Skip to main content

Advertisement

Log in

Acute Carnosine Administration Increases Respiratory Chain Complexes and Citric Acid Cycle Enzyme Activities in Cerebral Cortex of Young Rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Carnosine (β-alanyl-l-histidine) is an imidazole dipeptide synthesized in excitable tissues of many animals, whose biochemical properties include carbonyl scavenger, anti-oxidant, bivalent metal ion chelator, proton buffer, and immunomodulating agent, although its precise physiological role(s) in skeletal muscle and brain tissues in vivo remain unclear. The aim of the present study was to investigate the in vivo effects of acute carnosine administration on various aspects of brain bioenergetics of young Wistar rats. The activity of mitochondrial enzymes in cerebral cortex was assessed using a spectrophotometer, and it was found that there was an increase in the activities of complexes I–III and II–III and succinate dehydrogenase in carnosine-treated rats, as compared to vehicle-treated animals. However, quantitative real-time RT-PCR (RT-qPCR) data on mRNA levels of mitochondrial biogenesis-related proteins (nuclear respiratory factor 1 (Nrf1), peroxisome proliferator-activated receptor-γ coactivator 1-α (Ppargc1α), and mitochondrial transcription factor A (Tfam)) were not altered significantly and therefore suggest that short-term carnosine administration does not affect mitochondrial biogenesis. It was in agreement with the finding that immunocontent of respiratory chain complexes was not altered in animals receiving carnosine. These observations indicate that acute carnosine administration increases the respiratory chain and citric acid cycle enzyme activities in cerebral cortex of young rats, substantiating, at least in part, a neuroprotector effect assigned to carnosine against oxidative-driven disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Peters V, Jansen EE, Jakobs C, Riedl E, Janssen B, Yard BA, Wedel J, Hoffmann GF et al (2011) Anserine inhibits carnosine degradation but in human serum carnosinase (CN1) is not correlated with histidine dipeptide concentration. Clin Chim Acta 412:263–267. doi:10.1016/j.cca.2010.10.016

    Article  CAS  PubMed  Google Scholar 

  2. Gulewitsch W, Amiradzibi S (1900) Ueber das carnosin, eine neue organische base des fleischextraktes. Berichte der Deutschen Chemischen Gesellschaft 33:1902–1903

    Article  CAS  Google Scholar 

  3. Bellia F, Calabrese V, Guarino F, Cavallaro M, Cornelius C, De Pinto V, Rizzarelli E (2009) Carnosinase levels in aging brain: redox state induction and cellular stress response. Antiox Redox Signal 11:2759–2775. doi:10.1089/ARS.2009.2738

    Article  CAS  Google Scholar 

  4. Stuerenburg HJ, Kunze K (1999) Concentrations of free carnosine (a putative membrane-protective antioxidant) in human muscle biopsies and rat muscles. Arch Gerontol Geriatr 29:107–113. doi:10.1016/S0167-4943(99)00020-5

    Article  CAS  PubMed  Google Scholar 

  5. Sauerhöfer S, Yuan G, Braun GS, Deinzer M, Neumaier M, Gretz N, Floege J, Kriz W et al (2007) L-carnosine, a substrate of carnosinase-1, influences glucose metabolism. Diabetes 56:2425–2432. doi:10.2337/db07-0177

    Article  PubMed  Google Scholar 

  6. De Marchis S, Modena C, Peretto P, Migheli A, Margolis FL, Fasolo A (2000) Carnosine-related dipeptides in neurons and glia. Biochemistry (Mosc) 65:824–833

    Google Scholar 

  7. Balion CM, Benson C, Raina PS, Papaioannou A, Patterson C, Ismaila AS (2007) Brain type carnosinase in dementia: a pilot study. BMC Neurol 7:38. doi:10.1186/1471-2377-7-38

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fleisher LD, Rassin DK, Wisniewski K, Salwen HR (1980) Carnosinase deficiency: a new variant with high residual activity. Pediatr Res 14:269–271. doi:10.1203/00006450-198004000-00001

