Skip to main content
Log in

Neurofibromin Regulates Seizure Attacks in the Rat Pilocarpine-Induced Model of Epilepsy

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Studies have shown that neurofibromin (NF1) restricts GABA release at inhibitory synapses and regulates dendritic spine formation, which may play an important role in temporal lobe epilepsy (TLE). NF1 expression was detected by double-label immunofluorescence, immunohistochemistry, and western blot analysis in the brains of pilocarpine-induced epilepsy model rats at 6 h, 24 h, 72 h, 7 days, 14 days, 30 days, and 60 days after kindling. NF1 was localized primarily in the nucleus and cytoplasm of neurons. NF1 protein levels significantly increased in the chronic phase (from 7 days until 60 days) in this epileptic rat model. After NF1 expression was knocked down by specific siRNA, the effects of kindling with pilocarpine were evaluated on the 7th day after kindling. The onset latencies of pilocarpine-induced seizures were elevated, and the seizure frequency and duration were reduced in these rats. Our study demonstrates that NF1 promoted seizure attacks in rats with pilocarpine-induced epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhu HL, Wan JB, Wang YT, Li BC, Xiang C, He J, Li P (2013) Medicinal compounds with antiepileptic/anticonvulsant activities. Epilepsia 55(1):3–16

    Article  PubMed  Google Scholar 

  2. Devinsky O (1999) Patients with refractory seizures. N Engl J Med 340:1565–1570

    Article  CAS  PubMed  Google Scholar 

  3. Li MM, Jiang T, Sun Z, Zhang Q, Tan CC, Yu JT, Tan L (2014) Genome-wide microRNA expression profiles in hippocampus of rats with chronic temporal lobe epilepsy. Sci Rep 4:4734

    Article  PubMed  PubMed Central  Google Scholar 

  4. Luo J, Zeng K, Zhang C, Fang M, Zhang X, Zhu Q, Wang L, Wang W et al (2012) Down-regulation of CRMP-1 in patients with epilepsy and a rat model. Neurochem Res 37(7):1381–1391

    Article  CAS  PubMed  Google Scholar 

  5. Sisodiya S, Lin WR, Harding B, Squier M, Thom M (2002) Drug resistance in epilepsy: expression of drug resistance proteins in common causes of refractory epilepsy. Brain 125(Pt1):22–31

    Article  CAS  PubMed  Google Scholar 

  6. Gomes WA, Shinnar S (2011) Prospects for imaging-related biomarkers of human epileptogenesis: a critical review. Biomark Med 5(5):599–606

    Article  PubMed  PubMed Central  Google Scholar 

  7. Di Maio R (2014) Neuronal mechanisms of epileptogenesis. Front Cell Neurosci 8:29

    PubMed  PubMed Central  Google Scholar 

  8. Pitknen A, Lukasiuk K (2009) Molecular and cellular basis of epileptogenesis in symptomatic epilepsy. Epilepsy Behav 14(Suppl 1):16–25

    Article  Google Scholar 

  9. Rakhade SN, Jensen FE (2009) Epileptogenesis in the immature brain: emerging mechanisms. Nat Rev Neurol 5(7):380–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Epsztein J, Represa A, Jorquera I, Ben-Ari Y, Crépel V (2005) Recurrent mossy fibers establish aberrant kainate receptor-operated synapses on granule cells from epileptic rats. J Neurosci 25(36):8229–8239

    Article  CAS  PubMed  Google Scholar 

  11. Hsueh YP, Roberts AM, Volta M, Sheng M, Roberts RG (2001) Bipartite interaction between neurofibromatosis type I protein (neurofibromin)and syndecan trans-membrane heparan sulfate proteoglycans. J Neurosci 21(11):3764–3770

    CAS  PubMed  Google Scholar 

  12. Brown JA, Diggs-Andrews KA, Gianino SM, Gutmann DH (2012) Neurofibromatosis-1 heterozygosity impairs CNS neuronal morphology in a cAMP/PKA/ROCK-dependent manner. Mol Cell Neurosci 49(1):13–22

    Article  CAS  PubMed  Google Scholar 

  13. Hsieh HY, Fung HC, Wang CJ, Chin SC, Wu T (2011) Epileptic seizures in neurofibromatosis type 1 are related to intracranial tumors but not to neurofibromatosis bright objects. Seizure 20(8):606–611

    Article  PubMed  Google Scholar 

  14. Ferner RE, Gutmann DH (2013) Neurofibromatosis type (NF1): diagnosis and management. Handb Clin Neurol 115:939–955

    Article  PubMed  Google Scholar 

  15. Bollag G, McCormick F (1991) Differential regulation of rasGAP and neurofibromatosis gene product activities. Nature 351(6327):576–579

