos ML, Cuadrado A (2008) The transcription factor Nrf2 is a therapeutic target against brain inflammation. J Immunol 181(1):680–689

    Article  CAS  PubMed  Google Scholar 

  37. Foresti R, Bains SK, Pitchumony TS, de Castro Brás LE, Drago F, Dubois-Randé JL, Bucolo C, Motterlini R (2013) Small molecule activators of the Nrf2-HO-1 antioxidant axis modulate heme metabolism and inflammation in BV2 microglia cells. Pharmacol Res 76:132–148

    Article  CAS  PubMed  Google Scholar 

  38. Syapin PJ (2008) Regulation of haeme oxygenase-1 for treatment of neuroinflammation and brain disorders. Br J Pharmacol 155(5):623–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee IS, Lim J, Gal J, Kang JC, Kim HJ, Kang BY, Choi HJ (2011) Anti-inflammatory activity of xanthohumol involves heme oxygenase-1 induction via NRF2-ARE signaling in microglial BV2 cells. Neurochem Int 58(2):153–160

    Article  CAS  PubMed  Google Scholar 

  40. Lee IS, Ryu DK, Lim J, Cho S, Kang BY, Choi HJ (2012) Artesunate activates Nrf2 pathway-driven anti-inflammatory potential through ERK signaling in microglial BV2 cells. Neurosci Lett 509(1):17–21

    Article  CAS  PubMed  Google Scholar 

  41. Ho WE, Cheng C, Peh HY, Xu F, Tannenbaum SR, Ong CN, Wong WS (2012) Anti-malarial drug artesunate ameliorates oxidative lung damage in experimental allergic asthma. Free Radic Biol Med 53(3):498–507

    Article  CAS  PubMed  Google Scholar 

  42. Ng DS, Liao W, Tan WS, Chan TK, Loh XY, Wong WS (2014) Anti-malarial drug artesunate protects against cigarette smoke-induced lung injury in mice. Phytomedicine 21(12):1638–1644

    Article  CAS  PubMed  Google Scholar 

  43. Olmos G, Lladó J (2014) Tumor necrosis factor alpha: a link between neuroinflammation and excitotoxicity. Mediators Inflamm 2014:861231. doi:10.1155/2014/861231

    Article  PubMed  PubMed Central  Google Scholar 

  44. Efferth T, Oesch F (2004) Oxidative stress response of tumor cells: microarray-based comparison between artemisinins and anthracyclines. Biochem Pharmacol 68(1):3–10

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Uchechukwu P Okorji and Ravikanth Velagapudi are funded by a partial PhD scholarship from the University of Huddersfield. Abdelmeneim El-Bakoush was funded by a PhD scholarship from the Libyan Government. This study was partially funded by the University of Huddersfield (University Research Fund/International Networking Fund) awarded to Dr Olumayokun Olajide.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olumayokun A. Olajide.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Uchechukwu P. Okorji and Ravikanth Velagapudi contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okorji, U.P., Velagapudi, R., El-Bakoush, A. et al. Antimalarial Drug Artemether Inhibits Neuroinflammation in BV2 Microglia Through Nrf2-Dependent Mechanisms. Mol Neurobiol 53, 6426–6443 (2016). https://doi.org/10.1007/s12035-015-9543-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9543-1

Keywords

Navigation