    Article  CAS  PubMed  Google Scholar 

  9. Hartlage PL, Roesel RA, Eller AG, Hommes FA (1982) Serum carnosinase deficiency: decreased affinity of the enzyme for the substrate. J Inherit Metab Dis 5:13–14

    Article  Google Scholar 

  10. Licker V, Côte M, Lobrinus JA, Rodrigo N, Kövari E, Hochstrasser DF, Turck N, Sanchez JC et al (2012) Proteomic profiling of the substantia nigra demonstrates CNDP2 over expression in Parkinson’s disease. J Proteomics 75:4656–4667. doi:10.1016/j.jprot.2012.02.032

    Article  CAS  PubMed  Google Scholar 

  11. Hipkiss AR (2014) Aging risk factors and Parkinson’s disease: contrasting roles of common dietary constituents. Neurobiol Aging 35:1469–1472. doi:10.1016/j.neurobiolaging.2013.11.032

    Article  CAS  PubMed  Google Scholar 

  12. Yen WJ, Chang LW, Lee CP, Duh PD (2002) Inhibition of lipid peroxidation and nonlipid oxidative damage by carnosine. J Am Oil Chem Soc 79:329–333. doi:10.1007/s11746-002-0483-9

    Article  CAS  Google Scholar 

  13. Kang JH (2010) Protective effects of carnosine and homocarnosine on ferritin and hydrogen peroxide-mediated DNA damage. BMB Rep 43:683–687. doi:10.5483/BMBRep.2010.43.10.683

    Article  CAS  PubMed  Google Scholar 

  14. McFarland GA, Holliday R (1994) Retardation of senescence of cultured human diploid fibroblasts by carnosine. Exp Cell Res 212:167–175. doi:10.1006/excr.1994.1132

    Article  CAS  PubMed  Google Scholar 

  15. Rajanikant GK, Zemke D, Senut MC, Frenkel MB, Chen AF, Gupta R, Majid A (2007) Carnosine is neuroprotective against permanent focal cerebral ischemia in mice. Stroke 38:3023–3031. doi:10.1161/STROKEAHA.107.488502

    Article  CAS  PubMed  Google Scholar 

  16. Boldyrev AA, Stvolinsky SL, Fedorova TN, Suslina ZA (2010) Carnosine as a natural antioxidant and geroprotector: from molecular mechanisms to clinical trials. Rejuvenation Res 13:156–158. doi:10.1089/rej.2009.0923

    Article  CAS  PubMed  Google Scholar 

  17. Boldyrev AA (2012) Carnosine: new concept for the function of an old molecule. Biochemistry (Mosc) 77:313–326. doi:10.1134/S0006297912040013

    Article  CAS  Google Scholar 

  18. Caruso J, Charles J, Unruh K, Giebel R, Learmonth L, Potter W (2012) Ergogenic effects of β-alanine and carnosine: proposed future research to quantify their efficacy. Nutrients 4:585–601. doi:10.3390/nu4070585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gallant S, Kukley M, Stvolinsky S, Bulygina E, Boldyrev A (2000) Effect of carnosine on rats under experimental brain ischemia. Tohoku J Exp Med 191:85–99, http://dx.doi.org/10.1620/tjem.191.85

    Article  CAS  PubMed  Google Scholar 

  20. Aydin AF, Küçükgergin C, Ozdemirler-Erata G, Koçak-Toker N, Uysal M (2010) The effect of carnosine treatment on prooxidant-antioxidant balance in liver, heart and brain tissues of male aged rats. Biogerontology 11:103–109. doi:10.1007/s10522-009-9232-4

    Article  CAS  PubMed  Google Scholar 

  21. Brownrigg TD, Theisen CS, Fibuch EE, Seidler NW (2011) Carnosine protects against the neurotoxic effects of a serotonin-derived melanoid. Neurochem Res 36:467–475. doi:10.1007/s11064-010-0365-2