    Article  CAS  PubMed  Google Scholar 

  16. Ye X, Carew TJ (2010) Small G protein signaling in neuronal plasticity and memory formation: the specific role of Ras family proteins. Neuron 68(3):340–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li Y, Li Y, McKay RM, Riethmacher D, Parada LF (2012) Neurofibromin modulates adult hippocampal neurogenesis and behavioral effects of antidepressants. J Neurosci 32(10):3529–3539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dilworth JT, Kraniak JM, Wojtkowiak JW, Gibbs RA, Borch RF, Tainsky MA, Reiners JJ, Mattingly RR (2006) Molecular targets for emerging anti-tumor therapies for neurofibromatosis type 1. Biochem Pharmacol 72(11):1485–1492

    Article  CAS  PubMed  Google Scholar 

  19. da Lee Y, Yeh TH, Emnett RJ, White CR, Gutmann DH (2010) Neurofibromatosis-1 regulates neuroglial progenitor proliferation and glial differentiation in a brain differentiation in a brain region-specific manner. Genes Dev 24(20):2317–2329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ozawa T, Araki N, Yunoue S, Tokuo H, Feng L, Patrakitkomjorn S, Hara T, Ichikawa Y et al (2005) The neurofibromatosis type 1 gene product neurofibromin enhances cell motility by regulating actin filament dynamics via the Rho-ROCK-LIMK2-Cofilin pathway. J Biol Chem 280(47):39524–39533

    Article  CAS  PubMed  Google Scholar 

  21. Zhu Y, Harada T, Liu L, Lush ME, Guignard F, Harada C, Burns DK, Bajenaru ML et al (2005) Inactivation of NF1 in CNS causes increased glial progenitor proliferation and optic glioma formation. Development 132(24):5577–5588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Majores M, Schoch S, Lie A, Becker AJ (2007) Molecular neuropathology of temporal lobe epilepsy: complementary approaches in animal models and human disease tissue. Epilepsia 48(Suppl 2):4–12

    Article  CAS  PubMed  Google Scholar 

  23. Racine RJ (1972) Modification of seizure activity by electrical stimulation: II motor seizure. Electroencephalogr Clin Neurophysiol 32(3):281–294

    Article  CAS  PubMed  Google Scholar 

  24. Patrakitkomjorn S, Kobayashi D, Morikawa T, Wilson MM, Tsubota N, Irie A, Ozawa T, Aoki M et al (2008) Neurofibromatosis type 1 (NF1) tumor suppressor, neurofibromin, regulates the neuronal differentiation of PC12 cells via Its associating protein, CRMP-2. J Biol Chem 83(14):9399–9413

    Article  Google Scholar 

  25. Kanter-Schlifke I, Georgievska B, Kirik D, Kokaia M (2007) Brain area, age and viral vector-specific glial cell-line-derived neurotrophic factor expression and transport in rat. Neuroreport 18(9):845–850

    Article  CAS  PubMed  Google Scholar 

  26. Nordlund M, Gu X, Shipley MT, Ratner N (1993) Neurofibromin is enriched in the endoplasmic reticulum of CNS neurons. J Neurosci 13(4):1588–1600

    CAS  PubMed  Google Scholar 

  27. Nordlund ML, Rizvi TA, Brannan CI, Ratner N (1995) Neurofibromin expression and astrogliosis in neurofibromatosis (type 1) brains. J Neuropathol Exp Neurol 54(4):588–600

    Article  CAS  PubMed  Google Scholar 

  28. Gutmann DH, Collins FS (1992) Recent progress toward understanding the molecular biology of Vec Recklinghausen neurofibromatosis. Ann Neurol 31(5):555–561

    Article  CAS  PubMed  Google Scholar 

  29. Teng J, Takei Y, Harada A, Nakata T, Chen J, Hirokawa N (2001) Synergistic effects of MAP2 and MAP1B knockout in neuronal migration, dendritic outgrowth, and microtubule organization. J Cell Biol 155(1):65–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vezzani A, French J, Bartfai T, Baram TZ (2010) The role of inflammation in epilepsy. Nat Rev Neurol 7:31–40

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sutula T, Cascino G, Cavazos J, Parada I, Ramirez L (1989) Mossy fiber synaptic reorganization in the epileptic human temporal lobe. Ann Neurol 26(3):321–330

    Article  CAS  PubMed  Google Scholar 

  32. Cavazos JE, Zhang P, Qazi R, Sutula TP (2003) Ultrastructural features of sprouted mossy fiber synapses in kindled and kainic acid-treated rats. J Comp Neurol 45(8):272–292

