Skip to main content
Log in

Examining the Neural and Astroglial Protective Effects of Cellular Prion Protein Expression and Cell Death Protease Inhibition in Mouse Cerebrocortical Mixed Cultures

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Overexpression of cellular prion protein, PrPC, has cytoprotective effects against neuronal injuries. Inhibition of cell death-associated proteases such as necrosis-linked calpain and apoptosis-linked caspase are also neuroprotective. Here, we systematically studied how PrPC expression levels and cell death protease inhibition affect cytotoxic challenges to both neuronal and glial cells in mouse cerebrocortical mixed cultures (CCM). Primary CCM derived from three mouse lines expressing no (PrPC knockout mice (PrPKO)), normal (wild-type (wt)), or high (tga20) levels of PrPC were subjected to necrotic challenge (calcium ionophore A23187) and apoptotic challenge (staurosporine (STS)). CCM which originated from tga20 mice provided the most robust neuron-astroglia protective effects against necrotic and early apoptotic cell death (lactate dehydrogenase (LDH) release) at 6 h but subsequently lost its cytoprotective effects. In contrast, PrPKO-derived cultures displayed elevated A23187- and STS-induced cell death at 24 h. Calpain inhibitor SNJ-1945 protected against A23187 challenge at 6 h in CCM from all three mouse lines but protected only against A23187 and STS treatments by 24 h in the PrPKO line. In parallel, caspase inhibitor Z-D-DCB protected against pro-apoptotic STS challenge at 6 and 24 h. Furthermore, we also examined αII-spectrin breakdown products (primarily from neurons) and glial fibrillary acidic protein (GFAP) breakdown products (from astroglia) as cytoskeletal proteolytic biomarkers. Overall, it appeared that both neurons and astroglial cells were less vulnerable to proteolytic attack during A23187 and STS challenges in tga20-derived cultures but more vulnerable in PrPKO-derived cultures. In addition, calpain and caspase inhibitors provide further protection against respective protease attacks on these neuronal and glial cytoskeletal proteins in CCM regardless of mouse-line origin. Lastly, some synergistic cytoprotective effects between PrPC expression and addition of cell death-linked protease inhibitors were also observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Prusiner SB (1998) The prion diseases. Brain Pathol 8:499–513

    Article  CAS  PubMed  Google Scholar 

  2. Salès N, Rodolfo K, Hässig R et al (1998) Cellular prion protein localization in rodent and primate brain. Eur J Neurosci 10:2464–2471

    Article  PubMed  Google Scholar 

  3. Caughey B, Chesebro B (2001) Transmissible spongiform encephalopathies and prion protein interconversions. Adv Virus Res 56:277–311

    Article  CAS  PubMed  Google Scholar 

  4. White AR, Enever P, Tayebi M et al (2003) Monoclonal antibodies inhibit prion replication and delay the development of prion disease. Nature 422:80–83. doi:10.1038/nature01457

    Article  CAS  PubMed  Google Scholar 

  5. Krebs B, Wiebelitz A, Balitzki-Korte B et al (2007) Cellular prion protein modulates the intracellular calcium response to hydrogen peroxide. J Neurochem 100:358–367. doi:10.1111/j.1471-4159.2006.04256.x

    Article  CAS  PubMed  Google Scholar 

  6. Lopes MH, Hajj GNM, Muras AG et al (2005) Interaction of cellular prion and stress-inducible protein 1 promotes neuritogenesis and neuroprotection by distinct signaling pathways. J Neurosci 25:11330–11339. doi:10.1523/JNEUROSCI.2313-05.2005

    Article  CAS  PubMed  Google Scholar 

  7. Kanaani J, Prusiner SB, Diacovo J et al (2005) Recombinant prion protein induces rapid polarization and development of synapses in embryonic rat hippocampal neurons in vitro. J Neurochem 95:1373–1386. doi:10.1111/j.1471-4159.2005.03469.x

    Article  CAS  PubMed  Google Scholar 

  8. Bremer J, Baumann F, Tiberi C et al (2010) Axonal prion protein is required for peripheral myelin maintenance. Nat Neurosci 13:310–318. doi:10.1038/nn.2483

    Article  CAS  PubMed  Google Scholar 

  9. Mitteregger G, Vosko M, Krebs B et al (2007) The role of the octarepeat region in neuroprotective function of the cellular prion protein. Brain Pathol 17:174–183. doi:10.1111/j.1750-3639.2007.00061.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hoshino S, Inoue K, Yokoyama T et al (2003) Prions prevent brain damage after experimental brain injury: a preliminary report. Acta Neurochir Suppl 86:297–299

    CAS  PubMed  Google Scholar 

  11. Williams SK, Fairless R, Weise J et al (2011) Neuroprotective effects of the cellular prion protein in autoimmune optic neuritis. Am J Pathol 178:2823–2831. doi:10.1016/j.ajpath.2011.02.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Coulpier M, Messiaen S, Boucreaux D, Eloit M (2006) Axotomy-induced motoneuron death is delayed in mice overexpressing PrPc. NSC 141:1827–1834. doi:10.1016/j.neuroscience.2006.05.037

    CAS  Google Scholar 

  13. Lynch G, Baudry M (1987) Brain spectrin, calpain and long-term changes in synaptic efficacy. Brain Res Bull 18:809–815

    Article  CAS  PubMed  Google Scholar 

  14. Liu J, Liu MC, Wang KK et al (2008) Calpain in the CNS: from synaptic function to neurotoxicity. Sci Signal 1:re1. doi:10.1126/stke.114re1

    PubMed  Google Scholar 

  15. Liu J, Liu MC, Wang KK, et al. (2008) Physiological and pathological actions of calpains in glutamatergic neurons. Sci Signal 1:scisignal–123tr3v1.