    Article  CAS  PubMed  Google Scholar 

  22. Macarini JR, Maravai SG, Cararo JH, Dimer NW, Gonçalves CL, Kist LW, Bogo MR, Schuck PF et al (2014) Impairment of electron transfer chain induced by acute carnosine administration in skeletal muscle of young rats. Biomed Res Int 2014:632986. doi:10.1155/2014/632986

    Article  PubMed  PubMed Central  Google Scholar 

  23. Schapira AH, Mann VM, Cooper JM, Dexter D, Daniel SE, Jenner P, Clark JB, Marsden CD (1990) Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson’s disease. J Neurochem 55:2142–2145. doi:10.1111/j.1471-4159.1990.tb05809

    Article  CAS  PubMed  Google Scholar 

  24. Fischer JC, Ruitenbeek W, Berden JA, Trijbels JM, Veerkamp JH, Stadhouders AM, Sengers RC, Janssen AJ (1985) Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin Chim Acta 153:23–36. doi:10.1016/0009-8981(85)90135-4

    Article  CAS  PubMed  Google Scholar 

  25. Hughes BP (1962) A method for the estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activity in normal and pathological sera. Clin Chim Acta 7:597–603

    Article  CAS  PubMed  Google Scholar 

  26. Schuck PF, Leipnitz G, Ribeiro CA, Dalcin KB, Assis DR, Barschak AG, Pulrolnik V, Wannmacher CM et al (2002) Inhibition of creatine kinase activity in vitro by ethylmalonic acid in cerebral cortex of young rats. Neurochem Res 27:1633–1639. doi:10.1023/A:1021682910373

    Article  CAS  PubMed  Google Scholar 

  27. Kitto GB (1969) Intra and extramitochondrial malate dehydrogenases from chicken and tuna heart. Methods Enzymol 13:106–116. doi:10.1016/0076-6879(69)13023-2

    Article  CAS  Google Scholar 

  28. Bonefeld BE, Elfving B, Wegener G (2008) Reference genes for normalization: a study of rat brain tissue. Synapse 62:302–309. doi:10.1002/syn.20496

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Q, Wu Y, Sha H, Zhang P, Jia J, Hu Y, Zhu J (2012) Early exercise affects mitochondrial transcription factors expression after cerebral ischemia in rats. Int J Mol Sci 13:1670–1679. doi:10.3390/ijms13021670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bustin SA, Benes V, Garson J, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley G, Wittwer CT, Schjerling P, Day PJ, Abreu M, Aguado B, Beaulieu JF, Beckers A, Bogaert S, Browne JA, Carrasco-Ramiro F, Ceelen L et al (2013) The need for transparency and good practices in the qPCR literature. Nat Methods 10:1063–1067. doi:10.1038/nmeth.2697

  31. Ramos-Filho D, Chicaybam G, de-Souza-Ferreira E, Guerra Martinez C, Kurtenbach E, Casimiro-Lopes G, Galina A (2015) High intensity interval training (HIIT) induces specific changes in respiration and electron leakage in the mitochondria of different rat skeletal muscles. PLoS One 10(6):e0131766. doi:10.1371/journal.pone.0131766

  32. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–54. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  33. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  34. Hipkiss AR, Brownson C, Bertani MF, Ruiz E, Ferro A (2002) Reaction of carnosine with aged proteins: another protective process? Ann N Y Acad Sci 959:285–294. doi:10.1111/j.1749-6632.2002.tb02100

    Article  CAS  PubMed  Google Scholar 

  35. Kamal MA, Jiang H, Hu Y, Keep RF, Smith DE (2009) Influence of genetic knockout of PEPT2 on the in vivo disposition of endogenous and exogenous carnosine in wild-type and PEPT2 null mice. Am J Physiol Regul Integr Comp Physiol 296:R986–R991. doi:10.1152/ajpregu.90744.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bonfanti L, Peretto P, De Marchis S, Fasolo A (1999) Carnosine-related dipeptides in the mammalian brain. Prog Neurobiolol 59:333–353. doi:10.1016/S0301-0082(99)00010-6