    Article  Google Scholar 

  33. Hsueh YP (2012) From neurodevelopment to neurodegeneration: the interaction of neurofibromin and valosin-containing protein/p97 in regulation of dendritic spine formation. J Biomed Sci 19:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu G-Y (2007) The role of the Neurofibromin-Syndecan-Cask complex in the regulation of synlaptic RAS-MAPK signaling and denoritic spine plasticity. Baylor College of Medicine Houston TX, 77030

  35. Hsueh YP (2007) Neurofibromin signaling and synapses. J Biomed Sci 14:461–466

    Article  CAS  PubMed  Google Scholar 

  36. Lin Y-L, Lei Y-T, Hong C-J, Hsueh YP (2007) Syndecan-2 induces filopodia formation via the neurofibromin-PKA-Ena/VASP pathway. J Cell Biol 177:829–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Talathi SS, Hwang DU, Ditto WL, Mareci T, Sepulveda H, Spano M, Carney PR (2009) Circadian control of neural excitability in an animal model of temporal lobe epilepsy. Neurosci Lett 455(2):145–149

    Article  CAS  PubMed  Google Scholar 

  38. Boison D (2008) The adenosine kinase hypothesis of epileptogenesis. Prog Neurobiol 84(3):249–262

    Article  CAS  PubMed  Google Scholar 

  39. Scorza FA, Arida RM, Naffah-Mazzacoratti MG, Scerni DA, Calderazzo L, Cavalheiro EA (2009) The pilocarpine model of epilepsy: what have we learned? An Acad Bras Cienc 81(3):345–365

    Article  CAS  PubMed  Google Scholar 

  40. De Lorenzo RJ, Sun DA, Blair RE, Somabati S (2007) An in vitro model of stroke- induced epilepsy: elucidation of glutamate and calcium in the induction and maintenance of stroke-induced epileptogenesis. Int Rev Neurobiol 81:59–84

    Article  CAS  Google Scholar 

  41. Engelborghs S, D’Hooge R, De Deyn PP (2000) Pathophysiology of epilepsy. Acta Neurol Belg 100(4):201–213

    CAS  PubMed  Google Scholar 

  42. EpilMann EO, Mody I (2008) The multifaceted role of inhibition in epilepsy: seizure-genesis through excessive GABAergic inhibition in autosomal dominant nocturnal frontal lobe epilepsy. Curr Opin Neurol 21(2):155–160

    Article  Google Scholar 

  43. Cooke SF, Bliss TV (2006) Plasticity in the human central nervous system. Brain 12 9(Pt7):1659–1673

    Article  Google Scholar 

  44. Collingridge GL, Kehl SJ, McLennan H (1983) Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J Physiol 334:33–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cui Y, Costa RM, Murphy GG, Elgersma Y, Zhu Y, Gutmann DH, Parada LF, Mody I et al (2008) Neurofibromin regulation of ERK signaling modulates GABA release and learning. Cell 135(3):549–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sperk G, Furtinger S, Schwarzer C, Pirker S (2004) GABA and its receptors in epilepsy. Adv Exp Med Biol 548:92–103

    Article  CAS  PubMed  Google Scholar 

  47. Wang Q, Wang X, Zhai X, Zhang J, Chen M, Liu L (2014) Construction and identification of an RNA interference lentivirus vector targeting the Ras homology C gene of melanoma cells. Clin Med J (Engl) 127(7):1339–1343

    CAS  Google Scholar 

  48. Shilyansky C, Karlsgodt KH, Cummings DM, Sidiropoulou K, Hardt M, James AS, Ehninger D, Bearden CE et al (2010) Neurofibromin regulates corticostriatal inhibitory networks during working memory performance. Proc Natl Acad Sci U S A 107(29):13141–13146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The study was supported by Chongqing Health Bureau Fund, China (No. 2011-2-118 to KBZ), a grant from Science Foundation of Chongqing Science and Technology Commission, China (No. CSTC2012jjA10065 to KBZ), and the National Key Clinical Specialty Discipline Construction Program of China to the Department of Neurology, the First Affiliated Hospital of Chongqing Medical University. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kebin Zeng.

Ethics declarations

The experimental procedures of this study were approved by the Commission of Chongqing Medical University for ethics in animal experiments.

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Min Ren and Kunyi Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, M., Li, K., Wang, D. et al. Neurofibromin Regulates Seizure Attacks in the Rat Pilocarpine-Induced Model of Epilepsy. Mol Neurobiol 53, 6069–6077 (2016). https://doi.org/10.1007/s12035-015-9503-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9503-9

Keywords

Navigation