  16. Wang KK (2000) Calpain and caspase: can you tell the difference?, by Kevin K.W. WangVol. 23, pp. 20–26 [In Process Citation]. Trends in Neurosciences 23:59

  17. Wang KKW, Po-Wai Y (1994) Calpain inhibition: an overview of its therapeutic potential. Trends Pharmacol Sci 15:412–419

    Article  CAS  PubMed  Google Scholar 

  18. Wang KK, Zoltewicz JS, Chiu A et al (2012) Release of full-length PrP(C) from cultured neurons following neurotoxic challenges. Front Neurol 3:147–147

    PubMed  PubMed Central  Google Scholar 

  19. Wang Y, Briz V, Chishti A et al (2013) Distinct roles for μ-calpain and m-calpain in synaptic NMDAR-mediated neuroprotection and extrasynaptic NMDAR-mediated neurodegeneration. J Neurosci 33:18880–18892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Takano E, Maki M (1997) Calpastatin: molecular mechanism of calpain inhibition. Tanpakushitsu Kakusan Koso 42:2181–2188

    CAS  PubMed  Google Scholar 

  21. Ray SK, Karmakar S, Nowak MW, Banik NL (2006) Inhibition of calpain and caspase-3 prevented apoptosis and preserved electrophysiological properties of voltage-gated and ligand-gated ion channels in rat primary cortical neurons exposed to glutamate. NSC 139:577–595

    CAS  Google Scholar 

  22. Yuen PW, Wang KKW (1998) Calpain inhibitors: novel neuroprotectants and potential anticataract agents. Drugs Future 23:741–750

    Article  CAS  Google Scholar 

  23. Deveraux QL, Reed JC (1999) IAP family proteins—suppressors of apoptosis.

  24. Nicotera P, Leist M, Manzo L (1999) Neuronal cell death: a demise with different shapes. Trends Pharmacol Sci 20:46–51

    Article  CAS  PubMed  Google Scholar 

  25. DOD-DVBIC (2014) DVBIC Worldwide-TBI 2000–2013 Report. DOD Report 1–5

  26. Zhang Z, Larner SF, Liu MC et al (2009) Multiple alphaII-spectrin breakdown products distinguish calpain and caspase dominated necrotic and apoptotic cell death pathways. Apoptosis 14:1289–1298

    Article  CAS  PubMed  Google Scholar 

  27. Goldstein LE, Fisher AM, Tagge CA, et al. (2012) Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Science Translational Medicine 4:134ra60–134ra60.

  28. McKee AC, Stern RA, Nowinski CJ et al (2013) The spectrum of disease in chronic traumatic encephalopathy. Brain 136:43–64

    Article  PubMed  Google Scholar 

  29. Yang Z, Lin F, Robertson CS, Wang K (2014) Dual vulnerability of TDP-43 to calpain and caspase-3 proteolysis after neurotoxic conditions and traumatic brain injury. J Cereb Blood Flow Metabol 34:1444–1452

    Article  CAS  Google Scholar 

  30. Koh JY, Choi DW (1987) Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay. J Neurosci Methods 20:83–90

    Article  CAS  PubMed  Google Scholar 

  31. Nath R, Probert A Jr, McGinnis KM, Wang KKW (1998) Evidence for activation of caspase-3-like protease in excitotoxin- and hypoxia/hypoglycemia-injured neurons. J Neurochem 71:186–195

    Article  CAS  PubMed  Google Scholar 

  32. Guingab-Cagmat J, Newsom K, Vakulenko A et al (2012) In vitro MS-based proteomic analysis and absolute quantification of neuronal-glial injury biomarkers in cell culture system. Electrophoresis 33:3786–3797

    Article  CAS  PubMed  Google Scholar 

  33. Zoltewicz JS, Mondello S, Yang B et al (2013) Biomarkers track damage after graded injury severity in a rat model of penetrating brain injury. J Neurotrauma 30:1161–1169

    Article  PubMed  Google Scholar 

  34. Zhang Z, Zoltewicz JS, Mondello S et al (2014) Human traumatic brain injury induces autoantibody response against glial fibrillary acidic protein and its breakdown products. PLoS One 9:e92698

    Article  PubMed  PubMed Central  Google Scholar 

  35. Aloisi F, Agresti C, Levi G (1988) Establishment, characterization, and evolution of cultures enriched in type-2 astrocytes. J Neurosci Res 21:188–198