    Article  CAS  Google Scholar 

  37. Baek SH, Noh AR, Kim KA, Akram M, Shin YJ, Kim ES, Yu SW, Majid A et al (2014) Modulation of mitochondrial function and autophagy mediates carnosine neuroprotection against ischemic brain damage. Stroke 45:2438–2443. doi:10.1161/STROKEAHA

    Article  PubMed  PubMed Central  Google Scholar 

  38. Corona C, Frazzini V, Silvestri E, Lattanzio R, La Sorda R, Piantelli M, Canzoniero LM, Ciavardelli D et al (2011) Effects of dietary supplementation of carnosine on mitochondrial dysfunction, amyloid pathology, and cognitive deficits in 3xTg-AD mice. PLoS One 6:e17971. doi:10.1371/journal.pone.0017971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cartwright SE, Bill RM, Hipkiss AR (2012) Carnosine affects the growth of Saccharomyces cerevisiae in a metabolism-dependent manner. PLoS One 7:e45006. doi:10.1371/journal.pone.0045006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Holliday R, McFarland GA (1996) Inhibition of growth of transformed and neoplastic cells by the dipeptide carnosine. Br J Cancer 73:966–971. doi:10.1038/bjc.1996.189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Soliman KM, Hamed MA, Ali AS (2006) Hepatoprotective effect of carnosine on liver biochemical parameters in chronic ethanol intoxicated rat. Med J Islam Acad Sci 16:77–86. doi:10.3923/jms.2006.528.536

    Google Scholar 

  42. Murphey WH, Lindmark DG, Patchen LI, Housler ME, Harrod EK, Mosovich L (1973) Serum carnosinase deficiency concomitant with mental retardation. Pediatr Res 7:601–606. doi:10.1203/00006450-197307000-00001

    Article  CAS  PubMed  Google Scholar 

  43. Bharadwaj LA, Davies GF, Xavier IJ, Ovsenek N (2002) L-carnosine and verapamil inhibit hypoxia-induced expression of hypoxia inducible factor (HIF-1 α) in H9c2 cardiomyoblasts. Pharmacol Res 45:175–181. doi:10.1006/phrs.2001.0911

    Article  CAS  PubMed  Google Scholar 

  44. Ito-Kato E, Suzuki N, Maeno M, Takada T, Tanabe N, Takayama T, Ito K, Otsuka K (2004) Effect of carnosine on runt-related transcription factor-2/core binding factor α-1 and Sox9 expressions of human periodontal ligament cells. J Periodontal Res 39:199–204. doi:10.1111/j.1600-0765.2004.00725.x

    Article  CAS  PubMed  Google Scholar 

  45. Calabrese V, Colombrita C, Guagliano E, Sapienza M, Ravagna A, Cardile V, Scapagnini G, Santoro AM et al (2005) Protective effect of carnosine during nitrosative stress in astroglial cell cultures. Neurochem Res 30:797–807. doi:10.1007/s11064-005-6874-8

    Article  CAS  PubMed  Google Scholar 

  46. Mong MC, Chao CY, Yin MC (2011) Histidine and carnosine alleviated hepatic steatosis in mice consumed high saturated fat diet. Eur J Pharmacol 653:82–88. doi:10.1016/j.ejphar.2010.12.001

    Article  CAS  PubMed  Google Scholar 

  47. Mizuno D, Kawahara M (2013) The molecular mechanisms of zinc neurotoxicity and the pathogenesis of vascular type senile dementia. Int J Mol Sci 14:22067–22081. doi:10.3390/ijms141122067

    Article  PubMed  PubMed Central  Google Scholar 

  48. Letzien U, Oppermann H, Meixensberger J, Gaunitz F (2014) The antineoplastic effect of carnosine is accompanied by induction of PDK4 and can be mimicked by L-histidine. Amino Acids 46:1009–1019. doi:10.1007/s00726-014-1664-8

    Article  CAS  PubMed  Google Scholar 

  49. Anne Stetler R, Leak RK, Gao Y, Chen J (2013) The dynamics of the mitochondrial organelle as a potential therapeutic target. J Cereb Blood Flow Metab 33:22–32. doi:10.1038/jcbfm.2012.158

