Molecular Neurobiology

, Volume 53, Issue 9, pp 6043–6056 | Cite as

Lentiviral Vector-Mediated p27kip1 Expression Facilitates Recovery After Spinal Cord Injury

  • Min-hao Chen
  • Yong-hua Liu
  • Hua Xu
  • Da-wei Xu
  • Cheng-niu Wang
  • Yi- Wang
  • Cheng-wei Duan
  • Ying Zhou
  • Peng Kan
  • Ai-guo Shen
  • You-hua WangEmail author


Traumatic spinal cord injury (SCI) causes tissue loss and associated neurological dysfunction attributable to both mechanical damage and secondary biochemical and physiological responses. Upregulation of cell cycle proteins occurs in both neurons and glia after SCI and may contribute to these changes. Increased cell cycle protein is associated with neuronal and oligodendroglial apoptosis, reactive astrogliosis, glial scar formation, and microglial activation. Here, using lentiviral vectors (LV), we induced the expression of the cyclin-dependent kinase (CDK) inhibitor p27kip1 in the lesioned spinal cord of adult rat. Treatment with LV-p27kip1 significantly reduced the expression of cell cycle proteins and improved functional recovery. In addition, p27kip1 overexpression also reduced lesion volume, decreased astrocytic reactivity, attenuated microglial activation, reduced cell death, and improved the local microenvironment. We suggest that these effects reflect the ability of p27kip1 to inhibit cell cycle pathways. Thus, the present study provides further support for the therapeutic potential of cell cycle inhibitors in the treatment of SCI.


Spinal cord injury p27kip1 Apoptosis Proliferation Cell cycle 



Spinal cord injury


Cyclin-dependent kinases


Cyclin-dependent kinase inhibitors


Phosphorylated retinoblastoma protein


Basso, Beattie, and Bresnahan scale


Combined behavioral score


Proliferating cell nuclear antigen


Neuronal nuclear antigen


Glial fibrillary acidic protein


Ionized calcium-binding adapter molecule 1


Myelin basic protein



This work was supported by the National Natural Science Foundation of China (No. 81171140, No. 81471258, No. 31300902), the Colleges and Universities in Natural Science Research Project of Jiangsu Province (13KJB310009), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Compliance with Ethical Standards

All surgical interventions and postoperative animal care were carried out in accordance with the Guide for the Care and Use of Laboratory Animals (National Research Council, 1996, USA) and were approved by the Chinese National Committee to the Use of Experimental Animals for Medical Purposes, Jiangsu Branch. All efforts were made to minimize the number of animals used and their suffering.

Conflict of Interests

The authors declare that they have no competing interests.