    Article  CAS  PubMed  Google Scholar 

  36. Kim B-H, Lee H-G, Choi J-K et al (2004) The cellular prion protein (PrPC) prevents apoptotic neuronal cell death and mitochondrial dysfunction induced by serum deprivation. Mol Brain Res 124:40–50. doi:10.1016/j.molbrainres.2004.02.005

    Article  CAS  PubMed  Google Scholar 

  37. Brown DR, Schulz-Schaeffer WJ, Schmidt B, Kretzschmar HA (1997) Prion protein-deficient cells show altered response to oxidative stress due to decreased SOD-1 activity. Exp Neurol 146:104–112

    Article  CAS  PubMed  Google Scholar 

  38. Chen S, Mangé A, Dong L et al (2003) Prion protein as trans-interacting partner for neurons is involved in neurite outgrowth and neuronal survival. Mol Cell Neurosci 22:227–233

    Article  CAS  PubMed  Google Scholar 

  39. Paitel E, Sunyach C, da Costa CA et al (2004) Primary cultured neurons devoid of cellular prion display lower responsiveness to staurosporine through the control of p53 at both transcriptional and post-transcriptional levels. J Biol Chem 279:612–618

    Article  CAS  PubMed  Google Scholar 

  40. Larner SF, Hayes RL, Wang KKW (2008) Proteolytic mechanisms of cell death in the central nervous system. In: Banik N, Ray SK (eds) A Lajtha. Handbook of Neurochemistry, Springer US, pp 249–279

    Google Scholar 

  41. Shahim P, Tegner Y, Wilson DH et al (2014) Blood biomarkers for brain injury in concussed professional ice hockey players. JAMA Neurol 71:684–692. doi:10.1001/jamaneurol.2014.367

    Article  PubMed  Google Scholar 

  42. Villa PG, Henzel WJ, Sensenbrenner M et al (1998) Calpain inhibitors, but not caspase inhibitors, prevent actin proteolysis and DNA fragmentation during apoptosis. J Cell Sci 111:713–722

    CAS  PubMed  Google Scholar 

  43. Park SY, Tournell C, Sinjoanu RC, Ferreira A (2007) Caspase-3- and calpain-mediated tau cleavage are differentially prevented by estrogen and testosterone in beta-amyloid-treated hippocampal neurons. NSC 144:119–127. doi:10.1016/j.neuroscience.2006.09.012

    CAS  Google Scholar 

  44. Liu MC, Akle V, Zheng W et al (2006) Comparing calpain- and caspase-3-mediated degradation patterns in traumatic brain injury by differential proteome analysis. Biochem J 394:715–725. doi:10.1042/BJ20050905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Siman R, Zhang C, Roberts VL et al (2005) Novel surrogate markers for acute brain damage: cerebrospinal fluid levels correlate with severity of ischemic neurodegeneration in the rat. J Cereb Blood Flow Metab 25:1433–1444. doi:10.1038/sj.jcbfm.9600138

    Article  PubMed  Google Scholar 

  46. Zhang Z, Mondello S, Kobeissy F et al (2011) Protein biomarkers for traumatic and ischemic brain injury: from bench to bedside. Translat Stroke Res 3:1–32

    CAS  Google Scholar 

  47. Papa L, Lewis LM, Falk JL et al (2012) Elevated levels of serum glial fibrillary acidic protein breakdown products in mild and moderate traumatic brain injury are associated with intracranial lesions and neurosurgical intervention. Ann Emerg Med 59:471–483

    Article  PubMed  Google Scholar 

  48. Okonkwo DO, Yue JK, Puccio AM et al (2013) GFAP-BDP as an acute diagnostic marker in traumatic brain injury: results from the prospective transforming research and clinical knowledge in traumatic brain injury study. J Neurotrauma 30:1490–1497

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wang KK, Moghieb A, Yang Z, Zhang Z (2013) Systems biomarkers as acute diagnostics and chronic monitoring tools for traumatic brain injury. SPIE Defense, Security, and Sensing 87230O–87230O–15.

Download references

Acknowledgments

This work was supported, in part, by the SUNY Downstate Medical Center, the University of Florida Department of Psychiatry and McKnight Brain Institute faculty development funds (KKW), and an award from the US Department of Defense (DoD) (RR). For the DoD funding, (1) the US Army Medical Research Acquisition Activity, Fort Detrick, MD 21702-5014 is the awarding and administrating acquisition office. (2) This work was supported by the Office of the Assistant Secretary of Defense for Health Affairs through the US Army Medical Research and Materiel Command under award # W81XWH-11-2-0069. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the DoD. And (3) in conducting research using animals, the investigators adhere to the laws of the USA and regulations of the Department of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kevin K. W. Wang or Richard Rubenstein.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1593 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K.K.W., Yang, Z., Chiu, A. et al. Examining the Neural and Astroglial Protective Effects of Cellular Prion Protein Expression and Cell Death Protease Inhibition in Mouse Cerebrocortical Mixed Cultures. Mol Neurobiol 53, 4821–4832 (2016). https://doi.org/10.1007/s12035-015-9407-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9407-8

Key words

Navigation