    Article  CAS  PubMed  Google Scholar 

  50. Bellia F, Vecchio G, Cuzzocrea S, Calabrese V, Rizzarelli E (2011) Neuroprotective features of carnosine in oxidative driven diseases. Mol Aspects Med 32:258–266. doi:10.1016/j.mam.2011.10.009

    Article  CAS  PubMed  Google Scholar 

  51. Shen Y, Tian Y, Yang J, Shi X, Ouyang L, Gao J, Lu J (2014) Dual effects of carnosine on energy metabolism of cultured cortical astrocytes under normal and ischemic conditions. Regul Pept 192–193:45–52. doi:10.1016/j.regpep.2014.08.005

    Article  PubMed  Google Scholar 

  52. Lezi E, Burns JM, Swerdlow RH (2014) Effect of high-intensity exercise on aged mouse brain mitochondria, neurogenesis, and inflammation. Neurobiol Aging 35:2574–2583. doi:10.1016/j.neurobiolaging.2014.05.033

    Article  PubMed Central  Google Scholar 

  53. Dobrota D, Fedorova TN, Stepanova MS, Babusikova E, Statelova D, Tatarkova Z, Stvolinsky SS, Boldyrev AA (2010) Oxidative stress induced in rat brain by a combination of 3-nitropropionic acid and global ischemia. Intl J Clin Exp Med 3:144–151

    CAS  Google Scholar 

  54. Tsai SJ, Kuo WW, Liu WH, Yin MC (2010) Antioxidative and anti-inflammatory protection from carnosine in the striatum of MPTP-treated mice. J Agric Food Chem 58:11510–11516. doi:10.1021/jf103258p

    Article  CAS  PubMed  Google Scholar 

  55. Hipkiss AR (2011) Energy metabolism, proteotoxic stress and age-related dysfunction—protection by carnosine. Mol Aspects Med 32:267–278. doi:10.1016/j.mam.2011.10.004

    Article  CAS  PubMed  Google Scholar 

  56. Hipkiss AR, Cartwright SP, Bromley C, Gross SR, Bill RM (2013) Carnosine: can understanding its actions on energy metabolism and protein homeostasis inform its therapeutic potential? Chem Cent J 7:38. doi:10.1186/1752-153X-7-38

    Article  PubMed  PubMed Central  Google Scholar 

  57. Boldyrev A, Fedorova T, Stepanova M, Dobrotvorskaya I, Kozlova E, Boldanova N, Bagyeva G, Ivanova-Smolenskaya I et al (2008) Carnosine [corrected] increases efficiency of DOPA therapy of Parkinson’s disease: a pilot study. Rejuvenation Res 11:821–827. doi:10.1089/rej.2008.0716

    Article  CAS  PubMed  Google Scholar 

  58. Chengappa KN, Turkin SR, DeSanti S, Bowie CR, Brar JS, Schlicht PJ, Murphy SL, Hetrick ML et al (2012) A preliminary, randomized, double-blind, placebo-controlled trial of L-carnosine to improve cognition in schizophrenia. Schizophr Res 142:145–152. doi:10.1016/j.schres.2012.10.001

    Article  PubMed  Google Scholar 

  59. Baraniuk JN, El-Amin S, Corey R, Rayhan R, Timbol C (2013) Carnosine treatment for gulf war illness: a randomized controlled trial. Glob J Health Sci 5:69–81. doi:10.5539/gjhs.v5n3p69

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by resources from The Brazilian National Council for Scientific and Technological Development. GMT Oliveira was recipient of fellowships from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). LWK is recipient of fellowship CAPES/PNPD Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo C. Ferreira.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macedo, L.W., Cararo, J.H., Maravai, S.G. et al. Acute Carnosine Administration Increases Respiratory Chain Complexes and Citric Acid Cycle Enzyme Activities in Cerebral Cortex of Young Rats. Mol Neurobiol 53, 5582–5590 (2016). https://doi.org/10.1007/s12035-015-9475-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9475-9

Keywords

Navigation