  1. 1.
    Dumont RJ, Okonkwo DO, Verma S, Hurlbert RJ, Boulos PT, Ellegala DB, Dumont AS (2001) Acute spinal cord injury, part I: pathophysiologic mechanisms. Clin Neuropharmacol 24(5):254–264. doi: 10.1097/00002826-200109000-00002 CrossRefPubMedGoogle Scholar
  2. 2.
    Hagg T, Oudega M (2006) Degenerative and spontaneous regenerative processes after spinal cord injury. J Neurotrauma 23(3–4):264–280. doi: 10.1089/neu.2006.23.263 PubMedGoogle Scholar
  3. 3.
    Chen J, Wu J, Apostolova I, Skup M, Irintchev A, Kugler S, Schachner M (2007) Adeno-associated virus-mediated L1 expression promotes functional recovery after spinal cord injury. Brain J neurol 130(Pt 4):954–969. doi: 10.1093/brain/awm049 CrossRefGoogle Scholar
  4. 4.
    Loers G, Schachner M (2007) Recognition molecules and neural repair. J Neurochem 101(4):865–882. doi: 10.1111/j.1471-4159.2006.04409.x CrossRefPubMedGoogle Scholar
  5. 5.
    Cernak I, Stoica B, Byrnes KR, Di Giovanni S, Faden AI (2005) Role of the cell cycle in the pathobiology of central nervous system trauma. Cell Cycle 4(9):1286–1293. doi: 10.4161/cc.4.9.1996 CrossRefPubMedGoogle Scholar
  6. 6.
    Di Giovanni S, Knoblach SM, Brandoli C, Aden SA, Hoffman EP, Faden AI (2003) Gene profiling in spinal cord injury shows role of cell cycle in neuronal death. Ann Neurol 53(4):454–468. doi: 10.1002/ana.10472 CrossRefPubMedGoogle Scholar
  7. 7.
    Wu J, Stoica BA, Faden AI (2011) Cell cycle activation and spinal cord injury. Neurotherapeutics J Am Soc Exp NeuroTherapeutics 8(2):221–228. doi: 10.1007/s13311-011-0028-2 CrossRefGoogle Scholar
  8. 8.
    Raivich G, Bohatschek M, Kloss CU, Werner A, Jones LL, Kreutzberg GW (1999) Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res Brain Res Rev 30(1):77–105. doi: 10.1016/S0165-0173(99)00007-7 CrossRefPubMedGoogle Scholar
  9. 9.
    Anderson MA, Ao Y, Sofroniew MV (2014) Heterogeneity of reactive astrocytes. Neurosci Lett 565:23–29. doi: 10.1016/j.neulet.2013.12.030 CrossRefPubMedGoogle Scholar
  10. 10.
    Becker EB, Bonni A (2004) Cell cycle regulation of neuronal apoptosis in development and disease. Prog Neurobiol 72(1):1–25. doi: 10.1016/j.pneurobio.2003.12.005 CrossRefPubMedGoogle Scholar
  11. 11.
    Okano HJ, Pfaff DW, Gibbs RB (1993) RB and Cdc2 expression in brain: correlations with 3H-thymidine incorporation and neurogenesis. J Neurosci 13(7):2930–2938PubMedGoogle Scholar
  12. 12.
    Wartiovaara K, Barnabe-Heider F, Miller FD, Kaplan DR (2002) N-myc promotes survival and induces S-phase entry of postmitotic sympathetic neurons. J Neurosci 22(3):815–824PubMedGoogle Scholar
  13. 13.
    Nguyen MD, Mushynski WE, Julien JP (2002) Cycling at the interface between neurodevelopment and neurodegeneration. Cell Death Differ 9(12):1294–1306. doi: 10.1038/sj.cdd.4401108 CrossRefPubMedGoogle Scholar
  14. 14.
    Draetta GF (1994) Mammalian G1 cyclins. Curr Opin Cell Biol 6(6):842–846. doi: 10.1016/0955-0674(94)90054-X CrossRefPubMedGoogle Scholar
  15. 15.
    Nishitani H, Lygerou Z (2002) Control of DNA replication licensing in a cell cycle. Genes Cells Devoted Mol Cell Mech 7(6):523–534. doi: 10.1046/j.1365-2443.2002.00544.x CrossRefGoogle Scholar
  16. 16.
    Boonstra J (2003) Progression through the G1-phase of the on-going cell cycle. J Cell Biochem 90(2):244–252. doi: 10.1002/jcb.10617 CrossRefPubMedGoogle Scholar
  17. 17.
    Nahle Z, Polakoff J, Davuluri RV, McCurrach ME, Jacobson MD, Narita M, Zhang MQ, Lazebnik Y et al (2002) Direct coupling of the cell cycle and cell death machinery by E2F. Nat Cell Biol 4(11):859–864. doi: 10.1038/ncb868 CrossRefPubMedGoogle Scholar
  18. 18.
    Nguyen MD, Boudreau M, Kriz J, Couillard-Despres S, Kaplan DR, Julien JP (2003) Cell cycle regulators in the neuronal death pathway of amyotrophic lateral sclerosis caused by mutant superoxide dismutase 1. J Neurosci 23(6):2131–2140PubMedGoogle Scholar
  19. 19.
    Byrnes KR, Stoica BA, Fricke S, Di Giovanni S, Faden AI (2007) Cell cycle activation contributes to post-mitotic cell death and secondary damage after spinal cord injury. Brain J Neurol 130(Pt 11):2977–2992. doi: 10.1093/brain/awm179 CrossRefGoogle Scholar
  20. 20.
    Polyak K, Kato JY, Solomon MJ, Sherr CJ, Massague J, Roberts JM, Koff A (1994) p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev 8(1):9–22. doi: 10.1101/gad.8.1.9 CrossRefPubMedGoogle Scholar
  21. 21.
    Sgambato A, Cittadini A, Faraglia B, Weinstein IB (2000) Multiple functions of p27(Kip1) and its alterations in tumor cells: a review. J Cell Physiol 183(1):18–27. doi: 10.1002/(SICI)1097-4652(200004)183:1<18::AID-JCP3>3.0.CO;2-S CrossRefPubMedGoogle Scholar
  22. 22.
    Koguchi K, Nakatsuji Y, Nakayama K, Sakoda S (2002) Modulation of astrocyte proliferation by cyclin-dependent kinase inhibitor p27(Kip1). Glia 37(2):93–104. doi: 10.1002/glia.10017 CrossRefPubMedGoogle Scholar
  23. 23.
    Nakayama K, Ishida N, Shirane M, Inomata A, Inoue T, Shishido N, Horii I, Loh DY et al (1996) Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 85(5):707–720. doi: 10.1016/S0092-8674(00)81237-4 CrossRefPubMedGoogle Scholar
  24. 24.
    Casaccia-Bonnefil P, Tikoo R, Kiyokawa H, Friedrich V Jr, Chao MV, Koff A (1997) Oligodendrocyte precursor differentiation is perturbed in the absence of the cyclin-dependent kinase inhibitor p27Kip1. Genes Dev 11(18):2335–2346. doi: 10.1101/gad.11.18.2335 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Nguyen L, Besson A, Heng JI, Schuurmans C, Teboul L, Parras C, Philpott A, Roberts JM et al (2006) p27kip1 independently promotes neuronal differentiation and migration in the cerebral cortex. Genes Dev 20(11):1511–1524. doi: 10.1101/gad.377106 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Shen A, Liu Y, Zhao J, Qin J, Shi S, Chen M, Gao S, Xiao F et al (2008) Temporal-spatial expressions of p27kip1 and its phosphorylation on Serine-10 after acute spinal cord injury in adult rat: Implications for post-traumatic glial proliferation. Neurochem Int 52(6):1266–1275. doi: 10.1016/j.neuint.2008.01.011 CrossRefPubMedGoogle Scholar
  27. 27.
    Jakobsson J, Lundberg C (2006) Lentiviral vectors for use in the central nervous system. Mol Ther J Am Soc Gene Ther 13(3):484–493. doi: 10.1016/j.ymthe.2005.11.012 CrossRefGoogle Scholar
  28. 28.
    Delzor A, Escartin C, Deglon N (2013) Lentiviral vectors: a powerful tool to target astrocytes in vivo. Curr Drug Targets 14(11):1336–1346. doi: 10.2174/13894501113146660213 CrossRefPubMedGoogle Scholar
  29. 29.
    White RE, Rao M, Gensel JC, McTigue DM, Kaspar BK, Jakeman LB (2011) Transforming growth factor alpha transforms astrocytes to a growth-supportive phenotype after spinal cord injury. J Neurosci 31(42):15173–15187. doi: 10.1523/JNEUROSCI.3441-11.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Gruner JA (1992) A monitored contusion model of spinal cord injury in the rat. J Neurotrauma 9(2):123–126. doi: 10.1089/neu.1992.9.123, discussion 126–128 CrossRefPubMedGoogle Scholar
  31. 31.
    Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12(1):1–21. doi: 10.1089/neu.1995.12.1 CrossRefPubMedGoogle Scholar
  32. 32.
    Gale K, Kerasidis H, Wrathall JR (1985) Spinal cord contusion in the rat: behavioral analysis of functional neurologic impairment. Exp Neurol 88(1):123–134. doi: 10.1016/0014-4886(85)90118-9 CrossRefPubMedGoogle Scholar
  33. 33.
    Wu J, Stoica BA, Dinizo M, Pajoohesh-Ganji A, Piao C, Faden AI (2012) Delayed cell cycle pathway modulation facilitates recovery after spinal cord injury. Cell Cycle 11(9):1782–1795. doi: 10.4161/cc.20153 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Iannotti C, Ping Zhang Y, Shields CB, Han Y, Burke DA, Xu XM (2004) A neuroprotective role of glial cell line-derived neurotrophic factor following moderate spinal cord contusion injury. Exp Neurol 189(2):317–332. doi: 10.1016/j.expneurol.2004.05.033 CrossRefPubMedGoogle Scholar
  35. 35.
    Tan AM, Zhang W, Levine JM (2005) NG2: a component of the glial scar that inhibits axon growth. J Anat 207(6):717–725. doi: 10.1111/j.1469-7580.2005.00452.x CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Popovich PG, Wei P, Stokes BT (1997) Cellular inflammatory response after spinal cord injury in Sprague-Dawley and Lewis rats. J Comp Neurol 377(3):443–464. doi: 10.1002/(SICI)1096-9861(19970120)377:3<443::AID-CNE10>3.0.CO;2-S CrossRefPubMedGoogle Scholar
  37. 37.
    Sears RC, Nevins JR (2002) Signaling networks that link cell proliferation and cell fate. J Biol Chem 277(14):11617–11620. doi: 10.1074/jbc.R100063200 CrossRefPubMedGoogle Scholar
  38. 38.
    Herwig S, Strauss M (1997) The retinoblastoma protein: a master regulator of cell cycle, differentiation and apoptosis. Eur J biochem / FEBS 246(3):581–601. doi: 10.1111/j.1432-1033.1997.t01-2-00581.x CrossRefGoogle Scholar
  39. 39.
    Chen M, Xia X, Zhu X, Cao J, Xu D, Ni Y, Liu Y, Yan S et al (2014) Expression of SGTA correlates with neuronal apoptosis and reactive gliosis after spinal cord injury. Cell Tissue Res 358(2):277–288. doi: 10.1007/s00441-014-1946-1 CrossRefPubMedGoogle Scholar
  40. 40.
    Di Giovanni S, Movsesyan V, Ahmed F, Cernak I, Schinelli S, Stoica B, Faden AI (2005) Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury. Proc Natl Acad Sci U S A 102(23):8333–8338. doi: 10.1073/pnas.0500989102 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Tian DS, Xie MJ, Yu ZY, Zhang Q, Wang YH, Chen B, Chen C, Wang W (2007) Cell cycle inhibition attenuates microglia induced inflammatory response and alleviates neuronal cell death after spinal cord injury in rats. Brain Res 1135(1):177–185. doi: 10.1016/j.brainres.2006.11.085 CrossRefPubMedGoogle Scholar
  42. 42.
    Kato H, Takahashi A, Itoyama Y (2003) Cell cycle protein expression in proliferating microglia and astrocytes following transient global cerebral ischemia in the rat. Brain Res Bull 60(3):215–221. doi: 10.1016/S0361-9230(03)00036-4 CrossRefPubMedGoogle Scholar
  43. 43.
    Davies SJ, Field PM, Raisman G (1996) Regeneration of cut adult axons fails even in the presence of continuous aligned glial pathways. Exp Neurol 142(2):203–216. doi: 10.1006/exnr.1996.0192 CrossRefPubMedGoogle Scholar
  44. 44.
    Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5(2):146–156. doi: 10.1038/nrn1326 CrossRefPubMedGoogle Scholar
  45. 45.
    Alonso G (2005) NG2 proteoglycan-expressing cells of the adult rat brain: possible involvement in the formation of glial scar astrocytes following stab wound. Glia 49(3):318–338. doi: 10.1002/glia.20121 CrossRefPubMedGoogle Scholar
  46. 46.
    Natale JE, Ahmed F, Cernak I, Stoica B, Faden AI (2003) Gene expression profile changes are commonly modulated across models and species after traumatic brain injury. J Neurotrauma 20(10):907–927. doi: 10.1089/089771503770195777 CrossRefPubMedGoogle Scholar
  47. 47.
    Beattie MS (2004) Inflammation and apoptosis: linked therapeutic targets in spinal cord injury. Trends Mol Med 10(12):580–583. doi: 10.1016/j.molmed.2004.10.006 CrossRefPubMedGoogle Scholar
  48. 48.
    Qu WS, Tian DS, Guo ZB, Fang J, Zhang Q, Yu ZY, Xie MJ, Zhang HQ et al (2012) Inhibition of EGFR/MAPK signaling reduces microglial inflammatory response and the associated secondary damage in rats after spinal cord injury. J Neuroinflammation 9:178. doi: 10.1186/1742-2094-9-178 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Loane DJ, Byrnes KR (2010) Role of microglia in neurotrauma. Neurotherapeutics J Am Soc Exp NeuroTherapeutics 7(4):366–377. doi: 10.1016/j.nurt.2010.07.002 CrossRefGoogle Scholar
  50. 50.
    Shuman SL, Bresnahan JC, Beattie MS (1997) Apoptosis of microglia and oligodendrocytes after spinal cord contusion in rats. J Neurosci Res 50(5):798–808. doi: 10.1002/(SICI)1097-4547(19971201)50:5<798::AID-JNR16>3.0.CO;2-Y CrossRefPubMedGoogle Scholar
  51. 51.
    Grossman SD, Rosenberg LJ, Wrathall JR (2001) Temporal-spatial pattern of acute neuronal and glial loss after spinal cord contusion. Exp Neurol 168(2):273–282. doi: 10.1006/exnr.2001.7628 CrossRefPubMedGoogle Scholar
  52. 52.
    Pedraza L, Fidler L, Staugaitis SM, Colman DR (1997) The active transport of myelin basic protein into the nucleus suggests a regulatory role in myelination. Neuron 18(4):579–589. doi: 10.1016/S0896-6273(00)80299-8 CrossRefPubMedGoogle Scholar
  53. 53.
    Smith GS, Samborska B, Hawley SP, Klaiman JM, Gillis TE, Jones N, Boggs JM, Harauz G (2013) Nucleus-localized 21.5-kDa myelin basic protein promotes oligodendrocyte proliferation and enhances neurite outgrowth in coculture, unlike the plasma membrane-associated 18.5-kDa isoform. J Neurosci Res 91(3):349–362. doi: 10.1002/jnr.23166 CrossRefPubMedGoogle Scholar
  54. 54.
    Carson JH, Kwon S, Barbarese E (1998) RNA trafficking in myelinating cells. Curr Opin Neurobiol 8(5):607–612. doi: 10.1016/S0959-4388(98)80088-3 CrossRefPubMedGoogle Scholar
  55. 55.
    Capello E, Voskuhl RR, McFarland HF, Raine CS (1997) Multiple sclerosis: re-expression of a developmental gene in chronic lesions correlates with remyelination. Ann Neurol 41(6):797–805. doi: 10.1002/ana.410410616 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Min-hao Chen
    • 1
  • Yong-hua Liu
    • 2
  • Hua Xu
    • 1
  • Da-wei Xu
    • 3
  • Cheng-niu Wang
    • 4
  • Yi- Wang
    • 5
  • Cheng-wei Duan
    • 2
  • Ying Zhou
    • 2
  • Peng Kan
    • 1
  • Ai-guo Shen
    • 2
  • You-hua Wang
    • 1
    Email author
  1. 1.Department of Orthopaedics, Affiliated Hospital of Nantong University and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug TargetMedical College of Nantong UniversityNantongPeople’s Republic of China
  2. 2.Jiangsu Province Key Laboratory for Inflammation and Molecular Drug TargetMedical College of Nantong UniversityNantongPeople’s Republic of China
  3. 3.Department of Orthopaedics, The Second Affiliated Hospital of Nantong UniversityNantong UniversityNantongPeople’s Republic of China
  4. 4.Basic Medical Research Centre, Medical SchoolNantong UniversityNantongPeople’s Republic of China
  5. 5.Department of Medical Imaging, Medical SchoolNantong UniversityNantongPeople’s Republic of China

Personalised recommendations